
Condor® Version 7.7.6 Manual

Condor Team, University of Wisconsin–Madison

May 2, 2012

CONTENTS

1 Overview 1

1.1 High-Throughput Computing (HTC) and its Requirements 1

1.2 Condor’s Power .. 2

1.3 Exceptional Features 3

1.4 Current Limitations 4

1.5 Availability .. . 5

1.6 Contributions to Condor 6

1.7 Contact Information 8

1.8 Privacy Notice .. . 9

2 Users’ Manual 10

2.1 Welcome to Condor .. 10

2.2 Introduction .. . 10

2.3 Matchmaking with ClassAds 11

2.3.1 Inspecting Machine ClassAds with condor_status 12

2.4 Road-map for Running Jobs 13

2.4.1 Choosing a Condor Universe .. 14

2.5 Submitting a Job .. 18

2.5.1 Sample submit description files 19

i

CONTENTS ii

2.5.2 About Requirements and Rank .. . 21

2.5.3 Submitting Jobs Using a Shared File System 23

2.5.4 Submitting Jobs Without a Shared File System: Condor’s File Transfer Mechanism 25

2.5.5 Environment Variables .. . 35

2.5.6 Heterogeneous Submit: Execution on Differing Architectures 36

2.6 Managing a Job .41

2.6.1 Checking on the progress of jobs 41

2.6.2 Removing a job from the queue .. 43

2.6.3 Placing a job on hold .44

2.6.4 Changing the priority of jobs 44

2.6.5 Why is the job not running? .. 45

2.6.6 In the Log File . 47

2.6.7 Job Completion . 51

2.7 Priorities and Preemption 51

2.7.1 Job Priority . 52

2.7.2 User priority . 52

2.7.3 Details About How Condor Jobs Vacate Machines 53

2.8 Java Applications 53

2.8.1 A Simple Example Java Application 54

2.8.2 Less Simple Java Specifications 55

2.8.3 Chirp I/O . 58

2.9 Parallel Applications (Including MPI Applications) 60

2.9.1 Prerequisites to Running Parallel Jobs 60

2.9.2 Parallel Job Submission .. . 61

2.9.3 Parallel Jobs with Separate Requirements 63

2.9.4 MPI Applications Within Condor’s Parallel Universe 64

2.10 DAGMan Applications 66

2.10.1 DAGMan Terminology .66

Condor Version 7.7.6 Manual

CONTENTS iii

2.10.2 Input File Describing the DAG: the JOB, DATA, SCRIPT and PARENT...CHILD Key Words 67

2.10.3 Submit Description File Contents and Usage of Log Files 72

2.10.4 DAG Submission . 74

2.10.5 Job Monitoring, Job Failure, and Job Removal 75

2.10.6 Suspending a Running DAG .. 76

2.10.7 Advanced Features of DAGMan .. . 77

2.10.8 Job Recovery: The Rescue DAG .. . 100

2.10.9 File Paths in DAGs .103

2.10.10 Visualizing DAGs withdot . 103

2.10.11 Capturing the Status of Nodes in a File 104

2.10.12 A Machine-Readable Event History, the jobstate.log File 106

2.10.13 Utilizing the Power of DAGMan for Large Numbers of Jobs 109

2.11 Virtual Machine Applications 113

2.11.1 The Submit Description File 113

2.11.2 Checkpoints . 116

2.11.3 Disk Images . 117

2.11.4 Job Completion in the vm Universe 117

2.12 Time Scheduling for Job Execution 118

2.12.1 Job Deferral .118

2.12.2 CronTab Scheduling .. 120

2.13 Job Monitor .. 124

2.13.1 Transition States .. . 125

2.13.2 Events . 125

2.13.3 Selecting Jobs .125

2.13.4 Zooming . 125

2.13.5 Keyboard and Mouse Shortcuts 126

2.14 Special Environment Considerations 126

2.14.1 AFS . 126

Condor Version 7.7.6 Manual

CONTENTS iv

2.14.2 NFS . 127

2.14.3 Condor Daemons That Do Not Run as root 127

2.14.4 Job Leases . 128

2.15 Potential Problems 129

2.15.1 Renaming of argv[0] .. 129

3 Administrators’ Manual 130

3.1 Introduction .. . 130

3.1.1 The Different Roles a Machine Can Play 131

3.1.2 The Condor Daemons . 132

3.2 Installation .. . 135

3.2.1 Obtaining Condor . 135

3.2.2 Preparation . 136

3.2.3 Newer Unix Installation Procedure 141

3.2.4 Starting Condor Under Unix After Installation 143

3.2.5 Installation on Windows .. . 146

3.2.6 RPMs . 155

3.2.7 Debian Packages . 156

3.2.8 Upgrading - Installing a Newer Version of Condor 157

3.2.9 Dynamic Deployment . 157

3.3 Configuration .. 159

3.3.1 Introduction to Configuration Files 159

3.3.2 Special Macros . 167

3.3.3 Condor-wide Configuration File Entries 168

3.3.4 Daemon Logging Configuration File Entries 176

3.3.5 DaemonCore Configuration File Entries 182

3.3.6 Network-Related Configuration File Entries 185

3.3.7 Shared File System Configuration File Macros 189

Condor Version 7.7.6 Manual

CONTENTS v

3.3.8 Checkpoint Server Configuration File Macros 193

3.3.9 condor_master Configuration File Macros 195

3.3.10 condor_startd Configuration File Macros 201

3.3.11 condor_schedd Configuration File Entries 216

3.3.12 condor_shadow Configuration File Entries 227

3.3.13 condor_starter Configuration File Entries 229

3.3.14 condor_submit Configuration File Entries 232

3.3.15 condor_preen Configuration File Entries 234

3.3.16 condor_collector Configuration File Entries 235

3.3.17 condor_negotiator Configuration File Entries 238

3.3.18 condor_procd Configuration File Macros 245

3.3.19 condor_credd Configuration File Macros 246

3.3.20 condor_gridmanager Configuration File Entries 246

3.3.21 condor_job_router Configuration File Entries 250

3.3.22 condor_lease_manager Configuration File Entries 252

3.3.23 Grid Monitor Configuration File Entries 253

3.3.24 Configuration File Entries Relating to Grid Usage andGlidein 254

3.3.25 Configuration File Entries for DAGMan 254

3.3.26 Configuration File Entries Relating to Security 261

3.3.27 Configuration File Entries Relating to PrivSep 265

3.3.28 Configuration File Entries Relating to Virtual Machines 266

3.3.29 Configuration File Entries Relating to High Availability 268

3.3.30 MyProxy Configuration File Macros 272

3.3.31 Configuration File Macros Affecting APIs 273

3.3.32 Configuration File Entries Relating tocondor_ssh_to_job 274

3.3.33 condor_roosterConfiguration File Macros 275

3.3.34 condor_shared_portConfiguration File Macros 276

3.3.35 Configuration File Entries Relating to Hooks 277

Condor Version 7.7.6 Manual

CONTENTS vi

3.3.36 Configuration File Entries Only for Windows Platforms 283

3.3.37 condor_defragConfiguration File Macros 283

3.4 User Priorities and Negotiation 285

3.4.1 Real User Priority (RUP) .. . 285

3.4.2 Effective User Priority (EUP) 285

3.4.3 Priorities in Negotiation and Preemption 286

3.4.4 Priority Calculation 288

3.4.5 Negotiation . 288

3.4.6 The Layperson’s Description of the Pie Spin and Pie Slice 289

3.4.7 Group Accounting . 290

3.4.8 Hierarchical Group Quotas 291

3.5 Policy Configuration for thecondor_startd. 294

3.5.1 Startd ClassAd Attributes 294

3.5.2 TheSTARTexpression . 295

3.5.3 TheIS_VALID_CHECKPOINT_PLATFORMexpression 296

3.5.4 TheRANKexpression . 297

3.5.5 Machine States . 298

3.5.6 Machine Activities .. 302

3.5.7 State and Activity Transitions 303

3.5.8 State/Activity Transition Expression Summary 312

3.5.9 Policy Settings .315

3.6 Security .325

3.6.1 Condor’s Security Model .. . 326

3.6.2 Security Negotiation .. . 330

3.6.3 Authentication .333

3.6.4 The Unified Map File for Authentication 344

3.6.5 Encryption . 345

3.6.6 Integrity . 346

Condor Version 7.7.6 Manual

CONTENTS vii

3.6.7 Authorization .347

3.6.8 Security Sessions .. 352

3.6.9 Host-Based Security in Condor 353

3.6.10 Examples of Security Configuration 356

3.6.11 Changing the Security Configuration 358

3.6.12 Using Condor w/ Firewalls, Private Networks, and NATs 360

3.6.13 User Accounts in Condor on Unix Platforms 360

3.6.14 Privilege Separation 365

3.6.15 Support forglexec . 369

3.7 Networking (includes sections on Port Usage and CCB) 369

3.7.1 Port Usage in Condor .370

3.7.2 Reducing Port Usage with thecondor_shared_portDaemon 373

3.7.3 Configuring Condor for Machines With Multiple NetworkInterfaces . . . 375

3.7.4 Using TCP to Send Updates to thecondor_collector 378

3.8 The Checkpoint Server 379

3.8.1 Preparing to Install a Checkpoint Server 380

3.8.2 Installing the Checkpoint Server Module 380

3.8.3 Configuring the Pool to Use Multiple Checkpoint Servers 382

3.8.4 Checkpoint Server Domains .. . 383

3.9 DaemonCore . 384

3.9.1 DaemonCore and Unix signals .. . 385

3.9.2 DaemonCore and Command-line Arguments 386

3.10 Pool Management .. . 387

3.10.1 Upgrading – Installing a New Version on an Existing Pool 388

3.10.2 Shutting Down and Restarting a Condor Pool 389

3.10.3 Reconfiguring a Condor Pool .. . 391

3.11 The High Availability of Daemons 391

3.11.1 High Availability of the Job Queue 391

Condor Version 7.7.6 Manual

CONTENTS viii

3.11.2 High Availability of the Central Manager 393

3.12 Setting Up for Special Environments 399

3.12.1 Using Condor with AFS .399

3.12.2 Enabling the Transfer of Files Specified by a URL 401

3.12.3 Configuring Condor for Multiple Platforms 403

3.12.4 Full Installation of condor_compile 406

3.12.5 Thecondor_kbdd. 407

3.12.6 Configuring The CondorView Server 408

3.12.7 Running Condor Jobs within a Virtual Machine 411

3.12.8 Configuring Thecondor_startdfor SMP Machines 412

3.12.9 Condor’s Dedicated Scheduling 423

3.12.10 Configuring Condor for Running Backfill Jobs 426

3.12.11 Group ID-Based Process Tracking 434

3.12.12 Cgroup-Based Process Tracking 435

3.12.13 Limiting Resource Usage 436

3.12.14 Concurrency Limits .. . 437

3.13 Java Support Installation 439

3.14 Virtual Machines 441

3.14.1 Configuration Variables 441

3.15 Power Management .. . 443

3.15.1 Entering a Low Power State .. . 443

3.15.2 Returning From a Low Power State 444

3.15.3 Keeping a ClassAd for a Hibernating Machine 444

3.15.4 Linux Platform Details 445

3.15.5 Windows Platform Details 445

4 Miscellaneous Concepts 447

4.1 Condor’s ClassAd Mechanism 447

Condor Version 7.7.6 Manual

CONTENTS ix

4.1.1 ClassAds: Old and New . 448

4.1.2 Old ClassAd Syntax . 450

4.1.3 Old ClassAd Evaluation Semantics 459

4.1.4 Old ClassAds in the Condor System 462

4.2 Condor’s Checkpoint Mechanism 465

4.2.1 Standalone Checkpointing 466

4.2.2 Checkpoint Safety .467

4.2.3 Checkpoint Warnings .. 468

4.2.4 Checkpoint Library Interface 468

4.3 Computing On Demand (COD) .. . 469

4.3.1 Overview of How COD Works . 470

4.3.2 Authorizing Users to Create and Manage COD Claims 470

4.3.3 Defining a COD Application .471

4.3.4 Managing COD Resource Claims .. 475

4.3.5 Limitations of COD Support in Condor 482

4.4 Hooks . 482

4.4.1 Job Hooks That Fetch Work .483

4.4.2 Hooks for a Job Router . 489

4.4.3 Daemon ClassAd Hooks . 491

4.5 Application Program Interfaces 493

4.5.1 Web Service . 493

4.5.2 The DRMAA API . 505

4.5.3 The Condor User and Job Log Reader API 507

4.5.4 Chirp . 516

4.5.5 The Command Line Interface .. 517

4.5.6 The Condor GAHP . 517

4.5.7 The Condor Perl Module . 517

Condor Version 7.7.6 Manual

CONTENTS x

5 Grid Computing 525

5.1 Introduction .. . 525

5.2 Connecting Condor Pools with Flocking 526

5.2.1 Flocking Configuration .. . 526

5.2.2 Job Considerations .. 528

5.3 The Grid Universe .. 528

5.3.1 Condor-C, The condor Grid Type .. . 528

5.3.2 Condor-G, the gt2, and gt5 Grid Types 532

5.3.3 The nordugrid Grid Type .542

5.3.4 The unicore Grid Type .543

5.3.5 The pbs Grid Type . 543

5.3.6 The lsf Grid Type . 544

5.3.7 The sge Grid Type . 544

5.3.8 The EC2 Grid Type . 545

5.3.9 The cream Grid Type . 547

5.3.10 The deltacloud Grid Type .. . 547

5.3.11 Matchmaking in the Grid Universe 549

5.4 Glidein . 554

5.4.1 Whatcondor_glideinDoes . 554

5.4.2 Configuration Requirements in the Local Pool 555

5.4.3 Running Jobs on the Remote Grid Resource After Glidein. 556

5.5 Dynamic Deployment .. . 556

5.6 The Condor Job Router .. . 557

5.6.1 Routing Mechanism . 557

5.6.2 Job Submission with Job Routing Capability 558

5.6.3 An Example Configuration .560

5.6.4 Routing Table Entry ClassAd Attributes 561

5.6.5 Example: constructing the routing table from ReSS 563

Condor Version 7.7.6 Manual

CONTENTS xi

6 Platform-Specific Information 565

6.1 Linux . 565

6.1.1 Linux Kernel-specific Information 566

6.1.2 Address Space Randomization 566

6.2 Microsoft Windows .. . 567

6.2.1 Limitations under Windows .. . 567

6.2.2 Supported Features under Windows 567

6.2.3 Secure Password Storage .. . 568

6.2.4 Executing Jobs as the Submitting User 569

6.2.5 The condor_credd Daemon .. 569

6.2.6 Executing Jobs with the User’s Profile Loaded 571

6.2.7 Using Windows Scripts as Job Executables 571

6.2.8 How Condor for Windows Starts and Stops a Job 572

6.2.9 Security Considerations in Condor for Windows 574

6.2.10 Network files and Condor .. 575

6.2.11 Interoperability between Condor for Unix and Condorfor Windows 577

6.2.12 Some differences between Condor for Unix -vs- Condorfor Windows . . . 578

6.3 Macintosh OS X . 578

7 Frequently Asked Questions (FAQ) 580

7.1 Obtaining & Installing Condor 580

7.2 Setting up Condor .. . 583

7.3 Running Condor Jobs .. . 586

7.4 Condor on Windows .592

7.5 Grid Computing .. 600

7.6 Managing Large Workflows .. . 602

7.7 Troubleshooting 603

7.8 Other questions .. . 606

Condor Version 7.7.6 Manual

CONTENTS xii

8 Contrib and Source Modules 607

8.1 Introduction .. . 607

8.2 Using Condor with the Hadoop File System 607

8.2.1 condor_hdfs Configuration File Entries 608

8.3 Quill . 610

8.3.1 Installation and Configuration 610

8.3.2 Four Usage Examples . 617

8.3.3 Quill and Security .617

8.3.4 Quill and Its RDBMS Schema .618

8.4 The CondorView Client Contrib Module 638

8.4.1 Step-by-Step Installation of the CondorView Client 639

9 Version History and Release Notes 642

9.1 Introduction to Condor Versions 642

9.1.1 Condor Version Number Scheme .. 642

9.1.2 The Stable Release Series .. . 643

9.1.3 The Development Release Series 643

9.2 Upgrading from the 7.4 series to the 7.6 series of Condor 643

9.3 Development Release Series 7.7 644

9.4 Stable Release Series 7.6 666

9.5 Development Release Series 7.5 682

9.6 Stable Release Series 7.4 708

10 Command Reference Manual (man pages) 730

cleanup_release. 731

condor_advertise. 733

condor_check_userlogs. 737

condor_checkpoint. 738

condor_chirp . 741

Condor Version 7.7.6 Manual

CONTENTS xiii

condor_cod . 745

condor_cold_start. 748

condor_cold_stop. 751

condor_compile. 754

condor_config_bind. 756

condor_config_val . 758

condor_configure. 762

condor_continue . 767

condor_convert_history. 769

condor_dagman. 771

condor_drain . 776

condor_fetchlog. 779

condor_findhost. 782

condor_gather_info. 784

condor_glidein . 787

condor_history . 794

condor_hold. 797

condor_load_history . 800

condor_master . 802

condor_off . 804

condor_on. 807

condor_power. 810

condor_preen. 812

condor_prio . 814

condor_procd . 816

condor_q . 819

condor_qedit . 827

condor_reconfig. 829

Condor Version 7.7.6 Manual

CONTENTS xiv

condor_release . 832

condor_reschedule. 834

condor_restart. 837

condor_rm. 840

condor_rmdir . 843

condor_router_history . 845

condor_router_q . 847

condor_run . 849

condor_set_shutdown. 853

condor_ssh_to_job. 856

condor_stats. 860

condor_status. 864

condor_store_cred . 871

condor_submit . 873

condor_submit_dag. 909

condor_suspend. 915

condor_transfer_data. 917

condor_updates_stats. 919

condor_userlog . 922

condor_userprio. 925

condor_vacate. 930

condor_vacate_job. 933

condor_version . 936

condor_wait. 938

filelock_midwife. 941

filelock_undertaker . 943

gidd_alloc .. 945

install_release. 946

Condor Version 7.7.6 Manual

CONTENTS xv

procd_ctl .948

uniq_pid_midwife. 951

uniq_pid_undertaker. 953

11 Appendix A: ClassAd Attributes 955

12 Appendix B: Magic Numbers 997

LICENSING AND COPYRIGHT

Condor is released under the Apache License, Version 2.0.

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-Madison,
WI.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in com-
pliance with the License. You may obtain a copy of the Licenseat

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is dis-
tributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied. See the License for the specific language governing permissions and limitations under the License.

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by
Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting
the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled
by, or are under common control with that entity. For the purposes of this definition, "control" means (i)
the power, direct or indirect, to cause the direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50outstanding shares, or (iii) beneficial ownership of such
entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this Li-
cense.

"Source" form shall mean the preferred form for making modifications, including but not limited to
software source code, documentation source, and configuration files.

Condor Version 7.7.6 Manual

http://www.apache.org/licenses/
http://www.apache.org/licenses/LICENSE-2.0

CONTENTS xvi

"Object" form shall mean any form resulting from mechanicaltransformation or translation of a Source
form, including but not limited to compiled object code, generated documentation, and conversions to
other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the
License, as indicated by a copyright notice that is includedin or attached to the work (an example is
provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source orObject form, that is based on (or derived
from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works
shall not include works that remain separable from, or merely link (or bind by name) to the interfaces
of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any
modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to
Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized
to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any
form of electronic, verbal, or written communication sent to the Licensor or its representatives, includ-
ing but not limited to communication on electronic mailing lists, source code control systems, and issue
tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and im-
proving the Work, but excluding communication that is conspicuously marked or otherwise designated
in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution
has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright li-
cense to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and
distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as
stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise
transfer the Work, where such license applies only to those patent claims licensable by such Contributor
that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any
entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution
incorporated within the Work constitutes direct or contributory patent infringement, then any patent
licenses granted to You under this License for that Work shall terminate as of the date such litigation is
filed.

4. Redistribution. You may reproduce and distribute copiesof the Work or Derivative Works thereof in
any medium, with or without modifications, and in Source or Object form, provided that You meet the
following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent,
trademark, and attribution notices from the Source form of the Work, excluding those notices that do not
pertain to any part of the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that
You distribute must include a readable copy of the attribution notices contained within such NOTICE
file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of
the following places: within a NOTICE text file distributed as part of the Derivative Works; within the

Condor Version 7.7.6 Manual

CONTENTS xvii

Source form or documentation, if provided along with the Derivative Works; or, within a display gener-
ated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of
the NOTICE file are for informational purposes only and do notmodify the License. You may add Your
own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the
NOTICE text from the Work, provided that such additional attribution notices cannot be construed as
modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or dif-
ferent license terms and conditions for use, reproduction,or distribution of Your modifications, or for
any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work
otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally sub-
mitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this
License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall
supersede or modify the terms of any separate license agreement you may have executed with Licensor
regarding such Contributions.

6. Trademarks. This License does not grant permission to usethe trade names, trademarks, service marks,
or product names of the Licensor, except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides
the Work (and each Contributor provides its Contributions)on an "AS IS" BASIS, WITHOUT WAR-
RANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation,
any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS
FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of
using or redistributing the Work and assume any risks associated with Your exercise of permissions
under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts)
or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect,
special, incidental, or consequential damages of any character arising as a result of this License or out
of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work
stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if
such Contributor has been advised of the possibility of suchdamages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof,
You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other
liability obligations and/or rights consistent with this License. However, in accepting such obligations,
You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other
Contributor, and only if You agree to indemnify, defend, andhold each Contributor harmless for any
liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such
warranty or additional liability.

END OF TERMS AND CONDITIONS

Condor Version 7.7.6 Manual

CHAPTER

ONE

Overview

1.1 High-Throughput Computing (HTC) and its Requirements

For many research and engineering projects, the quality of the research or the product is heavily
dependent upon the quantity of computing cycles available.It is not uncommon to find problems
that require weeks or months of computation to solve. Scientists and engineers engaged in this
sort of work need a computing environment that delivers large amounts of computational power
over a long period of time. Such an environment is called a High-Throughput Computing (HTC)
environment. In contrast, High Performance Computing (HPC) environments deliver a tremendous
amount of compute power over a short period of time. HPC environments are often measured in
terms of FLoating point Operations Per Second (FLOPS). A growing community is not concerned
about operations per second, but operations per month or peryear. Their problems are of a much
larger scale. They are more interested in how many jobs they can complete over a long period of
time instead of how fast an individual job can complete.

The key to HTC is to efficiently harness the use of all available resources. Years ago, the en-
gineering and scientific community relied on a large, centralized mainframe or a supercomputer to
do computational work. A large number of individuals and groups needed to pool their financial re-
sources to afford such a machine. Users had to wait for their turn on the mainframe, and they had a
limited amount of time allocated. While this environment was inconvenient for users, the utilization
of the mainframe was high; it was busy nearly all the time.

As computers became smaller, faster, and cheaper, users moved away from centralized main-
frames and purchased personal desktop workstations and PCs. An individual or small group could
afford a computing resource that was available whenever they wanted it. The personal computer is
slower than the large centralized machine, but it provides exclusive access. Now, instead of one giant
computer for a large institution, there may be hundreds or thousands of personal computers. This

1

1.2. Condor’s Power 2

is an environment of distributed ownership, where individuals throughout an organization own their
own resources. The total computational power of the institution as a whole may rise dramatically as
the result of such a change, but because of distributed ownership, individuals have not been able to
capitalize on the institutional growth of computing power.And, while distributed ownership is more
convenient for the users, the utilization of the computing power is lower. Many personal desktop
machines sit idle for very long periods of time while their owners are busy doing other things (such
as being away at lunch, in meetings, or at home sleeping).

1.2 Condor’s Power

Condor is a software system that creates a High-Throughput Computing (HTC) environment. It
effectively utilizes the computing power of workstations that communicate over a network. Condor
can manage a dedicated cluster of workstations. Its power comes from the ability to effectively
harness non-dedicated, preexisting resources under distributed ownership.

A user submits the job to Condor. Condor finds an available machine on the network and begins
running the job on that machine. Condor has the capability todetect that a machine running a
Condor job is no longer available (perhaps because the ownerof the machine came back from lunch
and started typing on the keyboard). It can checkpoint the job and move (migrate) the jobs to a
different machine which would otherwise be idle. Condor continues the job on the new machine
from precisely where it left off.

In those cases where Condor can checkpoint and migrate a job,Condor makes it easy to maxi-
mize the number of machines which can run a job. In this case, there is no requirement for machines
to share file systems (for example, with NFS or AFS), so that machines across an entire enterprise
can run a job, including machines in different administrative domains.

Condor can be a real time saver when a job must be run many (hundreds of) different times,
perhaps with hundreds of different data sets. With one command, all of the hundreds of jobs are
submitted to Condor. Depending upon the number of machines in the Condor pool, dozens or even
hundreds of otherwise idle machines can be running the job atany given moment.

Condor does not require an account (login) on machines whereit runs a job. Condor can do
this because of itsremote system calltechnology, which traps library calls for such operations as
reading or writing from disk files. The calls are transmittedover the network to be performed on the
machine where the job was submitted.

Condor provides powerful resource management by match-making resource owners with re-
source consumers. This is the cornerstone of a successful HTC environment. Other compute cluster
resource management systems attach properties to the job queues themselves, resulting in user con-
fusion over which queue to use as well as administrative hassle in constantly adding and editing
queue properties to satisfy user demands. Condor implementsClassAds, a clean design that simpli-
fies the user’s submission of jobs.

ClassAds work in a fashion similar to the newspaper classified advertising want-ads. All ma-
chines in the Condor pool advertise their resource properties, both static and dynamic, such as

Condor Version 7.7.6 Manual

1.3. Exceptional Features 3

available RAM memory, CPU type, CPU speed, virtual memory size, physical location, and cur-
rent load average, in aresource offerad. A user specifies aresource requestad when submitting a
job. The request defines both the required and a desired set ofproperties of the resource to run the
job. Condor acts as a broker by matching and ranking resourceoffer ads with resource request ads,
making certain that all requirements in both ads are satisfied. During this match-making process,
Condor also considers several layers of priority values: the priority the user assigned to the resource
request ad, the priority of the user which submitted the ad, and desire of machines in the pool to
accept certain types of ads over others.

1.3 Exceptional Features

Checkpoint and Migration. Where programs can be linked with Condor libraries, users ofCondor
may be assured that their jobs will eventually complete, even in the ever changing environment
that Condor utilizes. As a machine running a job submitted toCondor becomes unavailable,
the job can be check pointed. The job may continue after migrating to another machine.
Condor’s checkpoint feature periodically checkpoints a job even in lieu of migration in order
to safeguard the accumulated computation time on a job from being lost in the event of a
system failure, such as the machine being shutdown or a crash.

Remote System Calls.Despite running jobs on remote machines, the Condor standard universe
execution mode preserves the local execution environment via remote system calls. Users do
not have to worry about making data files available to remote workstations or even obtaining
a login account on remote workstations before Condor executes their programs there. The
program behaves under Condor as if it were running as the userthat submitted the job on the
workstation where it was originally submitted, no matter onwhich machine it really ends up
executing on.

No Changes Necessary to User’s Source Code.No special programming is required to use Con-
dor. Condor is able to run non-interactive programs. The checkpoint and migration of pro-
grams by Condor is transparent and automatic, as is the use ofremote system calls. If these
facilities are desired, the user only re-links the program.The code is neither recompiled nor
changed.

Pools of Machines can be Hooked Together.Flocking is a feature of Condor that allows jobs sub-
mitted within a first pool of Condor machines to execute on a second pool. The mechanism
is flexible, following requests from the job submission, while allowing the second pool, or a
subset of machines within the second pool to set policies over the conditions under which jobs
are executed.

Jobs can be Ordered.The ordering of job execution required by dependencies among jobs in a set
is easily handled. The set of jobs is specified using a directed acyclic graph, where each job
is a node in the graph. Jobs are submitted to Condor followingthe dependencies given by the
graph.

Condor Enables Grid Computing. As grid computing becomes a reality, Condor is already there.
The technique of glidein allows jobs submitted to Condor to be executed on grid machines

Condor Version 7.7.6 Manual

1.4. Current Limitations 4

in various locations worldwide. As the details of grid computing evolve, so does Condor’s
ability, starting with Globus-controlled resources.

Sensitive to the Desires of Machine Owners.The owner of a machine has complete priority over
the use of the machine. An owner is generally happy to let others compute on the machine
while it is idle, but wants it back promptly upon returning. The owner does not want to take
special action to regain control. Condor handles this automatically.

ClassAds. The ClassAd mechanism in Condor provides an extremely flexible, expressive frame-
work for matchmaking resource requests with resource offers. Users can easily request both
job requirements and job desires. For example, a user can require that a job run on a machine
with 64 Mbytes of RAM, but state a preference for 128 Mbytes, if available. A workstation
owner can state a preference that the workstation runs jobs from a specified set of users. The
owner can also require that there be no interactive workstation activity detectable at certain
hours before Condor could start a job. Job requirements/preferences and resource availability
constraints can be described in terms of powerful expressions, resulting in Condor’s adapta-
tion to nearly any desired policy.

1.4 Current Limitations

Limitations on Jobs which can Checkpointed Although Condor can schedule and run any type
of process, Condor does have some limitations on jobs that itcan transparently checkpoint
and migrate:

1. Multi-process jobs are not allowed. This includes systemcalls such asfork() ,
exec() , andsystem() .

2. Interprocess communication is not allowed. This includes pipes, semaphores, and shared
memory.

3. Network communication must be brief. A jobmay make network connections using
system calls such assocket() , but a network connection left open for long periods
will delay checkpointing and migration.

4. Sending or receiving the SIGUSR2 or SIGTSTP signals is notallowed. Condor reserves
these signals for its own use. Sending or receiving all othersignalsis allowed.

5. Alarms, timers, and sleeping are not allowed. This includes system calls such as
alarm() , getitimer() , andsleep() .

6. Multiple kernel-level threads are not allowed. However,multiple user-level threadsare
allowed.

7. Memory mapped files are not allowed. This includes system calls such asmmap() and
munmap() .

8. File locks are allowed, but not retained between checkpoints.

Condor Version 7.7.6 Manual

1.5. Availability 5

9. All files must be opened read-only or write-only. A file opened for both reading and
writing will cause trouble if a job must be rolled back to an old checkpoint image. For
compatibility reasons, a file opened for both reading and writing will result in a warning
but not an error.

10. A fair amount of disk space must be available on the submitting machine for storing
a job’s checkpoint images. A checkpoint image is approximately equal to the virtual
memory consumed by a job while it runs. If disk space is short,a specialcheckpoint
servercan be designated for storing all the checkpoint images for apool.

11. On Linux, the job must be statically linked.condor_compiledoes this by default.

12. Reading to or writing from files larger than 2 GBytes is only supported when the submit
sidecondor_shadowand the standard universe user job application itself are both 64-bit
executables.

Note: these limitationsonly apply to jobs which Condor has been asked to transparently
checkpoint. If job checkpointing is not desired, the limitations above do not apply.

Security Implications. Condor does a significant amount of work to prevent security hazards, but
loopholes are known to exist. Condor can be instructed to runuser programs only as the UNIX
user nobody, a user login which traditionally has very restricted access. But even with access
solely as user nobody, a sufficiently malicious individual could do such things as fill up/tmp
(which is world writable) and/or gain read access to world readable files. Furthermore, where
the security of machines in the pool is a high concern, only machines where the UNIX user
root on that machine can be trusted should be admitted into the pool. Condor provides the
administrator with extensive security mechanisms to enforce desired policies.

Jobs Need to be Re-linked to get Checkpointing and Remote System Calls Although typically
no source code changes are required, Condor requires that the jobs be re-linked with the Con-
dor libraries to take advantage of checkpointing and remotesystem calls. This often precludes
commercial software binaries from taking advantage of these services because commercial
packages rarely make their object code available. Condor’sother services are still available
for these commercial packages.

1.5 Availability

Condor is currently available as a free download from the Internet via the World Wide Web at URL
http://www.cs.wisc.edu/condor/downloads-v2. Binary distributions of this Condor Version 7.7.6
release are available for the platforms detailed in Table 1.1. A platform is an architecture/operating
system combination. Condor binaries are available for mostmajor versions of Unix, as well as
Windows.

In the table,clippedmeans that Condor does not support checkpointing or remote system calls
on the given platform. This means thatstandarduniverse jobs are not supported. Some clipped
platforms will have further limitations with respect to supported universes. See section 2.4.1 on
page 14 for more details on job universes within Condor and their abilities and limitations.

Condor Version 7.7.6 Manual

http://www.cs.wisc.edu/condor/downloads-v2

1.6. Contributions to Condor 6

The Condor source code is available for public download alongside the binary distributions.

Architecture Operating System

Intel x86 - RedHat Enterprise Linux 3
- RedHat Enterprise Linux 4 (Using RHEL3 bina-
ries)
- RedHat Enterprise Linux 5
- Fedora Core 1 - 11 (Using RHEL3 binaries)
- Debian Linux 5.0 (lenny)
- Windows 2000 Professional and Server (Win NT
5.0) (clipped)
- Windows 2003 Server (Win NT 5.2) (clipped)
- Windows 2008 Server (Win NT 6.0) (clipped)
- Windows XP Professional (Win NT 5.1)
(clipped)
- Windows Vista (Win NT 6.0) (clipped)
- Windows 7 (clipped)
- Macintosh OS X 10.4 (clipped)

Opteron x86_64 - Red Hat Enterprise Linux 3
- Red Hat Enterprise Linux 5
- Red Hat Enterprise Linux 6
- Debian Linux 5.0 (lenny)
- Debian Linux 6.0 (squeeze)

Table 1.1: Supported platforms in Condor Version 7.7.6

NOTE: Other Linux distributions likely work, but are not tested or supported.

For more platform-specific information about Condor’s support for various operating systems,
see Chapter 6 on page 565.

Jobs submitted to the standard universe utilizecondor_compileto relink programs with libraries
provided by Condor. Table 1.2 lists supported compilers by platform for this Version 7.7.6 release.
Other compilers may work, but are not supported.

1.6 Contributions to Condor

The quality of the Condor project is enhanced by the contributions of external organizations. We
gratefully acknowledge the following contributions.

Condor Version 7.7.6 Manual

1.6. Contributions to Condor 7

Platform Compiler Notes
Red Hat Enterprise Linux 3, 4, 5 on x86 and x86_64 gcc, g++, andg77 as shipped
Red Hat Enterprise Linux 6 on x86_64 gcc, g++, and g77as shipped
Debian Linux 5.0 (lenny) on x86 and x86_64 gcc, g++, gfortranas shipped
Debian Linux 6.0 (squeeze) on x86_64 gcc, g++, gfortranas shipped
Fedora Core 1 - 11 on x86 and x86_64 gcc, g++, and g77as shipped

Table 1.2: Supported compilers in Condor Version 7.7.6

• The Globus Alliance (http://www.globus.org), for code and assistance in developing Condor-
G and the Grid Security Infrastructure (GSI) for authentication and authorization.

• The GOZAL Project from the Computer Science Department of the Technion Israel Institute
of Technology (http://www.technion.ac.il/), for their enhancements for Condor’s High Avail-
ability. Thecondor_haddaemon allows one of multiple machines to function as the central
manager for a Condor pool. Therefore, if an acting central manager fails, another can take its
place.

• Micron Corporation (http://www.micron.com/) for the MSI-based installer for Condor on
Windows.

• Paradyn Project (http://www.paradyn.org/) and the Universitat Autònoma de Barcelona
(http://www.caos.uab.es/) for work on the Tool Daemon Protocol (TDP).

Our Web Services API acknowledges the use of gSOAP with theirrequested wording:

• Part of the software embedded in this product is gSOAP software. Portions created by gSOAP
are Copyright (C) 2001-2004 Robert A. van Engelen, Genivia inc. All Rights Reserved.

THE SOFTWARE IN THIS PRODUCT WAS IN PART PROVIDED BY GENIVIA INC
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

• Some distributions of Condor include the Google Coredumper library
(http://goog-coredumper.sourceforge.net/). The GoogleCoredumper library is released
under these terms:

Copyright (c) 2005, Google Inc.
All rights reserved.

Condor Version 7.7.6 Manual

http://www.globus.org
http://www.technion.ac.il/
http://www.micron.com/
http://www.paradyn.org/
http://www.caos.uab.es/
http://goog-coredumper.sourceforge.net/

1.7. Contact Information 8

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

– Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

– Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

– Neither the name of Google Inc. nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBU-
TORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, IN-
DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIALDAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

1.7 Contact Information

The latest software releases, publications/papers regarding Condor and other High-
Throughput Computing research can be found at the official web site for Condor at
http://www.cs.wisc.edu/condor.

In addition, there is an e-mail list at condor-world@cs.wisc.edu. The Condor Team
uses this e-mail list to announce new releases of Condor and other major Condor-related
news items. To subscribe or unsubscribe from the the list, follow the instructions at
http://www.cs.wisc.edu/condor/mail-lists/. Because many of us receive too much e-mail as it is,
you will be happy to know that the Condor World e-mail list group is moderated, and only major
announcements of wide interest are distributed.

Our users support each other by belonging to an unmoderated mailing list targeted at solving
problems with Condor. Condor team members attempt to monitor traffic to Condor Users, respond-
ing as they can. Follow the instructions at http://www.cs.wisc.edu/condor/mail-lists/.

Finally, you can reach the Condor Team directly. The Condor Team is comprised of the de-
velopers and administrators of Condor at the University of Wisconsin-Madison. Condor questions,
comments, pleas for help, and requests for commercial contract consultation or support are all wel-
come; send Internet e-mail to condor-admin@cs.wisc.edu. Please include your name, organization,

Condor Version 7.7.6 Manual

http://www.cs.wisc.edu/condor
http://www.cs.wisc.edu/condor/mail-lists/
http://www.cs.wisc.edu/condor/mail-lists/
mailto:condor-admin@cs.wisc.edu

1.8. Privacy Notice 9

and telephone number in your message. If you are having trouble with Condor, please help us trou-
bleshoot by including as much pertinent information as you can, including snippets of Condor log
files.

1.8 Privacy Notice

The Condor software periodically sends short messages to the Condor Project developers at the
University of Wisconsin, reporting totals of machines and jobs in each running Condor system. An
example of such a message is given below.

The Condor Project uses these collected reports to publish summary figures and tables, such
as the total of Condor systems worldwide, or the geographic distribution of Condor systems. This
information helps the Condor Project to understand the scale and composition of Condor in the real
world and improve the software accordingly.

The Condor Project will not use these reports to publicly identify any Condor system or user
without permission. The Condor software does not collect orreport any personal information about
individual users.

We hope that you will contribute to the development of Condorthrough this reporting fea-
ture. However, you are free to disable it at any time by changing the configuration variables
CONDOR_DEVELOPERSandCONDOR_DEVELOPERS_COLLECTOR, both described in section
3.3.16 of this manual.

Example of data reported:

This is an automated email from the Condor system
on machine "your.condor.pool.com". Do not reply.

This Collector has the following IDs:
CondorVersion: 6.6.0 Nov 12 2003
CondorPlatform: INTEL-LINUX-GLIBC22

Machines Owner Claimed Unclaimed Matched Preempting

INTEL/LINUX 810 52 716 37 0 5
INTEL/WINDOWS 120 5 115 0 0 0

SUN4u/SOLARIS28 114 12 92 9 0 1
SUN4x/SOLARIS28 5 1 0 4 0 0

Total 1049 70 923 50 0 6

RunningJobs IdleJobs
920 3868

Condor Version 7.7.6 Manual

CHAPTER

TWO

Users’ Manual

2.1 Welcome to Condor

Presenting Condor Version 7.7.6! Condor is developed by theCondor Team at the University of
Wisconsin-Madison (UW-Madison), and was first installed asa production system in the UW-
Madison Computer Sciences department more than 15 years ago. This Condor pool has since served
as a major source of computing cycles to UW faculty and students. For many, it has revolutionized
the role computing plays in their research. An increase of one, and sometimes even two, orders of
magnitude in the computing throughput of a research organization can have a profound impact on its
size, complexity, and scope. Over the years, the Condor Teamhas established collaborations with
scientists from around the world, and it has provided them with access to surplus cycles (one scien-
tist has consumed 100 CPU years!). Today, our department’s pool consists of more than 700 desktop
Unix workstations and more than 100 Windows machines. On a typical day, our pool delivers more
than 500 CPU days to UW researchers. Additional Condor poolshave been established over the
years across our campus and the world. Groups of researchers, engineers, and scientists have used
Condor to establish compute pools ranging in size from a handful to hundreds of workstations. We
hope that Condor will help revolutionize your compute environment as well.

2.2 Introduction

In a nutshell, Condor is a specialized batch system for managing compute-intensive jobs. Like
most batch systems, Condor provides a queuing mechanism, scheduling policy, priority scheme,
and resource classifications. Users submit their compute jobs to Condor, Condor puts the jobs in a
queue, runs them, and then informs the user as to the result.

10

2.3. Matchmaking with ClassAds 11

Batch systems normally operate only with dedicated machines. Often termed compute servers,
these dedicated machines are typically owned by one organization and dedicated to the sole purpose
of running compute jobs. Condor can schedule jobs on dedicated machines. But unlike traditional
batch systems, Condor is also designed to effectively utilize non-dedicated machines to run jobs. By
being told to only run compute jobs on machines which are currently not being used (no keyboard
activity, low load average, etc.), Condor can effectively harness otherwise idle machines throughout
a pool of machines. This is important because often times theamount of compute power repre-
sented by the aggregate total of all the non-dedicated desktop workstations sitting on people’s desks
throughout the organization is far greater than the computepower of a dedicated central resource.

Condor has several unique capabilities at its disposal which are geared toward effectively utiliz-
ing non-dedicated resources that are not owned or managed bya centralized resource. These include
transparent process checkpoint and migration, remote system calls, and ClassAds. Read section 1.2
for a general discussion of these features before reading any further.

2.3 Matchmaking with ClassAds

Before you learn about how to submit a job, it is important to understand how Condor allocates
resources. Understanding the unique framework by which Condor matches submitted jobs with
machines is the key to getting the most from Condor’s scheduling algorithm.

Condor simplifies job submission by acting as a matchmaker ofClassAds. Condor’s ClassAds
are analogous to the classified advertising section of the newspaper. Sellers advertise specifics about
what they have to sell, hoping to attract a buyer. Buyers may advertise specifics about what they
wish to purchase. Both buyers and sellers list constraints that need to be satisfied. For instance, a
buyer has a maximum spending limit, and a seller requires a minimum purchase price. Furthermore,
both want to rank requests to their own advantage. Certainlya seller would rank one offer of $50
dollars higher than a different offer of $25. In Condor, users submitting jobs can be thought of as
buyers of compute resources and machine owners are sellers.

All machines in a Condor pool advertise their attributes, such as available memory, CPU type
and speed, virtual memory size, current load average, alongwith other static and dynamic proper-
ties. This machine ClassAd also advertises under what conditions it is willing to run a Condor job
and what type of job it would prefer. These policy attributescan reflect the individual terms and
preferences by which all the different owners have graciously allowed their machine to be part of
the Condor pool. You may advertise that your machine is only willing to run jobs at night and when
there is no keyboard activity on your machine. In addition, you may advertise a preference (rank)
for running jobs submitted by you or one of your co-workers.

Likewise, when submitting a job, you specify a ClassAd with your requirements and preferences.
The ClassAd includes the type of machine you wish to use. For instance, perhaps you are looking
for the fastest floating point performance available. You want Condor to rank available machines
based upon floating point performance. Or, perhaps you care only that the machine has a minimum
of 128 Mbytes of RAM. Or, perhaps you will take any machine youcan get! These job attributes
and requirements are bundled up into a job ClassAd.

Condor Version 7.7.6 Manual

2.3. Matchmaking with ClassAds 12

Condor plays the role of a matchmaker by continuously reading all the job ClassAds and all the
machine ClassAds, matching and ranking job ads with machineads. Condor makes certain that all
requirements in both ClassAds are satisfied.

2.3.1 Inspecting Machine ClassAds with condor_status

Once Condor is installed, you will get a feel for what a machine ClassAd does by trying thecon-
dor_statuscommand. Try thecondor_statuscommand to get a summary of information from Class-
Ads about the resources available in your pool. Typecondor_statusand hit enter to see a summary
similar to the following:

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

amul.cs.wisc.edu LINUX INTEL Claimed Busy 0.990 1896 0+00: 07:04
slot1@amundsen.cs. LINUX INTEL Owner Idle 0.000 1456 0+00: 21:58
slot2@amundsen.cs. LINUX INTEL Owner Idle 0.110 1456 0+00: 21:59
angus.cs.wisc.edu LINUX INTEL Claimed Busy 0.940 873 0+00: 02:54
anhai.cs.wisc.edu LINUX INTEL Claimed Busy 1.400 1896 0+00 :03:03
apollo.cs.wisc.edu LINUX INTEL Unclaimed Idle 1.000 3032 0 +00:00:04
arragon.cs.wisc.ed LINUX INTEL Claimed Busy 0.980 873 0+00 :04:29
bamba.cs.wisc.edu LINUX INTEL Owner Idle 0.040 3032 15+20: 10:19

. . .

Thecondor_statuscommand has options that summarize machine ads in a variety of ways. For
example,

condor_status -availableshows only machines which are willing to run jobs now.

condor_status -runshows only machines which are currently running jobs.

condor_status -longlists the machine ClassAds for all machines in the pool.

Refer to thecondor_statuscommand reference page located on page 864 for a complete descrip-
tion of thecondor_statuscommand.

The following shows a portion of a machine ClassAd for a single machine: turun-
maa.cs.wisc.edu. Some of the listed attributes are used by Condor for scheduling. Other attributes
are for information purposes. An important point is thatanyof the attributes in a machine ClassAd
can be utilized at job submission time as part of a request or preference on what machine to use.
Additional attributes can be easily added. For example, your site administrator can add a physical
location attribute to your machine ClassAds.

Machine = "turunmaa.cs.wisc.edu"
FileSystemDomain = "cs.wisc.edu"
Name = "turunmaa.cs.wisc.edu"
CondorPlatform = "$CondorPlatform: x86_rhap_5 $"
Cpus = 1
IsValidCheckpointPlatform = (((TARGET.JobUniverse == 1) == false) ||

Condor Version 7.7.6 Manual

2.4. Road-map for Running Jobs 13

((MY.CheckpointPlatform =!= undefined) &&
((TARGET.LastCheckpointPlatform =?= MY.CheckpointPlat form) ||
(TARGET.NumCkpts == 0))))

CondorVersion = "$CondorVersion: 7.6.3 Aug 18 2011 BuildID : 361356 $"
Requirements = (START) && (IsValidCheckpointPlatform)
EnteredCurrentActivity = 1316094896
MyAddress = "<128.105.175.125:58026>"
EnteredCurrentState = 1316094896
Memory = 1897
CkptServer = "pitcher.cs.wisc.edu"
OpSys = "LINUX"
State = "Owner"
START = true
Arch = "INTEL"
Mips = 2634
Activity = "Idle"
StartdIpAddr = "<128.105.175.125:58026>"
TargetType = "Job"
LoadAvg = 0.210000
CheckpointPlatform = "LINUX INTEL 2.6.x normal 0x40000000 "
Disk = 92309744
VirtualMemory = 2069476
TotalSlots = 1
UidDomain = "cs.wisc.edu"
MyType = "Machine"

2.4 Road-map for Running Jobs

The road to using Condor effectively is a short one. The basics are quickly and easily learned.

Here are all the steps needed to run a job using Condor.

Code Preparation. A job run under Condor must be able to run as a background batchjob. Condor
runs the program unattended and in the background. A programthat runs in the background
will not be able to do interactive input and output. Condor can redirect console output (stdout
and stderr) and keyboard input (stdin) to and from files for you. Create any needed files that
contain the proper keystrokes needed for program input. Make certain the program will run
correctly with the files.

The Condor Universe. Condor has several runtime environments (called auniverse) from which
to choose. Of the universes, two are likely choices when learning to submit a job to Condor:
the standard universe and the vanilla universe. The standard universe allows a job running
under Condor to handle system calls by returning them to the machine where the job was
submitted. The standard universe also provides the mechanisms necessary to take a checkpoint
and migrate a partially completed job, should the machine onwhich the job is executing
become unavailable. To use the standard universe, it is necessary to relink the program with
the Condor library using thecondor_compilecommand. The manual page forcondor_compile
on page 754 has details.

The vanilla universe provides a way to run jobs that cannot berelinked. There is no way to
take a checkpoint or migrate a job executed under the vanillauniverse. For access to input

Condor Version 7.7.6 Manual

2.4. Road-map for Running Jobs 14

and output files, jobs must either use a shared file system, or use Condor’s File Transfer
mechanism.

Choose a universe under which to run the Condor program, and re-link the program if neces-
sary.

Submit description file. Controlling the details of a job submission is a submit description file.
The file contains information about the job such as what executable to run, the files to use for
keyboard and screen data, the platform type required to run the program, and where to send
e-mail when the job completes. You can also tell Condor how many times to run a program;
it is simple to run the same program multiple times with multiple data sets.

Write a submit description file to go with the job, using the examples provided in section 2.5.1
for guidance.

Submit the Job. Submit the program to Condor with thecondor_submitcommand.

Once submitted, Condor does the rest toward running the job.Monitor the job’s progress with
thecondor_qandcondor_statuscommands. You may modify the order in which Condor will run
your jobs withcondor_prio. If desired, Condor can even inform you in a log file every timeyour
job is checkpointed and/or migrated to a different machine.

When your program completes, Condor will tell you (by e-mail, if preferred) the exit status of
your program and various statistics about its performances, including time used and I/O performed.
If you are using a log file for the job (which is recommended) the exit status will be recorded in the
log file. You can remove a job from the queue prematurely withcondor_rm.

2.4.1 Choosing a Condor Universe

A universein Condor defines an execution environment. Condor Version 7.7.6 supports several
different universes for user jobs:

• Standard

• Vanilla

• Grid

• Java

• Scheduler

• Local

• Parallel

• VM

Condor Version 7.7.6 Manual

2.4. Road-map for Running Jobs 15

The universe under which a job runs is specified in the submit description file. If a universe
is not specified, the default is vanilla, unless your Condor administrator has changed the default.
However, we strongly encourage you to specify the universe,since the default can be changed by
your Condor administrator, and the default that ships with Condor has changed.

The standard universe provides migration and reliability,but has some restrictions on the pro-
grams that can be run. The vanilla universe provides fewer services, but has very few restrictions.
The grid universe allows users to submit jobs using Condor’sinterface. These jobs are submitted for
execution on grid resources. The java universe allows usersto run jobs written for the Java Virtual
Machine (JVM). The scheduler universe allows users to submit lightweight jobs to be spawned by
the program known as a daemon on the submit host itself. The parallel universe is for programs that
require multiple machines for one job. See section 2.9 for more about the Parallel universe. The vm
universe allows users to run jobs where the job is no longer a simple executable, but a disk image,
facilitating the execution of a virtual machine.

Standard Universe

In the standard universe, Condor providescheckpointingandremote system calls. These features
make a job more reliable and allow it uniform access to resources from anywhere in the pool. To
prepare a program as a standard universe job, it must be relinked withcondor_compile. Most pro-
grams can be prepared as a standard universe job, but there are a few restrictions.

Condor checkpoints a job at regular intervals. Acheckpoint imageis essentially a snapshot of
the current state of a job. If a job must be migrated from one machine to another, Condor makes a
checkpoint image, copies the image to the new machine, and restarts the job continuing the job from
where it left off. If a machine should crash or fail while it isrunning a job, Condor can restart the
job on a new machine using the most recent checkpoint image. In this way, jobs can run for months
or years even in the face of occasional computer failures.

Remote system calls make a job perceive that it is executing on its home machine, even though
the job may execute on many different machines over its lifetime. When a job runs on a remote ma-
chine, a second process, called acondor_shadowruns on the machine where the job was submitted.

When the job attempts a system call, thecondor_shadowperforms the system call instead and
sends the results to the remote machine. For example, if a jobattempts to open a file that is stored
on the submitting machine, thecondor_shadowwill find the file, and send the data to the machine
where the job is running.

To convert your program into a standard universe job, you must usecondor_compileto relink
it with the Condor libraries. Putcondor_compilein front of your usual link command. You do not
need to modify the program’s source code, but you do need access to the unlinked object files. A
commercial program that is packaged as a single executable file cannot be converted into a standard
universe job.

For example, if you would have linked the job by executing:

% cc main.o tools.o -o program

Condor Version 7.7.6 Manual

2.4. Road-map for Running Jobs 16

Then, relink the job for Condor with:

% condor_compile cc main.o tools.o -o program

There are a few restrictions on standard universe jobs:

1. Multi-process jobs are not allowed. This includes systemcalls such asfork() , exec() ,
andsystem() .

2. Interprocess communication is not allowed. This includes pipes, semaphores, and shared
memory.

3. Network communication must be brief. A jobmaymake network connections using system
calls such assocket() , but a network connection left open for long periods will delay
checkpointing and migration.

4. Sending or receiving the SIGUSR2 or SIGTSTP signals is notallowed. Condor reserves these
signals for its own use. Sending or receiving all other signals is allowed.

5. Alarms, timers, and sleeping are not allowed. This includes system calls such asalarm() ,
getitimer() , andsleep() .

6. Multiple kernel-level threads are not allowed. However,multiple user-level threadsare al-
lowed.

7. Memory mapped files are not allowed. This includes system calls such asmmap() and
munmap() .

8. File locks are allowed, but not retained between checkpoints.

9. All files must be opened read-only or write-only. A file opened for both reading and writing
will cause trouble if a job must be rolled back to an old checkpoint image. For compatibility
reasons, a file opened for both reading and writing will result in a warning but not an error.

10. A fair amount of disk space must be available on the submitting machine for storing a job’s
checkpoint images. A checkpoint image is approximately equal to the virtual memory con-
sumed by a job while it runs. If disk space is short, a specialcheckpoint servercan be desig-
nated for storing all the checkpoint images for a pool.

11. On Linux, the job must be statically linked.condor_compiledoes this by default.

12. Reading to or writing from files larger than 2 GBytes is only supported when the submit side
condor_shadowand the standard universe user job application itself are both 64-bit executa-
bles.

Condor Version 7.7.6 Manual

2.4. Road-map for Running Jobs 17

Vanilla Universe

The vanilla universe in Condor is intended for programs which cannot be successfully re-linked.
Shell scripts are another case where the vanilla universe isuseful. Unfortunately, jobs run under the
vanilla universe cannot checkpoint or use remote system calls. This has unfortunate consequences
for a job that is partially completed when the remote machinerunning a job must be returned to its
owner. Condor has only two choices. It can suspend the job, hoping to complete it at a later time, or
it can give up and restart the jobfrom the beginningon another machine in the pool.

Since Condor’s remote system call features cannot be used with the vanilla universe, access to
the job’s input and output files becomes a concern. One optionis for Condor to rely on a shared file
system, such as NFS or AFS. Alternatively, Condor has a mechanism for transferring files on behalf
of the user. In this case, Condor will transfer any files needed by a job to the execution site, run the
job, and transfer the output back to the submitting machine.

Under Unix, Condor presumes a shared file system for vanilla jobs. However, if a shared file
system is unavailable, a user can enable the Condor File Transfer mechanism. On Windows plat-
forms, the default is to use the File Transfer mechanism. Fordetails on running a job with a shared
file system, see section 2.5.3 on page 23. For details on usingthe Condor File Transfer mechanism,
see section 2.5.4 on page 25.

Grid Universe

The Grid universe in Condor is intended to provide the standard Condor interface to users who wish
to start jobs intended for remote management systems. Section 5.3 on page 528 has details on using
the Grid universe. The manual page forcondor_submiton page 873 has detailed descriptions of the
grid-related attributes.

Java Universe

A program submitted to the Java universe may run on any sort ofmachine with a JVM regardless of
its location, owner, or JVM version. Condor will take care ofall the details such as finding the JVM
binary and setting the classpath.

Scheduler Universe

The scheduler universe allows users to submit lightweight jobs to be run immediately, alongside
thecondor_schedddaemon on the submit host itself. Scheduler universe jobs are not matched with
a remote machine, and will never be preempted. The job’s requirements expression is evaluated
against thecondor_schedd’s ClassAd.

Originally intended for meta-schedulers such ascondor_dagman, the scheduler universe can
also be used to manage jobs of any sort that must run on the submit host.

Condor Version 7.7.6 Manual

2.5. Submitting a Job 18

However, unlike the local universe, the scheduler universedoes not use acondor_starterdaemon
to manage the job, and thus offers limited features and policy support. The local universe is a better
choice for most jobs which must run on the submit host, as it offers a richer set of job management
features, and is more consistent with other universes such as the vanilla universe. The scheduler
universe may be retired in the future, in favor of the newer local universe.

Local Universe

The local universe allows a Condor job to be submitted and executed with different assumptions for
the execution conditions of the job. The job does not wait to be matched with a machine. It instead
executes right away, on the machine where the job is submitted. The job will never be preempted.
The job’s requirements expression is evaluated against thecondor_schedd’s ClassAd.

Parallel Universe

The parallel universe allows parallel programs, such as MPIjobs, to be run within the opportunistic
Condor environment. Please see section 2.9 for more details.

VM Universe

Condor facilitates the execution of VMware and Xen virtual machines with the vm universe.

Please see section 2.11 for details.

2.5 Submitting a Job

A job is submitted for execution to Condor using thecondor_submitcommand.condor_submittakes
as an argument the name of a file called a submit description file. This file contains commands and
keywords to direct the queuing of jobs. In the submit description file, Condor finds everything it
needs to know about the job. Items such as the name of the executable to run, the initial working
directory, and command-line arguments to the program all gointo the submit description file.con-
dor_submitcreates a job ClassAd based upon the information, and Condorworks toward running
the job.

The contents of a submit file can save time for Condor users. Itis easy to submit multiple runs of
a program to Condor. To run the same program 500 times on 500 different input data sets, arrange
your data files accordingly so that each run reads its own input, and each run writes its own output.
Each individual run may have its own initial working directory, stdin, stdout, stderr, command-line
arguments, and shell environment. A program that directly opens its own files will read the file
names to use either from stdin or from the command line. A program that opens a static filename
every time will need to use a separate subdirectory for the output of each run.

Condor Version 7.7.6 Manual

2.5. Submitting a Job 19

Thecondor_submitmanual page is on page 873 and contains a complete and full description of
how to usecondor_submit. It also includes descriptions of all the commands that may be placed into
a submit description file. In addition, the index lists entries for each command under the heading of
Submit Commands.

2.5.1 Sample submit description files

In addition to the examples of submit description files givenin thecondor_submitmanual page, here
are a few more.

Example 1

Example 1 is one of the simplest submit description files possible. It queues up one copy of the pro-
gramfoo (which had been created bycondor_compile) for execution by Condor. Since no platform
is specified, Condor will use its default, which is to run the job on a machine which has the same ar-
chitecture and operating system as the machine from which itwas submitted. Noinput , output ,
anderror commands are given in the submit description file, so the filesstdin , stdout , and
stderr will all refer to /dev/null . The program may produce output by explicitly opening a
file and writing to it. A log file,foo.log , will also be produced that contains events the job had
during its lifetime inside of Condor. When the job finishes, its exit conditions will be noted in the
log file. It is recommended that you always have a log file so youknow what happened to your jobs.

####################
#
Example 1
Simple condor job description file
#
####################

Executable = foo
Universe = standard
Log = foo.log
Queue

Example 2

Example 2 queues two copies of the programmathematica. The first copy will run in directory
run_1 , and the second will run in directoryrun_2 . For both queued copies,stdin will be
test.data , stdout will be loop.out , andstderr will be loop.error . There will be
two sets of files written, as the files are each written to theirown directories. This is a convenient
way to organize data if you have a large group of Condor jobs torun. The example file shows

Condor Version 7.7.6 Manual

2.5. Submitting a Job 20

program submission ofmathematicaas a vanilla universe job. This may be necessary if the source
and/or object code tomathematicais not available.

Therequest_memorycommand is included to insure that themathematicajobs match with and
then execute on pool machines that provide at least 1 GByte ofmemory.

####################
#
Example 2: demonstrate use of multiple
directories for data organization.
#
####################

executable = mathematica
universe = vanilla
input = test.data
output = loop.out
error = loop.error
log = loop.log
request_memory = 1 GB

initialdir = run_1
queue

initialdir = run_2
queue

Example 3

The submit description file for Example 3 queues 150 runs of programfoowhich has been compiled
and linked for LINUX running on a 32-bit Intel processor. This job requires Condor to run the
program on machines which have greater than 32 Mbytes of physical memory, and expresses a
preference to run the program on machines with more than 64 Mbytes. It also advises Condor that
this standard universe job will use up to 28000 Kbytes of memory when running. Each of the 150
runs of the program is given its own process number, startingwith process number 0. So, files
stdin , stdout , andstderr will refer to in.0 , out.0 , anderr.0 for the first run of the
program,in.1 , out.1 , anderr.1 for the second run of the program, and so forth. A log file
containing entries about when and where Condor runs, checkpoints, and migrates processes for all
the 150 queued programs will be written into the single filefoo.log .

####################
#
Example 3: Show off some fancy features including
use of pre-defined macros and logging.
#

Condor Version 7.7.6 Manual

2.5. Submitting a Job 21

####################

Executable = foo
Universe = standard
requirements = OpSys == "LINUX" && Arch =="INTEL"
rank = Memory >= 64
image_size = 28000
request_memory = 32

error = err.$(Process)
input = in.$(Process)
output = out.$(Process)
log = foo.log

queue 150

2.5.2 About Requirements and Rank

Therequirements andrank commands in the submit description file are powerful and flexible.
Using them effectively requires care, and this section presents those details.

Both requirements and rank need to be specified as valid Condor ClassAd expressions,
however, default values are set by thecondor_submitprogram if these are not defined in the submit
description file. From thecondor_submitmanual page and the above examples, you see that writing
ClassAd expressions is intuitive, especially if you are familiar with the programming language C.
There are some pretty nifty expressions you can write with ClassAds. A complete description of
ClassAds and their expressions can be found in section 4.1 onpage 447.

All of the commands in the submit description file are case insensitive,exceptfor the ClassAd
attribute string values. ClassAd attribute names are case insensitive, but ClassAd string values are
case preserving.

Note that the comparison operators (<, >, <=, >=, and==) compare strings case insensitively.
The special comparison operators=?= and=!= compare strings case sensitively.

A requirements or rank command in the submit description file may utilize attributes that
appear in a machine or a job ClassAd. Within the submit description file (for a job) the prefix
MY. (on a ClassAd attribute name) causes a reference to the job ClassAd attribute, and the prefix
TARGET.causes a reference to a potential machine or matched machineClassAd attribute.

Thecondor_statuscommand displays statistics about machines within the pool. The -l option
displays the machine ClassAd attributes for all machines inthe Condor pool. The job ClassAds, if
there are jobs in the queue, can be seen with thecondor_q -lcommand. This shows all the defined
attributes for current jobs in the queue.

A list of defined ClassAd attributes for job ClassAds is givenin the unnumbered Appendix on

Condor Version 7.7.6 Manual

2.5. Submitting a Job 22

page 956. A list of defined ClassAd attributes for machine ClassAds is given in the unnumbered
Appendix on page 969.

Rank Expression Examples

When considering the match between a job and a machine, rank is used to choose a match from
among all machines that satisfy the job’s requirements and are available to the user, after accounting
for the user’s priority and the machine’s rank of the job. Therank expressions, simple or complex,
define a numerical value that expresses preferences.

The job’sRank expression evaluates to one of three values. It can be UNDEFINED, ERROR, or
a floating point value. IfRank evaluates to a floating point value, the best match will be theone with
the largest, positive value. If noRank is given in the submit description file, then Condor substitutes
a default value of 0.0 when considering machines to match. Ifthe job’sRank of a given machine
evaluates to UNDEFINED or ERROR, this same value of 0.0 is used. Therefore, the machine is still
considered for a match, but has no ranking above any other.

A boolean expression evaluates to the numerical value of 1.0if true, and 0.0 if false.

The followingRank expressions provide examples to follow.

For a job that desires the machine with the most available memory:

Rank = memory

For a job that prefers to run on a friend’s machine on Saturdays and Sundays:

Rank = ((clockday == 0) || (clockday == 6))
&& (machine == "friend.cs.wisc.edu")

For a job that prefers to run on one of three specific machines:

Rank = (machine == "friend1.cs.wisc.edu") ||
(machine == "friend2.cs.wisc.edu") ||
(machine == "friend3.cs.wisc.edu")

For a job that wants the machine with the best floating point performance (on Linpack bench-
marks):

Rank = kflops

This particular example highlights a difficulty withRank expression evaluation as currently defined.
While all machines have floating point processing ability, not all machines will have thekflops
attribute defined. For machines where this attribute is not defined,Rank will evaluate to the value

Condor Version 7.7.6 Manual

2.5. Submitting a Job 23

UNDEFINED, and Condor will use a default rank of the machine of 0.0. TheRank attribute will
only rank machines where the attribute is defined. Therefore, the machine with the highest floating
point performance may not be the one given the highest rank.

So, it is wise when writing aRank expression to check if the expression’s evaluation will lead
to the expected resulting ranking of machines. This can be accomplished using thecondor_status
command with the-constraintargument. This allows the user to see a list of machines that fit a
constraint. To see which machines in the pool havekflops defined, use

condor_status -constraint kflops

Alternatively, to see a list of machines wherekflops is not defined, use

condor_status -constraint "kflops=?=undefined"

For a job that prefers specific machines in a specific order:

Rank = ((machine == "friend1.cs.wisc.edu")*3) +
((machine == "friend2.cs.wisc.edu")*2) +

(machine == "friend3.cs.wisc.edu")

If the machine being ranked isfriend1.cs.wisc.edu , then the expression

(machine == "friend1.cs.wisc.edu")

is true, and gives the value 1.0. The expressions

(machine == "friend2.cs.wisc.edu")

and

(machine == "friend3.cs.wisc.edu")

are false, and give the value 0.0. Therefore,Rank evaluates to the value 3.0. In this way, machine
friend1.cs.wisc.edu is ranked higher than machinefriend2.cs.wisc.edu , machine
friend2.cs.wisc.edu is ranked higher than machinefriend3.cs.wisc.edu , and all
three of these machines are ranked higher than others.

2.5.3 Submitting Jobs Using a Shared File System

If vanilla, java, or parallel universe jobs are submitted without using the File Transfer mechanism,
Condor must use a shared file system to access input and outputfiles. In this case, the jobmustbe
able to access the data files from any machine on which it couldpotentially run.

Condor Version 7.7.6 Manual

2.5. Submitting a Job 24

As an example, suppose a job is submitted from blackbird.cs.wisc.edu, and the job requires
a particular data file called/u/p/s/psilord/data.txt . If the job were to run on cardi-
nal.cs.wisc.edu, the file/u/p/s/psilord/data.txt must be available through either NFS or
AFS for the job to run correctly.

Condor allows users to ensure their jobs have access to the right shared files by using the
FileSystemDomain and UidDomain machine ClassAd attributes. These attributes specify
which machines have access to the same shared file systems. All machines that mount the same
shared directories in the same locations are considered to belong to the same file system domain.
Similarly, all machines that share the same user information (in particular, the same UID, which is
important for file systems like NFS) are considered part of the same UID domain.

The default configuration for Condor places each machine in its own UID domain and file system
domain, using the full host name of the machine as the name of the domains. So, if a pooldoes
have access to a shared file system, the pool administratormustcorrectly configure Condor such
that all the machines mounting the same files have the sameFileSystemDomain configuration.
Similarly, all machines that share common user informationmust be configured to have the same
UidDomain configuration.

When a job relies on a shared file system, Condor uses therequirements expression to
ensure that the job runs on a machine in the correctUidDomain andFileSystemDomain . In
this case, the defaultrequirements expression specifies that the job must run on a machine with
the sameUidDomain andFileSystemDomain as the machine from which the job is submitted.
This default is almost always correct. However, in a pool spanning multipleUidDomain s and/or
FileSystemDomain s, the user may need to specify a differentrequirements expression to
have the job run on the correct machines.

For example, imagine a pool made up of both desktop workstations and a dedicated compute
cluster. Most of the pool, including the compute cluster, has access to a shared file system, but
some of the desktop machines do not. In this case, the administrators would probably define the
FileSystemDomain to becs.wisc.edu for all the machines that mounted the shared files,
and to the full host name for each machine that did not. An example is jimi.cs.wisc.edu .

In this example, a user wants to submit vanilla universe jobsfrom her own desktop machine
(jimi.cs.wisc.edu) which does not mount the shared file system (and is therefore in its own file
system domain, in its own world). But, she wants the jobs to beable to run on more than just her
own machine (in particular, the compute cluster), so she puts the program and input files onto the
shared file system. When she submits the jobs, she needs to tell Condor to send them to machines
that have access to that shared data, so she specifies a different requirements expression than
the default:

Requirements = TARGET.UidDomain == "cs.wisc.edu" && \
TARGET.FileSystemDomain == "cs.wisc.edu"

WARNING: If there isnoshared file system, or the Condor pool administrator does notconfigure
theFileSystemDomain setting correctly (the default is that each machine in a poolis in its own
file system and UID domain), a user submits a job that cannot use remote system calls (for example,

Condor Version 7.7.6 Manual

2.5. Submitting a Job 25

a vanilla universe job), and the user does not enable Condor’s File Transfer mechanism, the job will
only run on the machine from which it was submitted.

2.5.4 Submitting Jobs Without a Shared File System: Condor’s File Transfer
Mechanism

Condor works well without a shared file system. The Condor filetransfer mechanism permits the
user to select which files are transferred and under which circumstances. Condor can transfer any
files needed by a job from the machine where the job was submitted into a remote scratch directory
on the machine where the job is to be executed. Condor executes the job and transfers output back to
the submitting machine. The user specifies which files and directories to transfer, and at what point
the output files should be copied back to the submitting machine. This specification is done within
the job’s submit description file.

Specifying If and When to Transfer Files

To enable the file transfer mechanism, place two commands in the job’s submit description file:
should_transfer_filesandwhen_to_transfer_output. By default, they will be:

should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT

Setting theshould_transfer_filescommand explicitly enables or disables the file transfer mech-
anism. The command takes on one of three possible values:

1. YES: Condor transfers both the executable and the file defined by theinput command from the
machine where the job is submitted to the remote machine where the job is to be executed. The
file defined by theoutput command as well as any files created by the execution of the jobare
transferred back to the machine where the job was submitted.When they are transferred and
the directory location of the files is determined by the commandwhen_to_transfer_output.

2. IF_NEEDED: Condor transfers files if the job is matched with and to be executed on a ma-
chine in a differentFileSystemDomain than the one the submit machine belongs to, the
same as ifshould_transfer_files = YES . If the job is matched with a machine in
the localFileSystemDomain , Condor will not transfer files and relies on the shared file
system.

3. NO: Condor’s file transfer mechanism is disabled.

Thewhen_to_transfer_outputcommand tells Condor when output files are to be transferred
back to the submit machine. The command takes on one of two possible values:

Condor Version 7.7.6 Manual

2.5. Submitting a Job 26

1. ON_EXIT: Condor transfers the file defined by theoutput command, as well as any other
files in the remote scratch directory created by the job, backto the submit machine only when
the job exits on its own.

2. ON_EXIT_OR_EVICT: Condor behaves the same as described for the valueON_EXITwhen
the job exits on its own. However, if, and each time the job is evicted from a machine,files
are transferred back at eviction time. The files that are transferred back at eviction time may
include intermediate files that are not part of the final output of the job. Before the job starts
running again, all of the files that were stored when the job was last evicted are copied to the
job’s new remote scratch directory.

The purpose of saving files at eviction time is to allow the jobto resume from where it left
off. This is similar to using the checkpoint feature of the standard universe, but just specifying
ON_EXIT_OR_EVICTis not enough to make a job capable of producing or utilizing check-
points. The job must be designed to save and restore its stateusing the files that are saved at
eviction time.

The files that are transferred back at eviction time are not stored in the location where the job’s
final output will be written when the job exits. Condor manages these files automatically, so
usually the only reason for a user to worry about them is to make sure that there is enough
space to store them. The files are stored on the submit machinein a temporary directory within
the directory defined by the configuration variableSPOOL. The directory is named using the
ClusterId andProcId job ClassAd attributes. The directory name takes the form:

<X mod 10000>/<Y mod 10000>/cluster<X>.proc<Y>.subproc0

where<X> is the value ofClusterId , and<Y> is the value ofProcId . As an example, if
job 735.0 is evicted, it will produce the directory

$(SPOOL)/735/0/cluster735.proc0.subproc0

The default values for these two submit commands make sense as used together. If only
should_transfer_files is set, and set to the valueNO, then the default value for an unspec-
ified when_to_transfer_output will be NEVER. Likewise, If only when_to_transfer_output
is set, and set to the valueON_EXIT_OR_EVICT, then the default value for an unspecified
should_transfer_fileswill be YES.

Note that the combination of

should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT_OR_EVICT

would produce undefined file access semantics. Therefore, this combination is prohibited bycon-
dor_submit.

Condor Version 7.7.6 Manual

2.5. Submitting a Job 27

Specifying What Files to Transfer

If the file transfer mechanism is enabled, Condor will transfer the following files before the job is
run on a remote machine.

1. the executable, as defined with theexecutablecommand

2. the input, as defined with theinput command

3. any jar files, for thejava universe, as defined with thejar_files command

If the job requires other input files, the submit descriptionfile should utilize thetransfer_input_files
command. This comma-separated list specifies any other filesor directories that Condor is to transfer
to the remote scratch directory, to set up the execution environment for the job before it is run. These
files are placed in the same directory as the job’s executable. For example:

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = file1,file2

This example explicitly enables the file transfer mechanism, and it transfers the executable, the file
specified by theinput command, any jar files specified by thejar_files command, and filesfile1
andfile2 .

If the file transfer mechanism is enabled, Condor will transfer the following files from the execute
machine back to the submit machine after the job exits.

1. the output file, as defined with theoutput command

2. the error file, as defined with theerror command

3. any files created by the job in the remote scratch directory; this only occurs for jobs other than
grid universe, and for Condor-Cgrid universe jobs; directories created by the job within the
remote scratch directory are ignored for this automatic detection of files to be transferred.

A path given foroutput and error commands represents a path on the submit machine. If
no path is specified, the directory specified withinitialdir is used, and if that is not specified, the
directory from which the job was submitted is used. At the time the job is submitted, zero-length
files are created on the submit machine, at the given path for the files defined by theoutput and
error commands. This permits job submission failure, if these files cannot be written by Condor.

To restrict the output files or permit entire directory contents to be transferred, specify the ex-
act list with transfer_output_files. Delimit the list of file names, directory names, or paths with
commas. When this list is defined, and any of the files or directories do not exist as the job exits,
Condor considers this an error, and places the job on hold. When this list is defined, automatic
detection of output files created by the job is disabled. Paths specified in this list refer to locations

Condor Version 7.7.6 Manual

2.5. Submitting a Job 28

on the execute machine. The naming and placement of files and directories relies on the termbase
name. By example, the patha/b/c has the base namec . It is the file name or directory name with
all directories leading up to that name stripped off. On the submit machine, the transferred files or
directories are named using only the base name. Therefore, each output file or directory must have
a different name, even if they originate from different paths.

For grid universe jobs other than than Condor-C grid jobs, files to be transferred (other than
standard output and standard error) must be specified usingtransfer_output_files in the submit
description file, because automatic detection of new files created by the job does not take place.

Here are examples to promote understanding of what files and directories are transferred, and
how they are named after transfer. Assume that the job produces the following structure within the
remote scratch directory:

o1
o2
d1 (directory)

o3
o4

If the submit description file sets

transfer_output_files = o1,o2,d1

then transferred back to the submit machine will be

o1
o2
d1 (directory)

o3
o4

Note that the directoryd1 and all its contents are specified, and therefore transferred. If the directory
d1 is not created by the job before exit, then the job is placed onhold. If the directoryd1 is created
by the job before exit, but is empty, this is not an error.

If, instead, the submit description file sets

transfer_output_files = o1,o2,d1/o3

then transferred back to the submit machine will be

o1
o2
o3

Note that only the base name is used in the naming and placement of the file specified withd1/o3 .

Condor Version 7.7.6 Manual

2.5. Submitting a Job 29

File Paths for File Transfer

The file transfer mechanism specifies file names and/or paths on both the file system of the submit
machine and on the file system of the execute machine. Care must be taken to know which machine,
submit or execute, is utilizing the file name and/or path.

Files in thetransfer_input_files command are specified as they are accessed on the submit
machine. The job, as it executes, accesses files as they are found on the execute machine.

There are three ways to specify files and paths fortransfer_input_files:

1. Relative to the current working directory as the job is submitted, if the submit command
initialdir is not specified.

2. Relative to the initial directory, if the submit commandinitialdir is specified.

3. Absolute.

Before executing the program, Condor copies the executable, an input file as specified by the
submit commandinput , along with any input files specified bytransfer_input_files. All these
files are placed into a remote scratch directory on the execute machine, in which the program runs.
Therefore, the executing program must access input files relative to its working directory. Because
all files and directories listed for transfer are placed intoa single, flat directory, inputs must be
uniquely named to avoid collision when transferred. A collision causes the last file in the list to
overwrite the earlier one.

Both relative and absolute paths may be used intransfer_output_files. Relative paths are rel-
ative to the job’s remote scratch directory on the execute machine. When the files and directories
are copied back to the submit machine, they are placed in the job’s initial working directory as
the base name of the original path. An alternate name or path may be specified by usingtrans-
fer_output_remaps.

A job may create files outside the remote scratch directory but within the file system of the exe-
cute machine, in a directory such as/tmp , if this directory is guaranteed to exist and be accessible
on all possible execute machines. However, Condor will not automatically transfer such files back
after execution completes, nor will it clean up these files.

Here are several examples to illustrate the use of file transfer. The program executable is called
my_program, and it uses three command-line arguments as it executes: two input file names and an
output file name. The program executable and the submit description file for this job are located in
directory/scratch/test .

Here is the directory tree as it exists on the submit machine,for all the examples:

/scratch/test (directory)
my_program.condor (the submit description file)
my_program (the executable)
files (directory)

Condor Version 7.7.6 Manual

2.5. Submitting a Job 30

logs2 (directory)
in1 (file)
in2 (file)

logs (directory)

Example 1 This first example explicitly transfers input files. These input files to be transferred are
specified relative to the directory where the job is submitted. An output file specified in the
argumentscommand,out1 , is created when the job is executed. It will be transferred back
into the directory/scratch/test .

file name: my_program.condor
Condor submit description file for my_program
Executable = my_program
Universe = vanilla
Error = logs/err.$(cluster)
Output = logs/out.$(cluster)
Log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = files/in1,files/in2

Arguments = in1 in2 out1
Queue

The log file is written on the submit machine, and is not involved with the file transfer mech-
anism.

Example 2 This second example is identical to Example 1, except that absolute paths to the input
files are specified, instead of relative paths to the input files.

file name: my_program.condor
Condor submit description file for my_program
Executable = my_program
Universe = vanilla
Error = logs/err.$(cluster)
Output = logs/out.$(cluster)
Log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = /scratch/test/files/in1,/scrat ch/test/files/in2

Arguments = in1 in2 out1
Queue

Example 3 This third example illustrates the use of the submit commandinitialdir , and its ef-
fect on the paths used for the various files. The expected location of the executable is not
affected by theinitialdir command. All other files (specified byinput , output, error , trans-
fer_input_files, as well as files modified or created by the job and automatically transferred
back) are located relative to the specifiedinitialdir . Therefore, the output file,out1 , will be
placed in thefiles directory. Note that thelogs2 directory exists to make this example
work correctly.

Condor Version 7.7.6 Manual

2.5. Submitting a Job 31

file name: my_program.condor
Condor submit description file for my_program
Executable = my_program
Universe = vanilla
Error = logs2/err.$(cluster)
Output = logs2/out.$(cluster)
Log = logs2/log.$(cluster)

initialdir = files

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = in1,in2

Arguments = in1 in2 out1
Queue

Example 4 – Illustrates an Error This example illustrates a job that will fail. The files specified
using thetransfer_input_files command work correctly (see Example 1). However, relative
paths to files in theargumentscommand cause the executing program to fail. The file system
on the submission side may utilize relative paths to files, however those files are placed into
the single, flat, remote scratch directory on the execute machine.

file name: my_program.condor
Condor submit description file for my_program
Executable = my_program
Universe = vanilla
Error = logs/err.$(cluster)
Output = logs/out.$(cluster)
Log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = files/in1,files/in2

Arguments = files/in1 files/in2 files/out1
Queue

This example fails with the following error:

err: files/out1: No such file or directory.

Example 5 – Illustrates an Error As with Example 4, this example illustrates a job that will fail.
The executing program’s use of absolute paths cannot work.

file name: my_program.condor
Condor submit description file for my_program
Executable = my_program
Universe = vanilla
Error = logs/err.$(cluster)
Output = logs/out.$(cluster)
Log = logs/log.$(cluster)

should_transfer_files = YES

Condor Version 7.7.6 Manual

2.5. Submitting a Job 32

when_to_transfer_output = ON_EXIT
transfer_input_files = /scratch/test/files/in1, /scrat ch/test/files/in2

Arguments = /scratch/test/files/in1 /scratch/test/file s/in2 /scratch/test/files/out1
Queue

The job fails with the following error:

err: /scratch/test/files/out1: No such file or directory.

Example 6 This example illustrates a case where the executing programcreates an output file in a
directory other than within the remote scratch directory that the program executes within. The
file creation may or may not cause an error, depending on the existence and permissions of
the directories on the remote file system.

The output file/tmp/out1 is transferred back to the job’s initial working directory as
/scratch/test/out1 .

file name: my_program.condor
Condor submit description file for my_program
Executable = my_program
Universe = vanilla
Error = logs/err.$(cluster)
Output = logs/out.$(cluster)
Log = logs/log.$(cluster)

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = files/in1,files/in2
transfer_output_files = /tmp/out1

Arguments = in1 in2 /tmp/out1
Queue

Behavior for Error Cases

This section describes Condor’s behavior for some error cases in dealing with the transfer of files.

Disk Full on Execute Machine When transferring any files from the submit machine to the remote
scratch directory, if the disk is full on the execute machine, then the job is place on hold.

Error Creating Zero-Length Files on Submit Machine As a job is submitted, Condor creates
zero-length files as placeholders on the submit machine for the files defined byoutput and
error . If these files cannot be created, then job submission fails.

This job submission failure avoids having the job run to completion, only to be unable to
transfer the job’s output due to permission errors.

Error When Transferring Files from Execute Machine to Submit Machine When a job exits,
or potentially when a job is evicted from an execute machine,one or more files may be trans-
ferred from the execute machine back to the machine on which the job was submitted.

Condor Version 7.7.6 Manual

2.5. Submitting a Job 33

During transfer, if any of the following three similar typesof errors occur, the job is put on
hold as the error occurs.

1. If the file cannot be opened on the submit machine, for example because the system is
out of inodes.

2. If the file cannot be written on the submit machine, for example because the permissions
do not permit it.

3. If the write of the file on the submit machine fails, for example because the system is out
of disk space.

File Transfer Using a URL

Instead of file transfer that goes only between the submit machine and the execute machine, Condor
has the ability to transfer files from a location specified by aURL for a job’s input file, or from the
execute machine to a location specified by a URL for a job’s output file(s). This capability requires
administrative set up, as described in section 3.12.2.

The transfer of an input file is restricted to vanilla and vm universe jobs only. Condor’s file trans-
fer mechanism must be enabled. Therefore, the submit description file for the job will define both
should_transfer_filesandwhen_to_transfer_output. In addition, the URL for any files specified
with a URL are given in thetransfer_input_files command. An example portion of the submit
description file for a job that has a single file specified with aURL:

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = http://www.full.url/path/to/fi lename

The destination file is given by the file name within the URL.

For the transfer of the entire contents of the output sandbox, which are all files that the job cre-
ates or modifies, Condor’s file transfer mechanism must be enabled. In this sample portion of the
submit description file, the first two commands explicitly enable file transfer, and the addedout-
put_destinationcommand provides both the protocol to be used and the destination of the transfer.

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
output_destination = urltype://path/to/destination/di rectory

Note that with this feature, no files are transferred back to the submit machine. This does not
interfere with the streaming of output.

If only a subset of the output sandbox should be transferred,the subset is specified by further
adding a submit command of the form:

transfer_output_files = file1, file2

Condor Version 7.7.6 Manual

2.5. Submitting a Job 34

Requirements and Rank for File Transfer

Therequirements expression for a job must depend on theshould_transfer_files com-
mand. The job must specify the correct logic to ensure that the job is matched with a resource that
meets the file transfer needs. If norequirements expression is in the submit description file,
or if the expression specified does not refer to the attributes listed below,condor_submitadds an
appropriate clause to therequirements expression for the job.condor_submitappends these
clauses with a logical AND,&&, to ensure that the proper conditions are met. Here are the default
clauses corresponding to the different values ofshould_transfer_files :

1. should_transfer_files = YES results in the addition of the clause
(HasFileTransfer) . If the job is always going to transfer files, it is required to
match with a machine that has the capability to transfer files.

2. should_transfer_files = NO results in the addition of
(TARGET.FileSystemDomain == MY.FileSystemDomain) . In addition,
Condor automatically adds theFileSystemDomain attribute to the job ClassAd, with
whatever string is defined for thecondor_scheddto which the job is submitted. If the job is
not using the file transfer mechanism, Condor assumes it willneed a shared file system, and
therefore, a machine in the sameFileSystemDomain as the submit machine.

3. should_transfer_files = IF_NEEDED results in the addition of

(HasFileTransfer || (TARGET.FileSystemDomain == MY.File SystemDomain))

If Condor will optionally transfer files, it must require that the machine iseither capable of
transferring filesor in the same file system domain.

To ensure that the job is matched to a machine with enough local disk space to hold all the
transferred files, Condor automatically adds theDiskUsage job attribute. This attribute includes
the total size of the job’s executable and all input files to betransferred. Condor then adds an
additional clause to theRequirements expression that states that the remote machine must have
at least enough available disk space to hold all these files:

&& (Disk >= DiskUsage)

If should_transfer_files = IF_NEEDED and the job prefers to run on a machine in
the local file system domain over transferring files, but is still willing to allow the job to run remotely
and transfer files, theRank expression works well. Use:

rank = (TARGET.FileSystemDomain == MY.FileSystemDomain)

TheRank expression is a floating point value, so if other items are considered in ranking the
possible machines this job may run on, add the items:

Condor Version 7.7.6 Manual

2.5. Submitting a Job 35

Rank = kflops + (TARGET.FileSystemDomain == MY.FileSystem Domain)

The value ofkflops can vary widely among machines, so thisRank expression will likely
not do as it intends. To place emphasis on the job running in the same file system domain, but still
consider floating point speed among the machines in the file system domain, weight the part of the
expression that is matching the file system domains. For example:

Rank = kflops + (10000 * (TARGET.FileSystemDomain == MY.Fil eSystemDomain))

2.5.5 Environment Variables

The environment under which a job executes often contains information that is potentially useful to
the job. Condor allows a user to both set and reference environment variables for a job or job cluster.

Within a submit description file, the user may define environment variables for the job’s environ-
ment by using theenvironment command. See within thecondor_submitmanual page at section 10
for more details about this command.

The submitter’s entire environment can be copied into the job ClassAd for the job at job submis-
sion. Thegetenvcommand within the submit description file does this, as described at section 10.

If the environment is set with theenvironment commandandgetenvis also set to true, values
specified withenvironment override values in the submitter’s environment, regardless of the order
of theenvironment andgetenvcommands.

Commands within the submit description file may reference the environment vari-
ables of the submitter as a job is submitted. Submit description file commands use
$ENV(EnvironmentVariableName) to reference the value of an environment variable.

Condor sets several additional environment variables for each executing job that may be useful
for the job to reference.

• _CONDOR_SCRATCH_DIRgives the directory where the job may place temporary data files.
This directory is unique for every job that is run, and its contents are deleted by Condor when
the job stops running on a machine, no matter how the job completes.

• _CONDOR_SLOTgives the name of the slot (for SMP machines), on which the jobis run.
On machines with only a single slot, the value of this variable will be1, just like theSlotID
attribute in the machine’s ClassAd. This setting is available in all universes. See section 3.12.8
for more details about SMP machines and their configuration.

• CONDOR_VMequivalent to_CONDOR_SLOTdescribed above, except that it is only available
in the standard universe. NOTE: As of Condor version 6.9.3, this environment variable is no
longer used. It will only be defined if theALLOW_VM_CRUFTconfiguration variable is set
to True .

Condor Version 7.7.6 Manual

2.5. Submitting a Job 36

• X509_USER_PROXYgives the full path to the X.509 user proxy file if one is associated
with the job. Typically, a user will specifyx509userproxyin the submit description file. This
setting is currently available in the local, java, and vanilla universes.

• _CONDOR_JOB_ADis the path to a file in the job’s scratch directory which contains the job
ad for the currently running job. The job ad is current as of the start of the job, but is not
updated during the running of the job. The job may read attributes and their values out of
this file as it runs, but any changes will not be acted on in any way by Condor. The format
is the same as the output of thecondor_q-l command. This environment variable may be
particularly useful in a USER_JOB_WRAPPER.

• _CONDOR_MACHINE_ADis the path to a file in the job’s scratch directory which contains
the machine ad for the slot the currently running job is using. The machine ad is current as of
the start of the job, but is not updated during the running of the job. The format is the same as
the output of thecondor_status-l command.

• _CONDOR_JOB_IWDis the path to the initial working directory the job was born with.

• _CONDOR_WRAPPER_ERROR_FILEis only set when the administrator has installed a
USER_JOB_WRAPPER. If this file exists, Condor assumes that the job wrapper has failed
and copies the contents of the file to the StarterLog for the administrator to debug the problem.

2.5.6 Heterogeneous Submit: Execution on Differing Architectures

If executables are available for the different platforms ofmachines in the Condor pool, Condor
can be allowed the choice of a larger number of machines when allocating a machine for a job.
Modifications to the submit description file allow this choice of platforms.

A simplified example is a cross submission. An executable is available for one platform, but the
submission is done from a different platform. Given the correct executable, therequirements
command in the submit description file specifies the target architecture. For example, an executable
compiled for a 32-bit Intel processor running Windows Vista, submitted from an Intel architecture
running Linux would add therequirement

requirements = Arch == "INTEL" && OpSys == "WINDOWS"

Without thisrequirement , condor_submitwill assume that the program is to be executed on a
machine with the same platform as the machine where the job issubmitted.

Cross submission works for all universes exceptscheduler andlocal . See section 5.3.11
for how matchmaking works in thegrid universe. The burden is on the user to both obtain and
specify the correct executable for the target architecture. To list the architecture and operating sys-
tems of the machines in a pool, runcondor_status.

Condor Version 7.7.6 Manual

2.5. Submitting a Job 37

Vanilla Universe Example for Execution on Differing Archit ectures

A more complex example of a heterogeneous submission occurswhen a job may be executed on
many different architectures to gain full use of a diverse architecture and operating system pool.
If the executables are available for the different architectures, then a modification to the submit
description file will allow Condor to choose an executable after an available machine is chosen.

A special-purpose Machine Ad substitution macro can be usedin string attributes in the submit
description file. The macro has the form

$$(MachineAdAttribute)

The $$() informs Condor to substitute the requestedMachineAdAttribute from the machine
where the job will be executed.

An example of the heterogeneous job submission has executables available for two platforms:
RHEL 3 on both 32-bit and 64-bit Intel processors. This example usespovray to render images
using a popular free rendering engine.

The substitution macro chooses a specific executable after aplatform for running the job is
chosen. These executables must therefore be named based on the machine attributes that describe a
platform. The executables named

povray.LINUX.INTEL
povray.LINUX.X86_64

will work correctly for the macro

povray.$$(OpSys).$$(Arch)

The executables or links to executables with this name are placed into the initial working direc-
tory so that they may be found by Condor. A submit descriptionfile that queues three jobs for this
example:

####################
#
Example of heterogeneous submission
#
####################

universe = vanilla
Executable = povray.$$(OpSys).$$(Arch)
Log = povray.log
Output = povray.out.$(Process)
Error = povray.err.$(Process)

Condor Version 7.7.6 Manual

2.5. Submitting a Job 38

Requirements = (Arch == "INTEL" && OpSys == "LINUX") || \
(Arch == "X86_64" && OpSys =="LINUX")

Arguments = +W1024 +H768 +Iimage1.pov
Queue

Arguments = +W1024 +H768 +Iimage2.pov
Queue

Arguments = +W1024 +H768 +Iimage3.pov
Queue

These jobs are submitted to the vanilla universe to assure that once a job is started on a specific
platform, it will finish running on that platform. Switchingplatforms in the middle of job execution
cannot work correctly.

There are two common errors made with the substitution macro. The first is the use of a non-
existentMachineAdAttribute . If the specifiedMachineAdAttribute does not exist in the
machine’s ClassAd, then Condor will place the job in the heldstate until the problem is resolved.

The second common error occurs due to an incomplete job set up. For example, the submit
description file given above specifies three available executables. If one is missing, Condor reports
back that an executable is missing when it happens to match the job with a resource that requires the
missing binary.

Standard Universe Example for Execution on Differing Architectures

Jobs submitted to the standard universe may produce checkpoints. A checkpoint can then be used
to start up and continue execution of a partially completed job. For a partially completed job, the
checkpoint and the job are specific to a platform. If migratedto a different machine, correct execu-
tion requires that the platform must remain the same.

In previous versions of Condor, the author of the heterogeneous submission file would need to
write extra policy expressions in therequirements expression to force Condor to choose the
same type of platform when continuing a checkpointed job. However, since it is needed in the com-
mon case, this additional policy is now automatically addedto therequirements expression. The
additional expression is added provided the user does not use CkptArch in therequirements
expression. Condor will remain backward compatible for those users who have explicitly specified
CkptRequirements –implying use ofCkptArch , in their requirements expression.

The expression added when the attributeCkptArch is not specified will default to

Added by Condor
CkptRequirements = ((CkptArch == Arch) || (CkptArch =?= UND EFINED)) && \

((CkptOpSys == OpSys) || (CkptOpSys =?= UNDEFINED))

Condor Version 7.7.6 Manual

2.5. Submitting a Job 39

Requirements = (<user specified policy>) && $(CkptRequire ments)

The behavior of theCkptRequirements expressions and its addition torequirements is
as follows. TheCkptRequirements expression guarantees correct operation in the two possible
cases for a job. In the first case, the job has not produced a checkpoint. The ClassAd attributes
CkptArch andCkptOpSys will be undefined, and therefore the meta operator (=?=) evaluates
to true. In the second case, the job has produced a checkpoint. The Machine ClassAd is restricted
to require further execution only on a machine of the same platform. The attributesCkptArch and
CkptOpSys will be defined, ensuring that the platform chosen for further execution will be the
same as the one used just before the checkpoint.

Note that this restriction of platforms also applies to platforms where the executables are binary
compatible.

The complete submit description file for this example:

####################
#
Example of heterogeneous submission
#
####################

universe = standard
Executable = povray.$$(OpSys).$$(Arch)
Log = povray.log
Output = povray.out.$(Process)
Error = povray.err.$(Process)

Condor automatically adds the correct expressions to insu re that the
checkpointed jobs will restart on the correct platform typ es.
Requirements = ((Arch == "INTEL" && OpSys == "LINUX") || \

(Arch == "X86_64" && OpSys == "LINUX"))

Arguments = +W1024 +H768 +Iimage1.pov
Queue

Arguments = +W1024 +H768 +Iimage2.pov
Queue

Arguments = +W1024 +H768 +Iimage3.pov
Queue

Condor Version 7.7.6 Manual

2.5. Submitting a Job 40

Vanilla Universe Example for Execution on Differing Operating Systems

The addition of several related OpSys attributes assists inselection of specific operating systems and
versions in heterogeneous pools.

####################
#
Example of submission targeting RedHat platforms in a hete rogeneous Linux pool
#
####################

universe = vanilla
Executable = /bin/date
Log = distro.log
Output = distro.out
Error = distro.err

Requirements = (OpSysName == "RedHat")

Queue

####################
#
Example of submission targeting RedHat 6 platforms in a het erogeneous Linux pool
#
####################

universe = vanilla
Executable = /bin/date
Log = distro.log
Output = distro.out
Error = distro.err

Requirements = (OpSysName == "RedHat" && OpSysMajorVersio n == 6)

Queue

Here is a more compact way to specify a RedHat 6 platform.

####################
#
Example of submission targeting RedHat 6 platforms in a het erogeneous Linux pool
#
####################

Condor Version 7.7.6 Manual

2.6. Managing a Job 41

universe = vanilla
Executable = /bin/date
Log = distro.log
Output = distro.out
Error = distro.err

Requirements = (OpSysAndVer == "RedHat6")

Queue

2.6 Managing a Job

This section provides a brief summary of what can be done oncejobs are submitted. The basic
mechanisms for monitoring a job are introduced, but the commands are discussed briefly. You are
encouraged to look at the man pages of the commands referred to (located in Chapter 10 beginning
on page 730) for more information.

When jobs are submitted, Condor will attempt to find resources to run the jobs. A list of all
those with jobs submitted may be obtained throughcondor_statuswith the -submittersoption. An
example of this would yield output similar to:

% condor_status -submitters

Name Machine Running IdleJobs HeldJobs

ballard@cs.wisc.edu bluebird.c 0 11 0
nice-user.condor@cs. cardinal.c 6 504 0
wright@cs.wisc.edu finch.cs.w 1 1 0
jbasney@cs.wisc.edu perdita.cs 0 0 5

RunningJobs IdleJobs HeldJobs

ballard@cs.wisc.edu 0 11 0
jbasney@cs.wisc.edu 0 0 5

nice-user.condor@cs. 6 504 0
wright@cs.wisc.edu 1 1 0

Total 7 516 5

2.6.1 Checking on the progress of jobs

At any time, you can check on the status of your jobs with thecondor_qcommand. This command
displays the status of all queued jobs. An example of the output fromcondor_qis

% condor_q

-- Submitter: submit.chtc.wisc.edu : <128.104.55.9:3277 2> : submit.chtc.wisc.edu

Condor Version 7.7.6 Manual

2.6. Managing a Job 42

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
711197.0 aragorn 1/15 19:18 0+04:29:33 H 0 0.0 script.sh
894381.0 frodo 3/16 09:06 82+17:08:51 R 0 439.5 elk elk.in
894386.0 frodo 3/16 09:06 82+20:21:28 R 0 219.7 elk elk.in
894388.0 frodo 3/16 09:06 81+17:22:10 R 0 439.5 elk elk.in
1086870.0 gollum 4/27 09:07 0+00:10:14 I 0 7.3 condor_dagma n
1086874.0 gollum 4/27 09:08 0+00:00:01 H 0 0.0 RunDC.bat
1297254.0 legolas 5/31 18:05 14+17:40:01 R 0 7.3 condor_dag man
1297255.0 legolas 5/31 18:05 14+17:39:55 R 0 7.3 condor_dag man
1297256.0 legolas 5/31 18:05 14+17:39:55 R 0 7.3 condor_dag man
1297259.0 legolas 5/31 18:05 14+17:39:55 R 0 7.3 condor_dag man
1297261.0 legolas 5/31 18:05 14+17:39:55 R 0 7.3 condor_dag man
1302278.0 legolas 6/4 12:22 1+00:05:37 I 0 390.6 mdrun_1.sh
1304740.0 legolas 6/5 00:14 1+00:03:43 I 0 390.6 mdrun_1.sh
1304967.0 legolas 6/5 05:08 0+00:00:00 I 0 0.0 mdrun_1.sh

14 jobs; 4 idle, 8 running, 2 held

This output contains many columns of information about the queued jobs. TheST column (for
status) shows the status of current jobs in the queue:

R: The job is currently running.

I : The job is idle. It is not running right now, because it is waiting for a machine to become
available.

H: The job is the hold state. In the hold state, the job will not be scheduled to run until it is released.
See thecondor_holdmanual page located on page 797 and thecondor_releasemanual page
located on page 832.

TheRUN_TIMEtime reported for a job is the time that has been committed to the job.

Another useful method of tracking the progress of jobs is through the user log. If you have
specified alog command in your submit file, the progress of the job may be followed by viewing
the log file. Various events such as execution commencement,checkpoint, eviction and termination
are logged in the file. Also logged is the time at which the event occurred.

When a job begins to run, Condor starts up acondor_shadowprocess on the submit machine.
The shadow process is the mechanism by which the remotely executing jobs can access the environ-
ment from which it was submitted, such as input and output files.

It is normal for a machine which has submitted hundreds of jobs to have hundreds ofcon-
dor_shadowprocesses running on the machine. Since the text segments ofall these processes is the
same, the load on the submit machine is usually not significant. If there is degraded performance,
limit the number of jobs that can run simultaneously by reducing theMAX_JOBS_RUNNINGcon-
figuration variable.

You can also find all the machines that are running your job through thecondor_statuscommand.
For example, to find all the machines that are running jobs submitted bybreach@cs.wisc.edu ,
type:

Condor Version 7.7.6 Manual

2.6. Managing a Job 43

% condor_status -constraint 'RemoteUser == "breach@cs.wi sc.edu"'

Name Arch OpSys State Activity LoadAv Mem ActvtyTime

alfred.cs. INTEL LINUX Claimed Busy 0.980 64 0+07:10:02
biron.cs.w INTEL LINUX Claimed Busy 1.000 128 0+01:10:00
cambridge. INTEL LINUX Claimed Busy 0.988 64 0+00:15:00
falcons.cs INTEL LINUX Claimed Busy 0.996 32 0+02:05:03
happy.cs.w INTEL LINUX Claimed Busy 0.988 128 0+03:05:00
istat03.st INTEL LINUX Claimed Busy 0.883 64 0+06:45:01
istat04.st INTEL LINUX Claimed Busy 0.988 64 0+00:10:00
istat09.st INTEL LINUX Claimed Busy 0.301 64 0+03:45:00
...

To find all the machines that are running any job at all, type:

% condor_status -run

Name Arch OpSys LoadAv RemoteUser ClientMachine

adriana.cs INTEL LINUX 0.980 hepcon@cs.wisc.edu chevre.c s.wisc.
alfred.cs. INTEL LINUX 0.980 breach@cs.wisc.edu neufchat el.cs.w
amul.cs.wi X86_64 LINUX 1.000 nice-user.condor@cs. chevr e.cs.wisc.
anfrom.cs. X86_64 LINUX 1.023 ashoks@jules.ncsa.ui jules .ncsa.uiuc
anthrax.cs INTEL LINUX 0.285 hepcon@cs.wisc.edu chevre.c s.wisc.
astro.cs.w INTEL LINUX 1.000 nice-user.condor@cs. chevre .cs.wisc.
aura.cs.wi X86_64 WINDOWS 0.996 nice-user.condor@cs. che vre.cs.wisc.
balder.cs. INTEL WINDOWS 1.000 nice-user.condor@cs. chev re.cs.wisc.
bamba.cs.w INTEL LINUX 1.574 dmarino@cs.wisc.edu riola.c s.wisc.e
bardolph.c INTEL LINUX 1.000 nice-user.condor@cs. chevre .cs.wisc.
...

2.6.2 Removing a job from the queue

A job can be removed from the queue at any time by using thecondor_rmcommand. If the job that
is being removed is currently running, the job is killed without a checkpoint, and its queue entry is
removed. The following example shows the queue of jobs before and after a job is removed.

% condor_q

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
125.0 jbasney 4/10 15:35 0+00:00:00 I -10 1.2 hello.remote
132.0 raman 4/11 16:57 0+00:00:00 R 0 1.4 hello

2 jobs; 1 idle, 1 running, 0 held

% condor_rm 132.0
Job 132.0 removed.

% condor_q

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD

Condor Version 7.7.6 Manual

2.6. Managing a Job 44

125.0 jbasney 4/10 15:35 0+00:00:00 I -10 1.2 hello.remote

1 jobs; 1 idle, 0 running, 0 held

2.6.3 Placing a job on hold

A job in the queue may be placed on hold by running the commandcondor_hold. A job in the hold
state remains in the hold state until later released for execution by the commandcondor_release.

Use of thecondor_holdcommand causes a hard kill signal to be sent to a currently running job
(one in the running state). For a standard universe job, thismeans that no checkpoint is generated
before the job stops running and enters the hold state. When released, this standard universe job
continues its execution using the most recent checkpoint available.

Jobs in universes other than the standard universe that are running when placed on hold will start
over from the beginning when released.

The manual page forcondor_holdon page 797 and the manual page forcondor_releaseon
page 832 contain usage details.

2.6.4 Changing the priority of jobs

In addition to the priorities assigned to each user, Condor also provides each user with the capability
of assigning priorities to each submitted job. These job priorities are local to each queue and can be
any integer value, with higher values meaning better priority.

The default priority of a job is 0, but can be changed using thecondor_priocommand. For
example, to change the priority of a job to -15,

% condor_q raman

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
126.0 raman 4/11 15:06 0+00:00:00 I 0 0.3 hello

1 jobs; 1 idle, 0 running, 0 held

% condor_prio -p -15 126.0

% condor_q raman

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu
ID OWNER SUBMITTED CPU_USAGE ST PRI SIZE CMD
126.0 raman 4/11 15:06 0+00:00:00 I -15 0.3 hello

1 jobs; 1 idle, 0 running, 0 held

It is important to note that thesejob priorities are completely different from theuserpriorities
assigned by Condor. Job priorities do not impact user priorities. They are only a mechanism for

Condor Version 7.7.6 Manual

2.6. Managing a Job 45

the user to identify the relative importance of jobs among all the jobs submitted by the user to that
specific queue.

2.6.5 Why is the job not running?

Users occasionally find that their jobs do not run. There are many possible reasons why a specific
job is not running. The following prose attempts to identifysome of the potential issues behind why
a job is not running.

At the most basic level, the user knows the status of a job by using condor_qto see that the job
is not running. By far, the most common reason (to the novice Condor job submitter) why the job is
not running is that Condor has not yet been through its periodic negotiation cycle, in which queued
jobs are assigned to machines within the pool and begin theirexecution. This periodic event occurs
by default once every 5 minutes, implying that the user oughtto wait a few minutes before searching
for reasons why the job is not running.

Further inquiries are dependent on whether the job has neverrun at all, or has run for at least a
little bit.

For jobs that have never run, many problems can be diagnosed by using the-analyzeoption
of the condor_qcommand. For example, a job (assigned the cluster.process value of 121.000)
submitted to the local pool at UW-Madison is not running. Running condor_q’s analyzer provided
the following information:

% condor_q -pool -analyze 121.000
-- Submitter: puffin.cs.wisc.edu : <128.105.185.14:3420 3> : puffin.cs.wisc.edu

121.000: Run analysis summary. Of 1592 machines,

1382 are rejected by your job's requirements
25 reject your job because of their own requirements

185 match but are serving users with a better priority in the p ool
0 match but reject the job for unknown reasons
0 match but will not currently preempt their existing job
0 match but are currently offline
0 are available to run your job

The Requirements expression for your job is:
((target.Arch == "X86_64" || target.Arch == "INTEL") &&
(target.Group == "TestPool")) && (target.OpSys == "LINUX") &&
(target.Disk >= DiskUsage) && ((target.Memory * 1024) >= Im ageSize) &&
(TARGET.FileSystemDomain == MY.FileSystemDomain)

Condition Machines Matched Suggestion
--------- ---------------- ----------

1 (target.Group == "TestPool") 274
2 (TARGET.FileSystemDomain == "cs.wisc.edu")1258
3 (target.OpSys == "LINUX") 1453
4 (target.Arch == "X86_64" || target.Arch == "INTEL")

1573
5 (target.Disk >= 100000) 1589
6 ((1024 * target.Memory) >= 100000)1592

Condor Version 7.7.6 Manual

2.6. Managing a Job 46

The following attributes are missing from the job ClassAd:

CheckpointPlatform

This example also shows that the job does not run because the job does not have a high enough
priority to cause any of 185 other running jobs to be preempted.

While the analyzer can diagnose most common problems, thereare some situations that it cannot
reliably detect due to the instantaneous and local nature ofthe information it uses to detect the
problem. Thus, it may be that the analyzer reports that resources are available to service the request,
but the job still has not run. In most of these situations, thedelay is transient, and the job will run
following the next negotiation cycle.

A second class of problems represents jobs that do or did run,for at least a short while, but are
no longer running. The first issue is identifying whether thejob is in this category. Thecondor_q
command is not enough; it only tells the current state of the job. The needed information will be in
the log file or theerror file, as defined in the submit description file for the job. If these files are
not defined, then there is little hope of determining if the job ran at all. For a job that ran, even for
the briefest amount of time, thelog file will contain an event of type 1, which will contain the string
Job executing on host .

A job may run for a short time, before failing due to a file permission problem. The log file used
by thecondor_shadowdaemon will contain more information if this is the problem.This log file is
associated with the machine on which the job was submitted. The location and name of this log file
may be discovered on the submitting machine, using the command

% condor_config_val SHADOW_LOG

Memory and swap space problems may be identified by looking atthe log file used by the
condor_schedddaemon. The location and name of this log file may be discovered on the submitting
machine, using the command

% condor_config_val SCHEDD_LOG

A swap space problem will show in the log with the following message:

2/3 17:46:53 Swap space estimate reached! No more jobs can be run!
12/3 17:46:53 Solution: get more swap space, or set RESERVED _SWAP = 0
12/3 17:46:53 0 jobs matched, 1 jobs idle

As an explanation, Condor computes the total swap space on the submit machine. It then tries to
limit the total number of jobs it will spawn based on an estimate of the size of thecondor_shadow
daemon’s memory footprint and a configurable amount of swap space that should be reserved. This
is done to avoid the situation within a very large pool in which all the jobs are submitted from a
single host. The huge number ofcondor_shadowprocesses would overwhelm the submit machine,
and it would run out of swap space and thrash.

Condor Version 7.7.6 Manual

2.6. Managing a Job 47

Things can go wrong if a machine has a lot of physical memory and little or no swap space.
Condor does not consider the physical memory size, so the situation occurs where Condor thinks it
has no swap space to work with, and it will not run the submitted jobs.

To see how much swap space Condor thinks a given machine has, use the output of acon-
dor_statuscommand of the following form:

% condor_status -schedd [hostname] -long | grep VirtualMem ory

If the value listed is 0, then this is what is confusing Condor. There are two ways to fix the problem:

1. Configure the machine with some real swap space.

2. Disable this check within Condor. Define the amount of reserved swap space for the submit
machine to 0. SetRESERVED_SWAPto 0 in the configuration file:

RESERVED_SWAP = 0

and then send acondor_restartto the submit machine.

2.6.6 In the Log File

In a job’s log file are a listing of events in chronological order that occurred during the life of the job.
The formatting of the events is always the same, so that they may be machine readable. Four fields
are always present, and they will most often be followed by other fields that give further information
that is specific to the type of event.

The first field in an event is the numeric value assigned as the event type in a 3-digit format. The
second field identifies the job which generated the event. Within parentheses are the ClassAd job
attributes ofClusterId value,ProcId value, and the node number for parallel universe jobs or
a set of zeros (for jobs run under all other universes), separated by periods. The third field is the date
and time of the event logging. The fourth field is a string thatbriefly describes the event. Fields that
follow the fourth field give further information for the specific event type.

These are all of the events that can show up in a job log file:

Event Number: 000
Event Name:Job submitted
Event Description: This event occurs when a user submits a job. It is the first event you will see
for a job, and it should only occur once.

Event Number: 001
Event Name:Job executing
Event Description: This shows up when a job is running. It might occur more than once.

Condor Version 7.7.6 Manual

2.6. Managing a Job 48

Event Number: 002
Event Name:Error in executable
Event Description: The job could not be run because the executable was bad.

Event Number: 003
Event Name:Job was checkpointed
Event Description: The job’s complete state was written to a checkpoint file. This might happen
without the job being removed from a machine, because the checkpointing can happen periodically.

Event Number: 004
Event Name:Job evicted from machine
Event Description: A job was removed from a machine before it finished, usually for a policy
reason. Perhaps an interactive user has claimed the computer, or perhaps another job is higher
priority.

Event Number: 005
Event Name:Job terminated
Event Description: The job has completed.

Event Number: 006
Event Name: Image size of job updated
Event Description: An informational event, to update the amount of memory that the job is using
while running. It does not reflect the state of the job.

Event Number: 007
Event Name:Shadow exception
Event Description: Thecondor_shadow, a program on the submit computer that watches over the
job and performs some services for the job, failed for some catastrophic reason. The job will leave
the machine and go back into the queue.

Event Number: 008
Event Name:Generic log event
Event Description: Not used.

Event Number: 009
Event Name:Job aborted
Event Description: The user canceled the job.

Event Number: 010
Event Name:Job was suspended
Event Description: The job is still on the computer, but it is no longer executing. This is usually
for a policy reason, such as an interactive user using the computer.

Event Number: 011
Event Name:Job was unsuspended
Event Description: The job has resumed execution, after being suspended earlier.

Event Number: 012
Event Name:Job was held

Condor Version 7.7.6 Manual

2.6. Managing a Job 49

Event Description: The job has transitioned to the hold state. This might happenif the user applies
thecondor_holdcommand to the job.

Event Number: 013
Event Name:Job was released
Event Description: The job was in the hold state and is to be re-run.

Event Number: 014
Event Name:Parallel node executed
Event Description: A parallel universe program is running on a node.

Event Number: 015
Event Name:Parallel node terminated
Event Description: A parallel universe program has completed on a node.

Event Number: 016
Event Name:POST script terminated
Event Description: A node in a DAGMan work flow has a script that should be run aftera job. The
script is run on the submit host. This event signals that the post script has completed.

Event Number: 017
Event Name:Job submitted to Globus
Event Description: A grid job has been delegated to Globus (version 2, 3, or 4). This event is no
longer used.

Event Number: 018
Event Name:Globus submit failed
Event Description: The attempt to delegate a job to Globus failed.

Event Number: 019
Event Name:Globus resource up
Event Description: The Globus resource that a job wants to run on was unavailable, but is now
available. This event is no longer used.

Event Number: 020
Event Name:Detected Down Globus Resource
Event Description: The Globus resource that a job wants to run on has become unavailable. This
event is no longer used.

Event Number: 021
Event Name:Remote error
Event Description: The condor_starter(which monitors the job on the execution machine) has
failed.

Event Number: 022
Event Name:Remote system call socket lost
Event Description: The condor_shadowandcondor_starter(which communicate while the job
runs) have lost contact.

Condor Version 7.7.6 Manual

2.6. Managing a Job 50

Event Number: 023
Event Name:Remote system call socket reestablished
Event Description: The condor_shadowandcondor_starter(which communicate while the job
runs) have been able to resume contact before the job lease expired.

Event Number: 024
Event Name:Remote system call reconnect failure
Event Description: The condor_shadowandcondor_starter(which communicate while the job
runs) were unable to resume contact before the job lease expired.

Event Number: 025
Event Name:Grid Resource Back Up
Event Description: A grid resource that was previously unavailable is now available.

Event Number: 026
Event Name:Detected Down Grid Resource
Event Description: The grid resource that a job is to run on is unavailable.

Event Number: 027
Event Name:Job submitted to grid resource
Event Description: A job has been submitted, and is under the auspices of the gridresource.

Event Number: 028
Event Name:Job ad information event triggered.
Event Description: Extra job ClassAd attributes are noted. This event is written as a supplement to
other events when the configuration parameterEVENT_LOG_JOB_AD_INFORMATION_ATTRS
is set.

Event Number: 029
Event Name:The job’s remote status is unknown
Event Description: No updates of the job’s remote status have been received for 15 minutes.

Event Number: 030
Event Name:The job’s remote status is known again
Event Description: An update has been received for a job whose remote status was previous logged
as unknown.

Event Number: 031
Event Name:Unused
Event Description: This event number is not used.

Event Number: 032
Event Name:Unused
Event Description: This event number is not used.

Event Number: 033
Event Name:Attribute update
Event Description: Definition not yet written.

Condor Version 7.7.6 Manual

2.7. Priorities and Preemption 51

2.6.7 Job Completion

When a Condor job completes, either through normal means or by abnormal termination by signal,
Condor will remove it from the job queue. That is, the job willno longer appear in the output of
condor_q, and the job will be inserted into the job history file. Examine the job history file with the
condor_historycommand. If there is a log file specified in the submit description file for the job,
then the job exit status will be recorded there as well.

By default, Condor sends an email message when the job completes. Modify this behavior with
thenotification command in the submit description file. The message will include the exit status of
the job, which is the argument that the job passed to the exit system call when it completed, or it
will be notification that the job was killed by a signal. Notification will also include the following
statistics (as appropriate) about the job:

Submitted at: when the job was submitted withcondor_submit

Completed at: when the job completed

Real Time: the elapsed time between when the job was submitted and when it completed, given in
a form of<days> <hours>:<minutes>:<seconds>

Virtual Image Size: memory size of the job, computed when the job checkpoints

Statistics about just the last time the job ran:

Run Time: total time the job was running, given in the form<days>
<hours>:<minutes>:<seconds>

Remote User Time: total CPU time the job spent executing in user mode on remote machines; this
does not count time spent on run attempts that were evicted without a checkpoint. Given in
the form<days> <hours>:<minutes>:<seconds>

Remote System Time:total CPU time the job spent executing in system mode (the time spent at
system calls); this does not count time spent on run attemptsthat were evicted without a
checkpoint. Given in the form<days> <hours>:<minutes>:<seconds>

The Run Time accumulated by all run attempts are summarized with the time given in the form
<days> <hours>:<minutes>:<seconds> .

And, statistics about the bytes sent and received by the lastrun of the job and summed over all
attempts at running the job are given.

2.7 Priorities and Preemption

Condor has two independent priority controls:job priorities anduserpriorities.

Condor Version 7.7.6 Manual

2.7. Priorities and Preemption 52

2.7.1 Job Priority

Job priorities allow the assignment of a priority level to each submitted Condor job in order to
control the order of their execution. To set a job priority, use thecondor_priocommand; see the
example in section 2.6.4, or the command reference page on page 814. Job priorities do not impact
user priorities in any fashion. A job priority can be any integer, and higher values arebetter.

2.7.2 User priority

Machines are allocated to users based upon a user’s priority. A lower numerical value for user
priority means higher priority, so a user with priority 5 will get more resources than a user with
priority 50. User priorities in Condor can be examined with the condor_userpriocommand (see
page 925). Condor administrators can set and change individual user priorities with the same utility.

Condor continuously calculates the share of available machines that each user should be allo-
cated. This share is inversely related to the ratio between user priorities. For example, a user with
a priority of 10 will get twice as many machines as a user with apriority of 20. The priority of
each individual user changes according to the number of resources the individual is using. Each
user starts out with the best possible priority: 0.5. If the number of machines a user currently has is
greater than the user priority, the user priority will worsen by numerically increasing over time. If
the number of machines is less then the priority, the priority will improve by numerically decreasing
over time. The long-term result is fair-share access acrossall users. The speed at which Condor
adjusts the priorities is controlled with the configurationvariablePRIORITY_HALFLIFE , an ex-
ponential half-life value. The default is one day. If a user that has user priority of 100 and is utilizing
100 machines removes all his/her jobs, one day later that user’s priority will be 50, and two days
later the priority will be 25.

Condor enforces that each user gets his/her fair share of machines according to user priority both
when allocating machines which become available and by priority preemption of currently allocated
machines. For instance, if a low priority user is utilizing all available machines and suddenly a higher
priority user submits jobs, Condor will immediately take a checkpoint and vacate jobs belonging to
the lower priority user. This will free up machines that Condor will then give over to the higher
priority user. Condor will not starve the lower priority user; it will preempt only enough jobs so that
the higher priority user’s fair share can be realized (basedupon the ratio between user priorities). To
prevent thrashing of the system due to priority preemption,the Condor site administrator can define
a PREEMPTION_REQUIREMENTSexpression in Condor’s configuration. The default expression
that ships with Condor is configured to only preempt lower priority jobs that have run for at least
one hour. So in the previous example, in the worse case it could take up to a maximum of one hour
until the higher priority user receives a fair share of machines. For a general discussion of limiting
preemption, please see section 3.5.9 of the Administrator’s manual.

User priorities are keyed on <username>@<domain> , for example
johndoe@cs.wisc.edu . The domain name to use, if any, is configured by the Condor
site administrator. Thus, user priority and therefore resource allocation is not impacted by which
machine the user submits from or even if the user submits jobsfrom multiple machines.

Condor Version 7.7.6 Manual

2.8. Java Applications 53

An extra feature is the ability to submit a job as anice job (see page??). Nice jobs artificially
boost the user priority by one million just for the nice job. This effectively means that nice jobs will
only run on machines that no other Condor job (that is, non-niced job) wants. In a similar fashion,
a Condor administrator could set the user priority of any specific Condor user very high. If done,
for example, with a guest account, the guest could only use cycles not wanted by other users of the
system.

2.7.3 Details About How Condor Jobs Vacate Machines

When Condor needs a job to vacate a machine for whatever reason, it sends the job an asynchronous
signal specified in theKillSig attribute of the job’s ClassAd. The value of this attribute can be
specified by the user at submit time by placing thekill_sig option in the Condor submit description
file.

If a program wanted to do some special work when required to vacate a machine, the program
may set up a signal handler to use a trappable signal as an indication to clean up. When submitting
this job, this clean up signal is specified to be used withkill_sig. Note that the clean up work needs
to be quick. If the job takes too long to go away, Condor follows up with a SIGKILL signal which
immediately terminates the process.

A job that is linked usingcondor_compileand is subsequently submitted into the standard uni-
verse, will checkpoint and exit upon receipt of a SIGTSTP signal. Thus, SIGTSTP is the default
value forKillSig when submitting to the standard universe. The user’s code may still checkpoint
itself at any time by calling one of the following functions exported by the Condor libraries:

ckpt()() Performs a checkpoint and then returns.

ckpt_and_exit()() Checkpoints and exits; Condor will then restart the processagain later,
potentially on a different machine.

For jobs submitted into the vanilla universe, the default value for KillSig is SIGTERM, the
usual method to nicely terminate a Unix program.

2.8 Java Applications

Condor allows users to access a wide variety of machines distributed around the world. The Java
Virtual Machine (JVM) provides a uniform platform on any machine, regardless of the machine’s
architecture or operating system. The Condor Java universebrings together these two features to
create a distributed, homogeneous computing environment.

Compiled Java programs can be submitted to Condor, and Condor can execute the programs on
any machine in the pool that will run the Java Virtual Machine.

Condor Version 7.7.6 Manual

2.8. Java Applications 54

Thecondor_statuscommand can be used to see a list of machines in the pool for which Condor
can use the Java Virtual Machine.

% condor_status -java

Name JavaVendor Ver State Activity LoadAv Mem ActvtyTime

adelie01.cs.wisc.e Sun Micros 1.6.0_ Claimed Busy 0.090 87 3 0+00:02:46
adelie02.cs.wisc.e Sun Micros 1.6.0_ Owner Idle 0.210 873 0 +03:19:32
slot10@bio.cs.wisc Sun Micros 1.6.0_ Unclaimed Idle 0.000 118 7+03:13:28
slot2@bio.cs.wisc. Sun Micros 1.6.0_ Unclaimed Idle 0.000 118 7+03:13:28
...

If there is no output from thecondor_statuscommand, then Condor does not know the location
details of the Java Virtual Machine on machines in the pool, or no machines have Java correctly
installed. In this case, contact your system administratoror see section 3.13 for more information
on getting Condor to work together with Java.

2.8.1 A Simple Example Java Application

Here is a complete, if simple, example. Start with a simple Java program,Hello.java :

public class Hello {
public static void main(String [] args) {

System.out.println("Hello, world!\n");
}

}

Build this program using your Java compiler. On most platforms, this is accomplished with the
command

javac Hello.java

Submission to Condor requires a submit description file. If submitting where files are accessible
using a shared file system, this simple submit description file works:

####################
#
Example 1
Execute a single Java class
#
####################

universe = java

Condor Version 7.7.6 Manual

2.8. Java Applications 55

executable = Hello.class
arguments = Hello
output = Hello.output
error = Hello.error
queue

The Java universe must be explicitly selected.

The main class of the program is given in theexecutablestatement. This is a file name which
contains the entry point of the program. The name of the main class (not a file name) must be
specified as the first argument to the program.

If submitting the job where a shared file system isnot accessible, the submit description file
becomes:

####################
#
Example 1
Execute a single Java class,
not on a shared file system
#
####################

universe = java
executable = Hello.class
arguments = Hello
output = Hello.output
error = Hello.error
should_transfer_files = YES
when_to_transfer_output = ON_EXIT
queue

For more information about using Condor’s file transfer mechanisms, see section 2.5.4.

To submit the job, where the submit description file is namedHello.cmd , execute

condor_submit Hello.cmd

To monitor the job, the commandscondor_qandcondor_rmare used as with all jobs.

2.8.2 Less Simple Java Specifications

Specifying more than 1 class file.For programs that consist of more than one.class file, iden-
tify the files in the submit description file:

Condor Version 7.7.6 Manual

2.8. Java Applications 56

executable = Stooges.class
transfer_input_files = Larry.class,Curly.class,Moe.cl ass

The executablecommand does not change. It still identifies the class file that contains the
program’s entry point.

JAR files. If the program consists of a large number of class files, it maybe easier to collect them
all together into a single Java Archive (JAR) file. A JAR can becreated with:

% jar cvf Library.jar Larry.class Curly.class Moe.class St ooges.class

Condor must then be told where to find the JAR as well as to use the JAR. The JAR file that
contains the entry point is specified with theexecutablecommand. All JAR files are specified
with the jar_files command. For this example that collected all the class files into a single
JAR file, the submit description file contains:

executable = Library.jar
jar_files = Library.jar

Note that the JVM must know whether it is receiving JAR files orclass files. Therefore,
Condor must also be informed, in order to pass the information on to the JVM. That is why
there is a difference in submit description file commands forthe two ways of specifying files
(transfer_input_files andjar_files).

If there are multiple JAR files, theexecutablecommand specifies the JAR file that contains
the program’s entry point. This file is also listed with thejar_files command:

executable = sortmerge.jar
jar_files = sortmerge.jar,statemap.jar

Using a third-party JAR file. As Condor requires that all JAR files (third-party or not) be avail-
able, specification of a third-party JAR file is no different than other JAR files. If the sortmerge
example above also relies on version 2.1 from http://jakarta.apache.org/commons/lang/, and
this JAR file has been placed in the same directory with the other JAR files, then the submit
description file contains

executable = sortmerge.jar
jar_files = sortmerge.jar,statemap.jar,commons-lang-2 .1.jar

An executable JAR file. When the JAR file is an executable, specify the program’s entry point in
theargumentscommand:

executable = anexecutable.jar
jar_files = anexecutable.jar
arguments = some.main.ClassFile

Condor Version 7.7.6 Manual

2.8. Java Applications 57

Discovering the main class within a JAR file.As of Java version 1.4, Java virtual machines have
a -jar option, which takes a single JAR file as an argument. With thisoption, the Java virtual
machine discovers the main class to run from the contents of the Manifest file, which is bun-
dled within the JAR file. Condor’sjava universe does not support this discovery, so before
submitting the job, the name of the main class must be identified.

For a Java application which is run on the command line with

java -jar OneJarFile.jar

the equivalent version after discovery might look like

java -classpath OneJarFile.jar TheMainClass

The specified value forTheMainClass can be discovered by unjarring the JAR file, and
looking for the MainClass definition in the Manifest file. Usethat definition in the Condor
submit description file. Partial contents of that file Java universe submit file will appear as

universe = java
executable = OneJarFile.jar
jar_files = OneJarFile.jar
Arguments = TheMainClass More-Arguments
queue

Packages.An example of a Java class that is declared in a non-default package is

package hpc;

public class CondorDriver
{

// class definition here
}

The JVM needs to know the location of this package. It is passed as a command-line argument,
implying the use of the naming convention and directory structure.

Therefore, the submit description file for this example willcontain

arguments = hpc.CondorDriver

JVM-version specific features. If the program uses Java features found only in certain JVMs,then
the Java application submitted to Condor must only run on those machines within the pool that
run the needed JVM. Inform Condor by adding arequirements statement to the submit
description file. For example, to require version 3.2, add tothe submit description file:

requirements = (JavaVersion=="3.2")

Condor Version 7.7.6 Manual

2.8. Java Applications 58

Benchmark speeds.Each machine with Java capability in a Condor pool will execute a benchmark
to determine its speed. The benchmark is taken when Condor isstarted on the machine, and it
uses the SciMark2 (http://math.nist.gov/scimark2) benchmark. The result of the benchmark is
held as an attribute within the machine ClassAd. The attribute is calledJavaMFlops . Jobs
that are run under the Java universe (as all other Condor jobs) may prefer or require a machine
of a specific speed by settingrank or requirements in the submit description file. As an
example, to execute only on machines of a minimum speed:

requirements = (JavaMFlops>4.5)

JVM options. Options to the JVM itself are specified in the submit description file:

java_vm_args = -DMyProperty=Value -verbose:gc -Xmx1024m

These options are those which go after the java command, but before the user’s main class. Do
not use this to set the classpath, as Condor handles that itself. Setting these options is useful
for setting system properties, system assertions and debugging certain kinds of problems.

2.8.3 Chirp I/O

If a job has more sophisticated I/O requirements that cannotbe met by Condor’s file transfer mecha-
nism, then the Chirp facility may provide a solution. Chirp has two advantages over simple, whole-
file transfers. First, it permits the input files to be decidedupon at run-time rather than submit time,
and second, it permits partial-file I/O with results than canbe seen as the program executes. How-
ever, small changes to the program are required in order to take advantage of Chirp. Depending on
the style of the program, use either Chirp I/O streams or UNIX-like I/O functions.

Chirp I/O streams are the easiest way to get started. Modify the program to use the ob-
jects ChirpInputStream andChirpOutputStream instead ofFileInputStream and
FileOutputStream . These classes are completely documented in the Condor Software Devel-
oper’s Kit (SDK). Here is a simple code example:

import java.io.*;
import edu.wisc.cs.condor.chirp.*;

public class TestChirp {

public static void main(String args[]) {

try {
BufferedReader in = new BufferedReader(

new InputStreamReader(
new ChirpInputStream("input")));

Condor Version 7.7.6 Manual

http://math.nist.gov/scimark2

2.8. Java Applications 59

PrintWriter out = new PrintWriter(
new OutputStreamWriter(

new ChirpOutputStream("output")));

while(true) {
String line = in.readLine();
if(line==null) break;
out.println(line);

}
out.close();

} catch(IOException e) {
System.out.println(e);

}
}

}

To perform UNIX-like I/O with Chirp, create aChirpClient object. This object supports
familiar operations such asopen , read , write , andclose . Exhaustive detail of the methods
may be found in the Condor SDK, but here is a brief example:

import java.io.*;
import edu.wisc.cs.condor.chirp.*;

public class TestChirp {

public static void main(String args[]) {

try {
ChirpClient client = new ChirpClient();
String message = "Hello, world!\n";
byte [] buffer = message.getBytes();

// Note that we should check that actual==length.
// However, skip it for clarity.

int fd = client.open("output","wct",0777);
int actual = client.write(fd,buffer,0,buffer.length);
client.close(fd);

client.rename("output","output.new");
client.unlink("output.new");

} catch(IOException e) {
System.out.println(e);

}

Condor Version 7.7.6 Manual

2.9. Parallel Applications (Including MPI Applications) 60

}
}

Regardless of which I/O style, the Chirp library must be specified and included with the job.
The Chirp JAR (Chirp.jar) is found in thelib directory of the Condor installation. Copy it into
your working directory in order to compile the program aftermodification to use Chirp I/O.

% condor_config_val LIB
/usr/local/condor/lib
% cp /usr/local/condor/lib/Chirp.jar .

Rebuild the program with the Chirp JAR file in the class path.

% javac -classpath Chirp.jar:. TestChirp.java

The Chirp JAR file must be specified in the submit description file. Here is an example submit
description file that works for both of the given test programs:

universe = java
executable = TestChirp.class
arguments = TestChirp
jar_files = Chirp.jar
+WantIOProxy = True
queue

2.9 Parallel Applications (Including MPI Applications)

Condor’s Parallel universe supports a wide variety of parallel programming environments, and it
encompasses the execution of MPI jobs. It supports jobs which need to be co-scheduled. A co-
scheduled job has more than one process that must be running at the same time on different machines
to work correctly. The parallel universe supersedes the mpiuniverse. The mpi universe eventually
will be removed from Condor.

2.9.1 Prerequisites to Running Parallel Jobs

Condor must be configured such that resources (machines) running parallel jobs are dedicated. Note
thatdedicatedhas a very specific meaning in Condor: dedicated machines never vacate their exe-
cuting Condor jobs, should the machine’s interactive ownerreturn. This is implemented by running
a single dedicated scheduler process on a machine in the pool, which becomes the single machine
from which parallel universe jobs are submitted. Once the dedicated scheduler claims a dedicated

Condor Version 7.7.6 Manual

2.9. Parallel Applications (Including MPI Applications) 61

machine for use, the dedicated scheduler will try to use thatmachine to satisfy the requirements of
the queue of parallel universe or MPI universe jobs. If the dedicated scheduler cannot use a machine
for a configurable amount of time, it will release its claim onthe machine, making it available again
for the opportunistic scheduler.

Since Condor does not ordinarily run this way, (Condor usually uses opportunistic scheduling),
dedicated machines must be specially configured. Section 3.12.9 of the Administrator’s Manual
describes the necessary configuration and provides detailed examples.

To simplify the scheduling of dedicated resources, a singlemachine becomes the scheduler of
dedicated resources. This leads to a further restriction that jobs submitted to execute under the
parallel universe must be submitted from the machine actingas the dedicated scheduler.

2.9.2 Parallel Job Submission

Given correct configuration, parallel universe jobs may be submitted from the machine running
the dedicated scheduler. The dedicated scheduler claims machines for the parallel universe job,
and invokes the job when the correct number of machines of thecorrect platform (architecture and
operating system) are claimed. Note that the job likely consists of more than one process, each to
be executed on a separate machine. The first process (machine) invoked is treated different than the
others. When this first process exits, Condor shuts down all the others, even if they have not yet
completed their execution.

An overly simplified submit description file for a parallel universe job appears as

###
submit description file for a parallel program
###
universe = parallel
executable = /bin/sleep
arguments = 30
machine_count = 8
queue

This job specifies theuniverse asparallel, letting Condor know that dedicated resources are
required. Themachine_countcommand identifies the number of machines required by the job.

When submitted, the dedicated scheduler allocates eight machines with the same architecture
and operating system as the submit machine. It waits until all eight machines are available be-
fore starting the job. When all the machines are ready, it invokes the/bin/sleepcommand, with a
command line argument of 30 on all eight machines more or lesssimultaneously.

The addition of several related OpSys attributes means thatyou may specify versions of Linux
operating systems to run on in a heterogeneous pool.

If your pool consists of Linux machines installed with the RedHat and Ubuntu operating systems,

Condor Version 7.7.6 Manual

2.9. Parallel Applications (Including MPI Applications) 62

and you’d like to run on only the RedHat machines, use the following example.

###
submit description file for a parallel program targeting RedHat machines
###
universe = parallel
executable = /bin/sleep
arguments = 30
machine_count = 8
requirements = (OpSysName == "RedHat")
queue

In addition, you may narrow down your machine selection to the version you’d like to run on
using the OpSysAndVer attribute.

###
submit description file for a parallel program targeting RedHat 6 machines
###
universe = parallel
executable = /bin/sleep
arguments = 30
machine_count = 8
requirements = (OpSysAndVer == "RedHat6")
queue

A more realistic example of a parallel job utilizes other features.

######################################
Parallel example submit description file
######################################
universe = parallel
executable = /bin/cat
log = logfile
input = infile.$(NODE)
output = outfile.$(NODE)
error = errfile.$(NODE)
machine_count = 4
queue

The specification of theinput , output, anderror files utilize the predefined macro$(NODE) .
See thecondor_submitmanual page on page 873 for further description of predefinedmacros. The
$(NODE) macro is given a unique value as processes are assigned to machines. The$(NODE)
value is fixed for the entire length of the job. It can therefore be used to identify individual aspects

Condor Version 7.7.6 Manual

2.9. Parallel Applications (Including MPI Applications) 63

of the computation. In this example, it is used to utilize andassign unique names to input and output
files.

This example presumes a shared file system across all the machines claimed for the parallel
universe job. Where no shared file system is either availableor guaranteed, use Condor’s file transfer
mechanism, as described in section 2.5.4 on page 25. This example uses the file transfer mechanism.

######################################
Parallel example submit description file
without using a shared file system
######################################
universe = parallel
executable = /bin/cat
log = logfile
input = infile.$(NODE)
output = outfile.$(NODE)
error = errfile.$(NODE)
machine_count = 4
should_transfer_files = yes
when_to_transfer_output = on_exit
queue

The job requires exactly four machines, and queues four processes. Each of these processes
requires a correctly named input file, and produces an outputfile.

2.9.3 Parallel Jobs with Separate Requirements

The different machines executing for a parallel universe job may specify different machine require-
ments. A common example requires that the head node execute on a specific machine. It may be
also useful for debugging purposes.

Consider the following example.

######################################
Example submit description file
with multiple procs
######################################
universe = parallel
executable = example
machine_count = 1
requirements = (machine == "machine1")
queue

requirements = (machine =!= "machine1")

Condor Version 7.7.6 Manual

2.9. Parallel Applications (Including MPI Applications) 64

machine_count = 3
queue

The dedicated scheduler allocates four machines. All four executing jobs have the same value for
$(Cluster) macro. The$(Process) macro takes on two values; the value 0 will be assigned
for the single executable that must be executed on machine1,and the value 1 will be assigned for
the other three that must be executed anywhere but on machine1.

Carefully consider the ordering and nature of multiple setsof requirements in the same submit
description file. The scheduler matches jobs to machines based on the ordering within the submit
description file. Mutually exclusive requirements eliminate the dependence on ordering within the
submit description file. Without mutually exclusive requirements, the scheduler may be unable
to schedule the job. The ordering within the submit description file may preclude the scheduler
considering the specific allocation that could satisfy the requirements.

2.9.4 MPI Applications Within Condor’s Parallel Universe

MPI applications utilize a single executable that is invoked in order to execute in parallel on one or
more machines. Condor’s parallel universe provides the environment within which this executable is
executed in parallel. However, the various implementations of MPI (for example, LAM or MPICH)
require further framework items within a system-wide environment. Condor supports this necessary
framework through user visible and modifiable scripts. An MPI implementation-dependent script
becomes the Condor job. The script sets up the extra, necessary framework, and then invokes the
MPI application’s executable.

Condor provides these scripts in the$(RELEASE_DIR)/etc/examples directory. The
script for the LAM implementation islamscript . The script for the MPICH implementation is
mp1script . Therefore, a Condor submit description file for these implementations would appear
similar to:

######################################
Example submit description file
for MPICH 1 MPI
works with MPICH 1.2.4, 1.2.5 and 1.2.6
######################################
universe = parallel
executable = mp1script
arguments = my_mpich_linked_executable arg1 arg2
machine_count = 4
should_transfer_files = yes
when_to_transfer_output = on_exit
transfer_input_files = my_mpich_linked_executable
queue

or

Condor Version 7.7.6 Manual

2.9. Parallel Applications (Including MPI Applications) 65

######################################
Example submit description file
for LAM MPI
######################################
universe = parallel
executable = lamscript
arguments = my_lam_linked_executable arg1 arg2
machine_count = 4
should_transfer_files = yes
when_to_transfer_output = on_exit
transfer_input_files = my_lam_linked_executable
queue

Theexecutableis the MPI implementation-dependent script. The first argument to the script is
the MPI application’s executable. Further arguments to thescript are the MPI application’s argu-
ments. Condor must transfer this executable; do this with the transfer_input_files command.

For other implementations of MPI, copy and modify one of the given scripts. Most MPI im-
plementations require two system-wide prerequisites. Thefirst prerequisite is the ability to run a
command on a remote machine without being prompted for a password. sshis commonly used, but
other commands may be used. The second prerequisite is an ASCII file containing the list of ma-
chines that may utilizessh. These common prerequisites are implemented in a further script called
sshd.sh . sshd.sh generates ssh keys (to enable password-less remote execution), and starts an
sshddaemon. The machine name and MPI rank are given to the submit machine.

The sshd.shscript requires the definition of two Condor configuration variables. Configura-
tion variableCONDOR_SSHDis an absolute path to an implementation ofsshd. sshd.shhas been
tested withopensshversion 3.9, but should work with more recent versions. Configuration variable
CONDOR_SSH_KEYGENpoints to the correspondingssh-keygenexecutable.

Scriptslamscriptandmp1scripteach have their own idiosyncrasies. Inmp1script, the PATH
to the MPICH installation must be set. The shell variable MPDIR indicates its proper value. This
directory contains the MPICHmpirunexecutable. For LAM, there is a similar path setting, but it is
calledLAMDIRin thelamscriptscript. In addition, this path must be part of the path set in the user’s
.cshrc script. As of this writing, the LAM implementation does not work if the user’s login shell
is the Bourne or compatible shell.

These MPI jobs operate as all parallel universe jobs do. The default policy is that when the first
node exits, the whole job is considered done, and Condor kills all other running nodes in that parallel
job. Alternatively, a parallel universe job that sets the attribute

+ParallelShutdownPolicy = "WAIT_FOR_ALL"

in its submit description file changes the policy, such that Condor will wait until every node in the
parallel job has completed to consider the job finished.

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 66

2.10 DAGMan Applications

A directed acyclic graph (DAG) can be used to represent a set of computations where the input,
output, or execution of one or more computations is dependent on one or more other computations.
The computations are nodes (vertices) in the graph, and the edges (arcs) identify the dependencies.
Condor finds machines for the execution of programs, but it does not schedule programs based on de-
pendencies. The Directed Acyclic Graph Manager (DAGMan) isa meta-scheduler for the execution
of programs (computations). DAGMan submits the programs toCondor in an order represented by a
DAG and processes the results. A DAG input file describes the DAG, and further submit description
file(s) are used by DAGMan when submitting programs to run under Condor.

DAGMan is itself executed as a scheduler universe job withinCondor. As DAGMan submits
programs, it monitors log file(s) to enforce the ordering required within the DAG. DAGMan is also
responsible for scheduling, recovery, and reporting on theset of programs submitted to Condor.

2.10.1 DAGMan Terminology

To DAGMan, a node in a DAG may encompass more than a single program submitted to run under
Condor. Figure 2.1 illustrates the elements of a node.

cluster number)

[optional]

PRE script

POST script

[optional]

Condor job(s)

or Stork job

(with a single

Figure 2.1: One Node within a DAG

At one time, the number of Condor jobs per node was restrictedto one. This restriction is
now relaxed such that all Condor jobs within a node must sharea single cluster number. See the
condor_submitmanual page for a further definition of a cluster. A limitation exists such that all jobs

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 67

within the single cluster must use the same log file. Separatenodes within a DAG may use different
log files.

As DAGMan schedules and submits jobs within nodes to Condor,these jobs are defined to
succeed or fail based on their return values. This success orfailure is propagated in well-defined
ways to the level of a node within a DAG. Further progression of computation (towards completing
the DAG) may be defined based upon the success or failure of oneor more nodes.

The failure of a single job within a cluster of multiple jobs (within a single node) causes the entire
cluster of jobs to fail. Any other jobs within the failed cluster of jobs are immediately removed. Each
node within a DAG is further defined to succeed or fail, based upon the return values of a PRE script,
the job(s) within the cluster, and/or a POST script.

2.10.2 Input File Describing the DAG: the JOB, DATA, SCRIPT and PAR-
ENT...CHILD Key Words

The input file used by DAGMan is called a DAG input file. All items are optional, but there must be
at least oneJOBor DATA item.

Comments may be placed in the DAG input file. The pound character (#) as the first character
on a line identifies the line as a comment. Comments do not spanlines.

A simple diamond-shaped DAG, as shown in Figure 2.2 is presented as a starting point for
examples. This DAG contains 4 nodes.

A

B C

D

Figure 2.2: Diamond DAG

A very simple DAG input file for this diamond-shaped DAG is

File name: diamond.dag
#
JOB A A.condor
JOB B B.condor
JOB C C.condor
JOB D D.condor
PARENT A CHILD B C
PARENT B C CHILD D

A set of basic key words appearing in a DAG input file is described below.

• JOB

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 68

TheJOBkey word specifies a job to be managed by Condor. The syntax used for eachJOB
entry is

JOB JobName SubmitDescriptionFileName[DIR directory] [NOOP] [DONE]

A JOB entry maps aJobNameto a Condor submit description file. TheJobNameuniquely
identifies nodes within the DAGMan input file and in output messages. Note that the name
for each node within the DAG must be unique.

The key wordsJOB, DIR, NOOP, andDONEare not case sensitive. Therefore,DONE, Done,
anddoneare all equivalent. The values defined forJobNameandSubmitDescriptionFileName
are case sensitive, as file names in the Unix file system are case sensitive. TheJobNamecan
be any string that contains no white space, except for the strings PARENTandCHILD (in
upper, lower, or mixed case).

Note thatDIR, NOOP, andDONE, if used, must appear in the order shown above.

TheDIR option specifies a working directory for this node, from which the Condor job will be
submitted, and from which aPREand/orPOSTscript will be run. Note that a DAG containing
DIR specifications cannot be run in conjunction with the-usedagdircommand-line argument
to condor_submit_dag. A rescue DAG generated by a DAG run with the-usedagdirargument
will containDIR specifications, so the-usedagdirargument is automatically disregarded when
running a rescue DAG.

The optionalNOOPkeyword identifies that the Condor job within the node is not to be sub-
mitted to Condor. This optimization is useful in cases such as debugging a complex DAG
structure, where some of the individual jobs are long-running. For this debugging of struc-
ture, some jobs are marked asNOOPs, and the DAG is initially run to verify that the control
flow through the DAG is correct. TheNOOPkeywords are then removed before submitting
the DAG. Any PRE and POST scripts for jobs specified withNOOP areexecuted; to avoid
running the PRE and POST scripts, comment them out. The job that is not submitted to Con-
dor is given a return value that indicates success, such thatthe node may also succeed. Return
values of any PRE and POST scripts may still cause the node to fail. Even though the job
specified withNOOP is not submitted, its submit description file must exist; thelog file for
the job is used, because DAGMan generates dummy submission and termination events for
the job.

The optionalDONE keyword identifies a node as being already completed. This ismainly
used by rescue DAGs generated by DAGMan itself, in the event of a failure to complete the
workflow. Nodes with theDONE keyword are not executed when the rescue DAG is run,
allowing the workflow to pick up from the previous endpoint. Users should generally not use
theDONEkeyword. TheNOOPkeyword is more flexible in avoiding the execution of a job
within a node. Note that, for any node markedDONE in a DAG, all of its parents must also be
markedDONE; otherwise, a fatal error will result. TheDONE keyword applies to the entire
node. A node marked withDONE will not have a PRE or POST script run, and the Condor
job will not be submitted.

• DATA

The DATA key word specifies a job to be managed by the Stork data placement
server. Stork software is provided by the Stork project. Please refer to their website:
http://www.cct.lsu.edu/ kosar/stork/index.php.

Condor Version 7.7.6 Manual

http://www.cct.lsu.edu/~kosar/stork/index.php

2.10. DAGMan Applications 69

The syntax used for eachDATAentry is

DATA JobName SubmitDescriptionFileName[DIR directory] [NOOP] [DONE]

A DATAentry maps aJobNameto a Stork submit description file. In all other respects, the
DATAkey word is identical to theJOBkey word.

The keywordsDIR, NOOPandDONE follow the same rules and restrictions, and they have
the same effect forDATA nodes as they do forJOB nodes.

Here is an example of a simple DAG that stages in data using Stork, processes the data using
Condor, and stages the processed data out using Stork. Depending upon the implementation,
multiple data jobs to stage in data or to stage out data may be run in parallel.

DATA STAGE_IN1 stage_in1.stork
DATA STAGE_IN2 stage_in2.stork
JOB PROCESS process.condor
DATA STAGE_OUT1 stage_out1.stork
DATA STAGE_OUT2 stage_out2.stork
PARENT STAGE_IN1 STAGE_IN2 CHILD PROCESS
PARENT PROCESS CHILD STAGE_OUT1 STAGE_OUT2

• SCRIPT

TheSCRIPTkey word specifies processing that is done either before a jobwithin the DAG
is submitted to Condor or Stork for execution or after a job within the DAG completes its
execution. Processing done before a job is submitted to Condor or Stork is called aPRE
script. Processing done after a job completes its executionunder Condor or Stork is called
a POSTscript. A node in the DAG is comprised of the job together withPREand/orPOST
scripts.

PREandPOSTscript lines within the DAG input file use the syntax:

SCRIPT PRE JobName ExecutableName[arguments]

SCRIPT POSTJobName ExecutableName[arguments]

The SCRIPTkey word identifies the type of line within the DAG input file. The PRE or
POSTkey word specifies the relative timing of when the script is tobe run. TheJobName
specifies the node to which the script is attached. TheExecutableNamespecifies the script
to be executed, and it may be followed by any command line arguments to that script.
The ExecutableNameand optionalargumentsare case sensitive; they have their case pre-
served.Note that neither the ExecutableNamenor the individual arguments within the
argumentsstring can contain spaces.

Scripts are optional for each job, and any scripts are executed on the machine from which the
DAG is submitted; this is not necessarily the same machine upon which the node’s Condor
or Stork job is run. Further, a single cluster of Condor jobs may be spread across several
machines.

A PRE script is commonly used to place files in a staging area for the cluster of jobs to use. A
POST script is commonly used to clean up or remove files once the cluster of jobs is finished
running. An example uses PRE and POST scripts to stage files that are stored on tape. The
PRE script reads compressed input files from the tape drive, and it uncompresses them, placing

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 70

the input files in the current directory. The cluster of Condor jobs reads these input files and
produces output files. The POST script compresses the outputfiles, writes them out to the
tape, and then removes both the staged input files and the output files.

DAGMan takes note of the exit value of the scripts as well as the job or jobs within the cluster.
A script with an exit value not equal to 0 fails. If the PRE script fails, then the job does not run,
but the POST script does run. The exit value of the POST scriptdetermines the success of the
job. If this behavior is not desired, the configuration variableDAGMAN_ALWAYS_RUN_POST
should be set toFalse ; thencondor_dagmanwill not run the POST script if the PRE script
fails—the node will instead simply fail, with neither the job nor the POST script being exe-
cuted. If the PRE script succeeds, the Condor or Stork job is submitted. If the job or any one
of the jobs within the single cluster fails and there is no POST script, the DAG node is marked
as failed. An exit value not equal to 0 indicates program failure, except as indicated by the
PRE_SKIPcommand: if a PRE script exits with the PRE_SKIP value, then the node succeeds
and the job and the POST script are both skipped. It is therefore important that a successful
program return the exit value 0. It is good practice to alwaysexplicitly specify a return value
in the PRE script, returning 0 in the case of success. Otherwise, the return code of the last
completed process is returned, which can lead to unexpectedresults.

If the job fails and there is a POST script, node failure is determined by the exit value of the
POST script. A failing value from the POST script marks the node as failed. A succeeding
value from the POST script (even with a failed job) marks the node as successful. Therefore,
the POST script may need to consider the return value from thejob.

By default, the POST script is run regardless of the job’s return value. As for the PRE script,
it is recommended to specify return values explicitly in thePOST script. Otherwise the return
code of the last completed process is returned, which can lead to unexpected results.

A node not marked as failed at any point is successful. Table 2.1 summarizes the success or
failure of an entire node for all possibilities. AnSstands for success, anF stands for failure,
and the dash character (-) identifies that there is no script. The asterisk (∗) indicates that the
POST script is run, unlessDAGMAN_ALWAYS_RUN_POSTis False , in which case the node
will simply fail, as described above.

PRE - - F F S S - - - - S S S S
JOB S F not run not run S F S S F F S F F S

POST - - S∗ F∗ - - S F S F S S F F

node S F S∗ F S F S F S F S S F F

Table 2.1: Node success or failure definition

The behavior of DAGMan with respect to node success or failure can be changed with the
addition of aPRE_SKIPcommand. APRE_SKIPline within the DAG input file uses the
syntax:

PRE_SKIP JobName non-zero-exit-code

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 71

A DAG input file with this command uses the exit value from the PRE script of the node
specified byJobName. If the PRE script terminates with the exit codenon-zero-exit-code,
then the remainder of the node is skipped entirely. Both the job associated with the node and
anyPOSTscript will not be executed, and the node will be marked as successful.

Eight variables ($JOB, $JOBID , $RETRY, $MAX_RETRIES, $RETURN,
$PRE_SCRIPT_RETURN, $DAG_STATUSand$FAILED_COUNT) can be used within the
DAG input file as arguments passed to a PRE or POST script.

The variable$JOB evaluates to the (case sensitive) string defined forJobName.

The variable$RETRYevaluates to an integer value set to 0 the first time a node is run, and
is incremented each time the node is retried. See section 2.10.7 for the description of how to
cause nodes to be retried.

The variable$MAX_RETRIESevaluates to an integer value set to the maximum number of
retries for the node. See section 2.10.7 for the descriptionof how to cause nodes to be retried.
If no retries are set for the node,$MAX_RETRIESwill be set to 0.

For use as an argument to POST scripts only, the variable$JOBID evaluates to a repre-
sentation of the Condor job ID of the node job. It is the value of the job ClassAd attribute
ClusterId , followed by a period, and then followed by the value of the job ClassAd at-
tributeProcId . An example of a job ID might be 1234.0. For nodes with multiple jobs in
the same cluster, theProcId value is the one of the last job within the cluster.

For use as an argument to POST scripts only, the$RETURNvariable evaluates to the return
value of the Condor or Stork job, if there is a single job within a cluster. With multiple jobs
within the same cluster, there are two cases to consider. In the first case, all jobs within the
cluster are successful; the value of$RETURNwill be 0, indicating success. In the second case,
one or more jobs from the cluster fail. Whencondor_dagmansees the first terminated event
for a job that failed, it assigns that job’s return value as the value of$RETURN, and attempts to
remove all remaining jobs within the cluster. Therefore, ifmultiple jobs in the cluster fail with
different exit codes, a race condition determines which exit code gets assigned to$RETURN.

A job that dies due to a signal is reported with a$RETURNvalue representing the additive
inverse of the signal number. For example, SIGKILL (signal 9) is reported as -9. A job whose
batch system submission fails is reported as -1001. A job that is externally removed from the
batch system queue (by something other thancondor_dagman) is reported as -1002.

For use as an argument to POST scripts only, the$PRE_SCRIPT_RETURNvariable evaluates
to the return value of the PRE script of a node, if there is one.If there is no PRE script, this
value will be−1. If the node job was skipped because of failure of the PRE script, the value
of $RETURNwill be −1004 and the value of$PRE_SCRIPT_RETURNwill be the exit value
of the PRE script; the POST script can use this to see if the PREscript exited with an error
condition, and assign success or failure to the node, as appropriate.

$DAG_STATUSand$FAILED_COUNTare documented in section 2.10.7 below.

As an example, consider the diamond-shaped DAG example. Suppose the PRE script ex-
pands a compressed file needed as input to nodes B and C. The fileis named of the form
JobName.gz . The DAG input file becomes

File name: diamond.dag

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 72

#
JOB A A.condor
JOB B B.condor
JOB C C.condor
JOB D D.condor
SCRIPT PRE B pre.csh $JOB .gz
SCRIPT PRE C pre.csh $JOB .gz
PARENT A CHILD B C
PARENT B C CHILD D

The scriptpre.csh uses the arguments to form the file name of the compressed file:

#!/bin/csh
gunzip $argv[1]$argv[2]

• PARENT . . .CHILD

The PARENTandCHILD key words specify the dependencies within the DAG. Nodes are
parents and/or children within the DAG. A parent node must becompleted successfully before
any of its children may be started. A child node may only be started once all its parents have
successfully completed.

The syntax of a dependency line within the DAG input file:

PARENT ParentJobName. . . CHILD ChildJobName. . .

ThePARENTkey word is followed by one or moreParentJobNames. TheCHILD key word is
followed by one or moreChildJobNames. Each child job depends on every parent job within
the line. A single line in the input file can specify the dependencies from one or more parents
to one or more children. As an example, the line

PARENT p1 p2 CHILD c1 c2

produces four dependencies:

1. p1 to c1

2. p1 to c2

3. p2 to c1

4. p2 to c2

2.10.3 Submit Description File Contents and Usage of Log Files

Each node in a DAG may use a unique submit description file. Onekey limitation is that each Condor
submit description file must submit jobs described by a single cluster number. At the present time
DAGMan cannot deal with a submit file producing multiple job clusters.

DAGMan enforces the dependencies within a DAG using the events recorded in the log file(s)
produced by job submission to Condor.At one time, DAGMan required that all jobs within all nodes

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 73

specify the same, single log file. This is no longer the case. However, if the DAG utilizes a large
number of separate log files, performance may suffer. Therefore, it is better to have fewer, or even
only a single log file. Unfortunately, each Stork job currently requires a separate log file.

As of Condor version 7.3.2, DAGMan’s handling of log files significantly changed to improve
resource usage and efficiency. Prior to Condor version 7.3.2, DAGMan assembled a list of all rel-
evant log files at start up, by looking at all of the submit description files for all of the nodes. It
kept the log files open for the duration of the DAG. Beginning with Condor version 7.3.2, DAGMan
delays opening and using the submit description file until just before it is going to submit the job. At
that point, DAGMan reads the submit description file to discover the job’s log file. And, DAGMan
monitors only the log files that are relevant to the jobs currently queued, or associated with nodes
for which a POST script is running.

The advantages of the new "lazy log file evaluation" scheme are:

• Thecondor_dagmanexecutable uses fewer file descriptors.

• It is much easier to have one node of a DAG produce the submit description file for a descen-
dant node in the DAG.

There is one known disadvantage of the lazy log file evaluation scheme:

• Because the log files are internally identified by inode numbers, it is possible that errors may
arise where log files for a given DAG are spread across more than one device. This permits
two unique files to have the same inode number. We hope to have this problem fixed soon.

Another new feature in Condor version 7.3.2 was the use of default node job user logs. Previ-
ously, it was a fatal error if the submit description file for anode job did not specify a log file. Starting
with Condor version 7.3.2, DAGMan specifies a default user log file for any job that does not specify
a log file. The file used as the default node log is controlled bytheDAGMAN_DEFAULT_NODE_LOG
configuration variable. A complete description is at section 3.3.25. Nodes specifying a log file and
other nodes using the default log file can be mixed in a single DAG.

Log files for node jobs should not be placed on NFS. NFS file locking is not reliable, occasion-
ally resulting in simultaneous acquisition of locks on a single log file by both thecondor_schedd
daemon and thecondor_dagmanjob. Partially written events by thecondor_scheddcause errors for
condor_dagman.

An additional restriction applies to the submit description file commandLog specific to a Condor
job within a DAG node.This command may not be defined in such a way that it uses macros. Using
a macro would violate the restriction that there be exactly one log file specified for the potentially
multiple jobs within a single cluster.

Here is a modified version of the DAG input file for the diamond-shaped DAG. The modification
has each node use the same submit description file.

File name: diamond.dag

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 74

#
JOB A diamond_job.condor
JOB B diamond_job.condor
JOB C diamond_job.condor
JOB D diamond_job.condor
PARENT A CHILD B C
PARENT B C CHILD D

Here is the single Condor submit description file for this DAG:

File name: diamond_job.condor
#
executable = /path/diamond.exe
output = diamond.out.$(cluster)
error = diamond.err.$(cluster)
log = diamond_condor.log
universe = vanilla
notification = NEVER
queue

This example uses the same Condor submit description file forall the jobs in the DAG. This
implies that each node within the DAG runs the same job. The$(cluster) macro produces
unique file names for each job’s output. As the Condor job within each node causes a separate job
submission, each has a unique cluster number.

Notification is set toNEVERin this example. This tells Condor not to send e-mail about the
completion of a job submitted to Condor. For DAGs with many nodes, this reduces or eliminates
excessive numbers of e-mails.

The job ClassAd attributeDAGParentNodeNames is also available for use within the submit
description file. It defines a comma separated list of eachJobNamewhich is a parent node of this
job’s node. This attribute may be used in theargumentscommand for all but scheduler universe
jobs. For example, if the job has two parents, withJobNames B and C, the submit description file
command

arguments = $$([DAGParentNodeNames])

will pass the string"B,C" as the command line argument when invoking the job.

2.10.4 DAG Submission

A DAG is submitted using the programcondor_submit_dag. See the manual page 909 for complete
details. A simple submission has the syntax

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 75

condor_submit_dag DAGInputFileName

The diamond-shaped DAG example may be submitted with

condor_submit_dag diamond.dag

In order to guarantee recoverability, the DAGMan program itself is run as a Condor job. As such,
it needs a submit description file.condor_submit_dagproduces this needed submit description file,
naming it by appending.condor.sub to theDAGInputFileName. This submit description file
may be edited if the DAG is submitted with

condor_submit_dag -no_submit diamond.dag

causingcondor_submit_dagto generate the submit description file, but not submit DAGMan to
Condor. To submit the DAG, once the submit description file isedited, use

condor_submit diamond.dag.condor.sub

An optional argument tocondor_submit_dag, -maxjobs, is used to specify the maximum number
of batch jobs that DAGMan may submit at one time. It is commonly used when there is a limited
amount of input file staging capacity. As a specific example, consider a case where each job will
require 4 Mbytes of input files, and the jobs will run in a directory with a volume of 100 Mbytes
of free space. Using the argument-maxjobs 25guarantees that a maximum of 25 jobs, using a
maximum of 100 Mbytes of space, will be submitted to Condor and/or Stork at one time.

While the-maxjobsargument is used to limit the number of batch system jobs submitted at one
time, it may be desirable to limit the number of scripts running at one time. The optional-maxpre
argument limits the number of PRE scripts that may be runningat one time, while the optional
-maxpostargument limits the number of POST scripts that may be running at one time.

An optional argument tocondor_submit_dag, -maxidle, is used to limit the number of idle jobs
within a given DAG. When the number of idle node jobs in the DAGreaches the specified value,
condor_dagmanwill stop submitting jobs, even if there are ready nodes in the DAG. Once some of
the idle jobs start to run,condor_dagmanwill resume submitting jobs. Note that this parameter only
limits the number of idle jobs submitted by a given instance of condor_dagman. Idle jobs submitted
by other sources (including othercondor_dagmanruns) are ignored.

2.10.5 Job Monitoring, Job Failure, and Job Removal

After submission, the progress of the DAG can be monitored bylooking at the log file(s), ob-
serving the e-mail that job submission to Condor causes, or by usingcondor_q -dag. There is a
large amount of information in an extra file. The name of this extra file is produced by appending

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 76

.dagman.out to DAGInputFileName; for example, if the DAG file isdiamond.dag , this ex-
tra file is diamond.dag.dagman.out . If this extra file grows too large, limit its size with the
MAX_DAGMAN_LOGconfiguration macro (see section 3.3.4).

If you have some kind of problem in your DAGMan run, please save the corresponding
dagman.out file; it is the most important debugging tool for DAGMan. As ofversion 6.8.2,
thedagman.out is appended to, rather than overwritten, with each new DAGMan run.

condor_submit_dagattempts to check the DAG input file. If a problem is detected,con-
dor_submit_dagprints out an error message and aborts.

To remove an entire DAG, consisting of DAGMan plus any jobs submitted to Condor or Stork,
remove the DAGMan job running under Condor.condor_qwill list the job number. Use the job
number to remove the job, for example

% condor_q
-- Submitter: turunmaa.cs.wisc.edu : <128.105.175.125:3 6165> : turunmaa.cs.wisc.edu

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
9.0 smoler 10/12 11:47 0+00:01:32 R 0 8.7 condor_dagman -f -

11.0 smoler 10/12 11:48 0+00:00:00 I 0 3.6 B.out
12.0 smoler 10/12 11:48 0+00:00:00 I 0 3.6 C.out

3 jobs; 2 idle, 1 running, 0 held

% condor_rm 9.0

Before the DAGMan job stops running, it usescondor_rmto remove any jobs within the DAG
that are running.

In the case where a machine is scheduled to go down, DAGMan will clean up memory and exit.
However, it will leave any submitted jobs in Condor’s queue.

2.10.6 Suspending a Running DAG

It may be desired to temporarily suspend a running DAG. For example, the load may be high on the
submit machine, and therefore it is desired to prevent DAGMan from submitting any more jobs until
the load goes down. There are two ways to suspend (and resume)a running DAG.

• Usecondor_hold/condor_releaseon thecondor_dagmanjob.

After placing thecondor_dagmanjob on hold, no new node jobs will be submitted, and no
PRE or POST scripts will be run. Any node jobs already in the Condor queue will continue
undisturbed. If thecondor_dagmanjob is left on hold, it will remain in the Condor queue after
all of the currently running node jobs are finished. To resumethe DAG, usecondor_release
on thecondor_dagmanjob.

Note that while thecondor_dagmanjob is on hold, no updates will be made to the
dagman.out file.

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 77

• Use a DAG halt file.

The second way of suspending a DAG uses the existence of a specially-named file to change
the state of the DAG. When in this halted state, no PRE scriptswill be run, and no node jobs
will be submitted. Running node jobs will continue undisturbed. A halted DAG will still run
POST scripts, and it will still update thedagman.out file. This differs from behavior of a
DAG that is held. Furthermore, a halted DAG will not remain inthe queue indefinitely; when
all of the running node jobs have finished, DAGMan will createa Rescue DAG and exit.

To resume a halted DAG, remove the halt file.

The specially-named file must be placed in the same directoryas the DAG input file. The
naming is the same as the DAG input file concatenated with the string .halt . For example,
if the DAG input file istest1.dag , thentest1.dag.halt will be the required name of
the halt file.

As any DAG is first submitted withcondor_submit_dag, a check is made for a halt file. If one
exists, it is removed.

2.10.7 Advanced Features of DAGMan

Retrying Failed Nodes or Stopping the Entire DAG

TheRETRYkey word provides a way to retry failed nodes. The use of retryis optional. The syntax
for retry is

RETRY JobName NumberOfRetries[UNLESS-EXIT value]

whereJobNameidentifies the node.NumberOfRetriesis an integer number of times to retry the
node after failure. The implied number of retries for any node is 0, the same as not having a retry
line in the file. Retry is implemented on nodes, not parts of a node.

The diamond-shaped DAG example may be modified to retry node C:

File name: diamond.dag
#
JOB A A.condor
JOB B B.condor
JOB C C.condor
JOB D D.condor
PARENT A CHILD B C
PARENT B C CHILD D
Retry C 3

If node C is marked as failed (for any reason), then it is started over as a first retry. The node
will be tried a second and third time, if it continues to fail.If the node is marked as successful, then
further retries do not occur.

Retry of a node may be short circuited using the optional key word UNLESS-EXIT(followed
by an integer exit value). If the node exits with the specifiedinteger exit value, then no further

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 78

processing will be done on the node.

The variable$RETRYevaluates to an integer value set to 0 first time a node is run, and is
incremented each time for each time the node is retried. The variable$MAX_RETRIESis the value
set forNumberOfRetries.

TheABORT-DAG-ONkey word provides a way to abort the entire DAG if a given node returns
a specific exit code. The syntax forABORT-DAG-ONis

ABORT-DAG-ON JobName AbortExitValue[RETURN DAGReturnValue]

If the node specified byJobNamereturns the specifiedAbortExitValue, the DAG is immediately
aborted. A DAG abort differs from a node failure, in that a DAGabort causes all nodes within
the DAG to be stopped immediately. This includes removing the jobs in nodes that are currently
running. A node failure allows the DAG to continue running, until no more progress can be made
due to dependencies.

An abort overrides node retries. If a node returns the abort exit value, the DAG is aborted, even
if the node has retry specified.

When a DAG aborts, by default it exits with the node return value that caused the abort.
This can be changed by using the optionalRETURNkey word along with specifying the desired
DAGReturnValue. The DAG abort return value can be used for DAGs within DAGs, allowing an
inner DAG to cause an abort of an outer DAG.

AddingABORT-DAG-ONfor node C in the diamond-shaped DAG

File name: diamond.dag
#
JOB A A.condor
JOB B B.condor
JOB C C.condor
JOB D D.condor
PARENT A CHILD B C
PARENT B C CHILD D
Retry C 3
ABORT-DAG-ON C 10 RETURN 1

causes the DAG to be aborted, if node C exits with a return value of 10. Any other currently
running nodes (only node B is a possibility for this particular example) are stopped and removed. If
this abort occurs, the return value for the DAG is 1.

Variable Values Associated with Nodes

The VARSkey word provides a method for defining a macro that can be referenced in the node’s
submit description file. These macros are defined on a per-node basis, using the following syntax:

VARS JobName macroname="string"[macroname="string". . .]

The macro may be used within the submit description file of therelevant node. Amacroname

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 79

consists of alphanumeric characters (a..Z and 0..9), as well as the underscore character. The space
character delimits macros, when there is more than one macrodefined for a node on a single line.
Multiple lines defining macros for the same node are permitted.

Correct syntax requires that thestringmust be enclosed in double quotes. To use a double quote
insidestring, escape it with the backslash character (\). To add the backslash character itself, use
two backslashes (\\). The string $(JOB) maybe used instring and will expand toJobName. If the
VARSline appears in a DAG file used as a splice file, then $(JOB) willbe the fully scoped name of
the node.

Note that themacronameitself cannot begin with the stringqueue, in any combination of
upper or lower case.

If the DAG input file contains

File name: diamond.dag
#
JOB A A.condor
JOB B B.condor
JOB C C.condor
JOB D D.condor
VARS A state="Wisconsin"
PARENT A CHILD B C
PARENT B C CHILD D

then fileA.condor may use the macrostate . This example submit description file for the
Condor job in node A passes the value of the macro as a command-line argument to the job.

file name: A.condor
executable = A.exe
log = A.log
error = A.err
arguments = "$(state)"
queue

This Condor job’s command line will be

A.exe Wisconsin

The use of macros may allow a reduction in the necessary number of unique submit description files.

A separate example shows an intended use of aVARSentry in the DAG input file. This use may
dramatically reduce the number of Condor submit description files needed for a DAG. In the case
where the submit description file for each node varies only infile naming, the use of a substitution
macro within the submit description file reduces the need to asingle submit description file. Note
that the user log file for a job currently cannot be specified using a macro passed from the DAG.

The example uses a single submit description file in the DAG input file, and uses theVARSentry
to name output files.

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 80

The relevant portion of the DAG input file appears as

JOB A theonefile.sub
JOB B theonefile.sub
JOB C theonefile.sub

VARS A outfilename="A"
VARS B outfilename="B"
VARS C outfilename="C"

The submit description file appears as

submit description file called: theonefile.sub
executable = progX
universe = standard
output = $(outfilename)
error = error.$(outfilename)
log = progX.log
queue

For a DAG such as this one, but with thousands of nodes, being able to write and maintain a
single submit description file and a single, yet more complex, DAG input file is preferable.

Multiple macroname definitions

If a VARS macroname for a specific node in a DAG input file is defined more than once, as it
would be with the partial file contents

JOB job1 job.condor
VARS job1 a="foo"
VARS job1 a="bar"

a warning is written to the log, of the format

Warning: VAR <macroname> is already defined in job <JobName >
Discovered at file "<DAG input file name>", line <line numbe r>

The behavior of DAGMan is such that all definitions for the macroname exist, but only the last
one defined is used as the variable’s value. For example, if the example is within the DAG input file,
and the job’s submit description file utilized the value with

arguments = "$(a)"

then the argument will bebar .

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 81

Special characters within VARS string definitions

The value of aVARS macronamemay contain spaces and tabs. It is also possible to have double
quote marks and backslashes within these values.Unfortunately, it is not possible to have single
quote marks within these values.In order to have spaces or tabs within a value, use the new syntax
format for theargumentscommand in the node’s Condor job submit description file, as described in
section 10. Double quote marks are escaped differently, depending on the new syntax or old syntax
argument format. Note that in both syntaxes, double quote marks require two levels of escaping:
one level is for the parsing of the DAG input file, and the otherlevel is for passing the resulting value
throughcondor_submit.

As an example, here are only the relevant parts of a DAG input file. Note that the NodeA value
for second contains a tab.

Vars NodeA first="Alberto Contador"
Vars NodeA second="\"\"Andy Schleck\"\""
Vars NodeA third="Lance\\ Armstrong"
Vars NodeA misc="!@#$%^&*()_-=+=[]{}?/"

Vars NodeB first="Lance_Armstrong"
Vars NodeB second="\\\"Andreas_Kloden\\\""
Vars NodeB third="Ivan_Basso"
Vars NodeB misc="!@#$%^&*()_-=+=[]{}?/"

The new syntaxarguments line of the Condor submit description file for NodeA is

arguments = "'$(first)' '$(second)' '$(third)' '$(misc)' "

The single quotes around each variable reference are only necessary if the variable value may contain
spaces or tabs. The resulting values passed to the NodeA executable are

Alberto Contador
"Andy Schleck"
Lance\ Armstrong
!@#$%^&*()_-=+=[]{}?/

The old syntaxarguments line of the Condor submit description file for NodeB is

arguments = $(first) $(second) $(third) $(misc)

The resulting values passed to the NodeB executable are

Lance_Armstrong
"Andreas_Kloden"
Ivan_Basso
!@#$%^&*()_-=+=[]{}?/

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 82

Setting Priorities for Nodes

ThePRIORITYkey word assigns a priority to a DAG node. The syntax forPRIORITYis

PRIORITY JobName PriorityValue

The node priority affects the order in which nodes that are ready at the same time will be sub-
mitted. Note that node priority doesnot override the DAG dependencies.

Node priority is mainly relevant if node submission is throttled via the -maxjobs
or -maxidle command-line arguments or theDAGMAN_MAX_JOBS_SUBMITTEDor
DAGMAN_MAX_JOBS_IDLEconfiguration variables. Note that PRE scripts can affect the
order in which jobs run, so DAGs containing PRE scripts may not run the nodes in exact priority
order, even if doing so would satisfy the DAG dependencies.

The priority value is an integer (which can be negative). A larger numerical priority is better
(will be run before a smaller numerical value). The default priority is 0.

AddingPRIORITYfor node C in the diamond-shaped DAG

File name: diamond.dag
#
JOB A A.condor
JOB B B.condor
JOB C C.condor
JOB D D.condor
PARENT A CHILD B C
PARENT B C CHILD D
Retry C 3
PRIORITY C 1

This will cause node C to be submitted before node B. Without this priority setting for node C,
node B would be submitted first.

Priorities are propagated to children, to SUBDAGs, and to the Condor job itself, via the
JobPrio attribute in the job’s ClassAd. The priority is defined to be the maximum of the DAG
PRIORITY directive for the job itself and the PRIORITYs of all its parents. Here is an example to
clarify:

File name: priorities.dag
#

JOB A A.condor
JOB B B.condor
JOB C C.condor
SUBDAG EXTERNAL D SD.subdag
PARENT A C CHILD B
PARENT C CHILD D
PRIORITY A 60
PRIORITY B 0
PRIORITY C 5
PRIORITY D 100

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 83

In this example, node B is a child of nodes A and C. Node B’s priority is initially set to 0, but
its priority becomes 60, because that is the maximum of its initial priority of 0, and the priorities
of its parents A with priority 60 and C with priority 5. Node D has only parent node C. Since the
priority of node D will become at least as big as that of its parent node C, node D is assigned a
priority of 100. And, all nodes in the D SUBDAG will have priority at least 100. This priority
is assigned by DAGMan. There is no way to change the priority in the submit description file for
a job, as DAGMan will override anypriority command placed in a submit description file. The
implication of this priority propagation is that for DAGs with a large number of edges (representing
dependencies), the priorities of child nodes far from the root nodes will tend to be the same. The
priorities of the leaf nodes of a tree-shaped DAG, or of DAGs with a relatively small number of
dependencies, willnot tend to be the same.

Limiting the Number of Submitted Job Clusters within a DAG

In order to limit the number of submitted job clusters withina DAG, the nodes may be placed
into categories by assignment of a name. Then, a maximum number of submitted clusters may be
specified for each category.

TheCATEGORYkey word assigns a category name to a DAG node. The syntax forCATEGORY
is

CATEGORY JobName CategoryName

Category names cannot contain white space.

TheMAXJOBSkey word limits the number of submitted job clusters on a per category basis.
The syntax forMAXJOBSis

MAXJOBS CategoryName MaxJobsValue

If the number of submitted job clusters for a given category reaches the limit, no further job
clusters in that category will be submitted until other job clusters within the category terminate.
If MAXJOBS is not set for a defined category, then there is no limit placed on the number of
submissions within that category.

Note that a single invocation ofcondor_submitresults in one job cluster. The number of Condor
jobs within a cluster may be greater than 1.

The configuration variableDAGMAN_MAX_JOBS_SUBMITTEDand thecondor_submit_dag
-maxjobscommand-line option are still enforced if theseCATEGORYandMAXJOBSthrottles are
used.

Please see the end of section 2.10.7 on DAG Splicing for a description of the interaction between
categories and splices.

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 84

Configuration Specific to a DAG

TheCONFIGkeyword specifies a configuration file to be used to set configuration variables related
to condor_dagmanwhen running this DAG. The syntax forCONFIG is

CONFIG ConfigFileName

If the DAG file contains a line like this,

CONFIG dagman.config

then the configuration values in the filedagman.config will be used for this DAG.

Configuration macros forcondor_dagmancan be specified in several ways, as given within the
ordered list:

1. In a Condor configuration file.

2. With an environment variable. Prepend the string_CONDOR_to the configuration variable’s
name.

3. As specified above, with a line in the DAG input file using thekeywordCONFIG, such that
there is acondor_dagman-specific configuration file specified, or on thecondor_submit_dag
command line.

4. For some configuration variables, there is a correspondingcondor_submit_dagcommand line
argument. For example, the configuration variableDAGMAN_MAX_JOBS_SUBMITTEDhas
the corresponding command line argument-maxjobs.

In the above list, configuration values specified later in thelist override ones specified earlier For
example, a value specified on thecondor_submit_dagcommand line overrides corresponding values
in any configuration file. And, a value specified in a DAGMan-specific configuration file overrides
values specified in a general Condor configuration file.

Configuration variables that are not forcondor_dagmanand not utilized by DaemonCore, yet
are specified in acondor_dagman-specific configuration file are ignored.

Only a single configuration file can be specified for a givencondor_dagmanrun. For exam-
ple, if one file is specified within a DAG input file, and a different file is specified on thecon-
dor_submit_dagcommand line, this is a fatal error at submit time. The same istrue if differ-
ent configuration files are specified in multiple DAG input files, and referenced in a singlecon-
dor_submit_dagcommand.

If multiple DAGs are run in a singlecondor_dagmanrun, the configuration options specified in
thecondor_dagmanconfiguration file, if any, apply to all DAGs, even if some of the DAGs specify
no configuration file.

Configuration variables relating to DAGMan may be found in section 3.3.25.

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 85

Optimization of Submission Time

condor_dagmanworks by watching log files for events, such as submission, termination, and going
on hold. When a new job is ready to be run, it is submitted to thecondor_schedd, which needs
to acquire a computing resource. Acquisition requires thecondor_scheddto contact the central
manager and get a claim on a machine, and this claim cycle can take many minutes.

Configuration variableDAGMAN_HOLD_CLAIM_TIMEavoids the wait for a negotiation cycle.
When set to a non zero value, thecondor_scheddkeeps a claim idle, such that thecondor_startd
delays in shifting from the Claimed to the Preempting state (see Figure 3.2). Thus, if another job
appears that is suitable for the claimed resource, then thecondor_scheddwill submit the job directly
to thecondor_startd, avoiding the wait and overhead of a negotiation cycle. Thisresults in a speed
up of job completion, especially for linear DAGs in pools that have lengthy negotiation cycle times.

By default,DAGMAN_HOLD_CLAIM_TIMEis 20, causing a claim to remain idle for 20 seconds,
during which time a new job can be submitted directly to the already-claimedcondor_startd. A value
of 0 means that claims are not held idle for a running DAG. If a DAG node has no children, the
value ofDAGMAN_HOLD_CLAIM_TIMEwill be ignored; theKeepClaimIdle attribute will not
be defined in the job ClassAd of the node job, unless the job requests it using the submit command
keep_claim_idle.

Single Submission of Multiple, Independent DAGs

A single use ofcondor_submit_dagmay execute multiple, independent DAGs. Each independent
DAG has its own DAG input file. These DAG input files are command-line arguments tocon-
dor_submit_dag(see thecondor_submit_dagmanual page at 10).

Internally, all of the independent DAGs are combined into a single, larger DAG, with no depen-
dencies between the original independent DAGs. As a result,any generated rescue DAG file repre-
sents all of the input DAGs as a single DAG. The file name of thisrescue DAG is based on the DAG
input file listed first within the command-line arguments tocondor_submit_dag(unlike a single-
DAG rescue DAG file, however, the file name will be<whatever>.dag_multi.rescue or
<whatever>.dag_multi.rescueNNN , as opposed to just<whatever>.dag.rescue or
<whatever>.dag.rescueNNN). Other files such asdagman.out and the lock file also have
names based on this first DAG input file.

The success or failure of the independent DAGs is well defined. When multiple, independent
DAGs are submitted with a single command, the success of the composite DAG is defined as the
logical AND of the success of each independent DAG. This implies that failure is defined as the
logical OR of the failure of any of the independent DAGs.

By default, DAGMan internally renames the nodes to avoid node name collisions. If all node
names are unique, the renaming of nodes may be disabled by setting the configuration variable
DAGMAN_MUNGE_NODE_NAMESto False (see 3.3.25).

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 86

A DAG Within a DAG Is a SUBDAG

The organization and dependencies of the jobs within a DAG are the keys to its utility. Some DAGs
are naturally constructed hierarchically, such that a nodewithin a DAG is also a DAG. Condor
DAGMan handles this situation easily. DAGs can be nested to any depth.

One of the highlights of using the SUBDAG feature is that portions of a DAG may be constructed
and modified during the execution of the DAG. A drawback may bethat each SUBDAG causes its
own distinct job submission ofcondor_dagman, leading to a larger number of jobs, together with
their potential need of carefully constructed policy configuration to throttle node submission or
execution.

Since more than one DAG is being discussed, here is terminology introduced to clarify which
DAG is which. Reuse the example diamond-shaped DAG as given in Figure 2.2. Assume that node
B of this diamond-shaped DAG will itself be a DAG. The DAG of node B is called a SUBDAG,
inner DAG, or lower-level DAG. The diamond-shaped DAG is called the outer or top-level DAG.

Work on the inner DAG first. Here is a very simple linear DAG input file used as an example of
the inner DAG.

File name: inner.dag
#
JOB X X.submit
JOB Y Y.submit
JOB Z Z.submit
PARENT X CHILD Y
PARENT Y CHILD Z

The Condor submit description file, used bycondor_dagman, corresponding toinner.dag
will be namedinner.dag.condor.sub . The DAGMan submit description file is always named
<DAG file name>.condor.sub . Each DAG or SUBDAG results in the submission ofcon-
dor_dagmanas a Condor job, andcondor_submit_dagcreates this submit description file.

The preferred presentation of the DAG input file for the outerDAG is

File name: diamond.dag
#

JOB A A.submit
SUBDAG EXTERNAL B inner.dag
JOB C C.submit
JOB D D.submit
PARENT A CHILD B C
PARENT B C CHILD D

The preferred presentation is equivalent to

File name: diamond.dag

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 87

#
JOB A A.submit
JOB B inner.dag.condor.sub
JOB C C.submit
JOB D D.submit
PARENT A CHILD B C
PARENT B C CHILD D

Within the outer DAG’s input file, theSUBDAG keyword specifies a special case of aJOB node,
where the job is itself a DAG.

The syntax for each SUBDAG entry is

SUBDAG EXTERNAL JobName DagFileName[DIR directory] [NOOP] [DONE]

The optional specifications ofDIR , NOOP, andDONE, if used, must appear in this order within
the entry.

A SUBDAG node is essentially the same as any other node, except that the DAG input file for
the inner DAG is specified, instead of the Condor submit file. The keywordEXTERNAL means
that the SUBDAG is run within its own instance ofcondor_dagman.

NOOP andDONE for SUBDAG nodes have the same effect that they do forJOB nodes.

Here are details that affect SUBDAGs:

• Nested Submit Description File Generation

There are three ways to generate the<DAG file name>.condor.sub file of a SUB-
DAG:

– Lazily (the default in Condor version 7.5.2 and later versions)

– Eagerly (the default in Condor versions 7.4.1 through 7.5.1)

– Manually (the only way prior to version Condor version 7.4.1)

When the<DAG file name>.condor.sub file is generatedlazily, this file is generated
immediately before the SUBDAG job is submitted. Generationis accomplished by running

condor_submit_dag -no_submit

on the DAG input file specified in theSUBDAG entry. This is the default behavior. There are
advantages to this lazy mode of submit description file creation for the SUBDAG:

– The DAG input file for a SUBDAG does not have to exist until the SUBDAG is ready to
run, so this file can be dynamically created by earlier parts of the outer DAG or by the
PRE script of the node containing the SUBDAG.

– It is now possible to have SUBDAGs within splices. That is notpossible with eager sub-
mit description file creation, becausecondor_submit_dagdoes not understand splices.

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 88

The main disadvantage of lazy submit file generation is that asyntax error in the DAG input
file of a SUBDAG will not be discovered until the outer DAG tries to run the inner DAG.

When <DAG file name>.condor.sub files are generated eagerly, con-
dor_submit_dagruns itself recursively (with the-no_submit option) on each SUB-
DAG, so all of the <DAG file name>.condor.sub files are generated be-
fore the top-level DAG is actually submitted. To generate the <DAG file
name>.condor.sub files eagerly, pass the-do_recurseflag to condor_submit_dag;
also set theDAGMAN_GENERATE_SUBDAG_SUBMITSconfiguration variable toFalse ,
so thatcondor_dagmandoes not re-runcondor_submit_dagat run time thereby regenerating
the submit description files.

To generate the.condor.sub filesmanually, run

condor_submit_dag -no_submit

on each lower-level DAG file, before runningcondor_submit_dagon the top-level DAG file;
also set theDAGMAN_GENERATE_SUBDAG_SUBMITSconfiguration variable toFalse ,
so thatcondor_dagmandoes not re-runcondor_submit_dagat run time. The main reason
for generating the<DAG file name>.condor.sub files manually is to set options for
the lower-level DAG that one would not otherwise be able to set An example of this is the
-insert_sub_fileoption. For instance, using the given example do the following to manually
generate Condor submit description files:

condor_submit_dag -no_submit -insert_sub_file fragment .sub inner.dag
condor_submit_dag diamond.dag

Note that mostcondor_submit_dagcommand-line flags have corresponding configuration
variables, so we encourage the use of per-DAG configuration files, especially in the case of
nested DAGs. This is the easiest way to set different optionsfor different DAGs in an overall
workflow.

It is possible to combine more than one method of generating the <DAG file
name>.condor.sub files. For example, one might pass the-do_recurseflag to con-
dor_submit_dag, but leave theDAGMAN_GENERATE_SUBDAG_SUBMITSconfiguration
variable set to the default ofTrue . Doing this would provide the benefit of an immediate
error message at submit time, if there is a syntax error in oneof the inner DAG input files, but
the lower-level<DAG file name>.condor.sub files would still be regenerated before
each nested DAG is submitted.

The values of the following command-line flags are passed from the top-levelcon-
dor_submit_daginstance to any lower-levelcondor_submit_daginstances. This occurs
whether the lower-level submit description files are generated lazily or eagerly:

– -verbose

– -force

– -notification

– -allowlogerror

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 89

– -dagman

– -usedagdir

– -outfile_dir

– -oldrescue

– -autorescue

– -dorescuefrom

– -allowversionmismatch

– -no_recurse/do_recurse

– -update_submit

– -import_env

The values of the following command-line flags are preservedin any already-existing lower-
level DAG submit description files:

– -maxjobs

– -maxidle

– -maxpre

– -maxpost

– -debug

Other command-line arguments are set to their defaults in any lower-level invocations ofcon-
dor_submit_dag.

The-force option will cause existing DAG submit description files to beoverwritten without
preserving any existing values.

• Submission of the outer DAG

The outer DAG is submitted as before, with the command

condor_submit_dag diamond.dag

• Interaction with Rescue DAGs

When using nested DAGs, we strongly recommend that you use "new-style" rescue DAGs.
This is the default. Using "new-style" rescue DAGs will automatically run the proper rescue
DAG(s) if there is a failure in the work flow. For example, if one of the nodes ininner.dag
fails, this will produce a rescue DAG for inner.dag (namedinner.dag.rescue.001 ,
etc.). Then, sinceinner.dag failed, node B ofdiamond.dag will fail, producing a rescue
DAG for diamond.dag (nameddiamond.dag.rescue.001 , etc.). If the command

condor_submit_dag diamond.dag

is re-run, the most recent outer rescue DAG will be run, and this will re-run the inner DAG,
which will in turn run the most recent inner rescue DAG. The use of "old-style" rescue DAGs
will require the renaming of the inner rescue DAG or manuallyrunning it.

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 90

• File Paths

Remember that, unless the DIR keyword is used in the outer DAG, the inner DAG utilizes the
current working directory when the outer DAG is submitted. Therefore, all paths utilized by
the inner DAG file must be specified accordingly.

DAG Splicing

A weakness in scalability exists when submitting a DAG within a DAG. Each executing independent
DAG requires its own invocation ofcondor_dagmanto be running. The scaling issue presents itself
when the same semantic DAG is reused hundreds or thousands oftimes in a larger DAG. Further,
there may be many rescue DAGs created if a problem occurs. To alleviate these concerns, the
DAGMan language introduces the concept of graph splicing.

A splice is a named instance of a subgraph which is specified ina separate DAG file. The splice is
treated as a whole entity during dependency specification inthe including DAG. The same DAG file
may be reused as differently named splices, each one incorporating a copy of the dependency graph
(and nodes therein) into the including DAG. Any splice in an including DAG may have dependencies
between the sets of initial and final nodes. A splice may be incorporated into an including DAG
without any dependencies; it is considered a disjoint DAG within the including DAG. The nodes
within a splice are scoped according to a hierarchy of names associated with the splices, as the
splices are parsed from the top level DAG file. The scoping character to describe the inclusion
hierarchy of nodes into the top level dag is'+' . This character is chosen due to a restriction in the
allowable characters which may be in a file name across the variety of ports that Condor supports.
In any DAG file, all splices must have unique names, but the same splice name may be reused in
different DAG files.

Condor does not detect nor support splices that form a cycle within the DAG. A DAGMan job
that causes a cyclic inclusion of splices will eventually exhaust available memory and crash.

The SPLICEkeyword in a DAG input file creates a named instance of a DAG as specified in
another file as an entity which may havePARENTandCHILD dependencies associated with other
splice names or node names in the including DAG file. The syntax for SPLICEis

SPLICE SpliceName DagFileName[DIR directory]

After parsing incorporates a splice, all nodes within the spice become nodes within the including
DAG.

The following series of examples illustrate potential usesof splicing. To simplify the examples,
presume that each and every job uses the same, simple Condor submit description file:

BEGIN SUBMIT FILE submit.condor
executable = /bin/echo
arguments = OK
universe = vanilla
output = $(jobname).out

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 91

error = $(jobname).err
log = submit.log
notification = NEVER
queue
END SUBMIT FILE submit.condor

This first simple example splices a diamond-shaped DAG in between the two nodes of a top level
DAG. Here is the DAG input file for the diamond-shaped DAG:

BEGIN DAG FILE diamond.dag
JOB A submit.condor
VARS A jobname="$(JOB)"

JOB B submit.condor
VARS B jobname="$(JOB)"

JOB C submit.condor
VARS C jobname="$(JOB)"

JOB D submit.condor
VARS D jobname="$(JOB)"

PARENT A CHILD B C
PARENT B C CHILD D
END DAG FILE diamond.dag

The top level DAG incorporates the diamond-shaped splice:

BEGIN DAG FILE toplevel.dag
JOB X submit.condor
VARS X jobname="$(JOB)"

JOB Y submit.condor
VARS Y jobname="$(JOB)"

This is an instance of diamond.dag, given the symbolic name DIAMOND
SPLICE DIAMOND diamond.dag

Set up a relationship between the nodes in this dag and the sp lice

PARENT X CHILD DIAMOND
PARENT DIAMOND CHILD Y

END DAG FILE toplevel.dag

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 92

DIAMOND+A

DIAMOND+B DIAMOND+C

DIAMOND+D

Y

X

Figure 2.3: The diamond-shaped DAG spliced between two nodes.

Figure 2.3 illustrates the resulting top level DAG and the dependencies produced. Notice the
naming of nodes scoped with the splice name. This hierarchy of splice names assures unique names
associated with all nodes.

Figure 2.4 illustrates the starting point for a more complexexample. The DAG input fileX.dag
describes this X-shaped DAG. The completed example displays more of the spatial constructs pro-
vided by splices. Pay particular attention to the notion that each named splice creates a new graph,
even when the same DAG input file is specified.

BEGIN DAG FILE X.dag

JOB A submit.condor
VARS A jobname="$(JOB)"

JOB B submit.condor
VARS B jobname="$(JOB)"

JOB C submit.condor
VARS C jobname="$(JOB)"

JOB D submit.condor
VARS D jobname="$(JOB)"

JOB E submit.condor
VARS E jobname="$(JOB)"

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 93

A

D

B C

E F G

Figure 2.4: The X-shaped DAG.

JOB F submit.condor
VARS F jobname="$(JOB)"

JOB G submit.condor
VARS G jobname="$(JOB)"

Make an X-shaped dependency graph
PARENT A B C CHILD D
PARENT D CHILD E F G

END DAG FILE X.dag

File s1.dag continues the example, presenting the DAG input file that incorporates two sepa-
rate splices of the X-shaped DAG. Figure 2.5 illustrates theresulting DAG.

BEGIN DAG FILE s1.dag

JOB A submit.condor
VARS A jobname="$(JOB)"

JOB B submit.condor
VARS B jobname="$(JOB)"

name two individual splices of the X-shaped DAG
SPLICE X1 X.dag
SPLICE X2 X.dag

Define dependencies
A must complete before the initial nodes in X1 can start
PARENT A CHILD X1

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 94

All final nodes in X1 must finish before
the initial nodes in X2 can begin
PARENT X1 CHILD X2
All final nodes in X2 must finish before B may begin.
PARENT X2 CHILD B

END DAG FILE s1.dag

The top level DAG in the hierarchy of this complex example is described by the DAG input file
toplevel.dag . Figure 2.6 illustrates the final DAG. Notice that the DAG hastwo disjoint graphs
in it as a result of splice S3 not having any dependencies associated with it in this top level DAG.

BEGIN DAG FILE toplevel.dag

JOB A submit.condor
VARS A jobname="$(JOB)"

JOB B submit.condor
VARS B jobname="$(JOB)"

JOB C submit.condor
VARS C jobname="$(JOB)"

JOB D submit.condor
VARS D jobname="$(JOB)"

a diamond-shaped DAG
PARENT A CHILD B C
PARENT B C CHILD D

This splice of the X-shaped DAG can only run after
the diamond dag finishes
SPLICE S2 X.dag
PARENT D CHILD S2

Since there are no dependencies for S3,
the following splice is disjoint
SPLICE S3 s1.dag

END DAG FILE toplevel.dag

TheDIR option specifies a working directory for a splice, from whichthe splice will be parsed
and the containing jobs submitted. The directory associated with the splices’DIR specification will
be propagated as a prefix to all nodes in the splice and any included splices. If a node already has a

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 95

A

X1+A X1+B X1+C

B

X1+D

X1+E X1+F X1+G

X2+A X2+B X2+C

X2+D

X2+E X2+F X2+G

Figure 2.5: The DAG described bys1.dag .

DIR specification, then the splice’sDIR specification will be a prefix to the nodes and separated by
a directory separator character. Jobs in included splices with an absolute path for theirDIR specifi-
cation will have theirDIR specification untouched. Note that a DAG containingDIR specifications
cannot be run in conjunction with the-usedagdircommand-line argument tocondor_submit_dag. A
rescue DAG generated by a DAG run with the-usedagdirargument will contain DIR specifications,
so the rescue DAG must be runwithout the-usedagdirargument.

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 96

A

B C

D

S2+A S2+B S2+C

S2+D

S2+E S2+F S2+G

S3+A

S3+X1+A S3+X1+B S3+X1+C

S3+B

S3+X1+D

S3+X1+E S3+X1+F S3+X1+G

S3+X2+A S3+X2+B S3+X2+C

S3+X2+D

S3+X2+E S3+X2+F S3+X2+G

Figure 2.6: The complex splice example DAG.

The Interaction of Categories and MAXJOBS with Splices

Categories normally refer only to nodes within a given splice. All of the assignments of nodes
to a category, and the setting of the category throttle, should be done within a single DAG file.
However, it is now possible to have categories include nodesfrom within more than one splice. To
do this, the category name is prefixed with the ’+’ (plus) character. This tells DAGMan that the
category is a cross-splice category. Towards deeper understanding, what this really does is prevent
renaming of the category when the splice is incorporated into the upper-level DAG. The MAXJOBS
specification for the category can appear in either the upper-level DAG file or one of the splice DAG
files. It probably makes the most sense to put it in the upper-level DAG file.

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 97

Here is an example which applies a single limitation on submitted jobs, identifying the category
with +init .

relevant portion of file name: upper.dag

SPLICE A splice1.dag
SPLICE B splice2.dag

MAXJOBS +init 2

relevant portion of file name: splice1.dag

JOB C C.sub
CATEGORY C +init
JOB D D.sub
CATEGORY D +init

relevant portion of file name: splice2.dag

JOB X X.sub
CATEGORY X +init
JOB Y Y.sub
CATEGORY Y +init

For both global and non-global category throttles, settings at a higher level in the DAG override
settings at a lower level. In this example:

relevant portion of file name: upper.dag

SPLICE A lower.dag

MAXJOBS A+catX 10
MAXJOBS +catY 2

relevant portion of file name: lower.dag

MAXJOBS catX 5
MAXJOBS +catY 1

the resulting throttle settings are 2 for the+catY category and 10 for theA+catX category in

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 98

splice. Note that non-global category names are prefixed with their splice name(s), so to refer to a
non-global category at a higher level, the splice name must be included.

FINAL node

A FINAL node is a special node that is always run at the end of the DAG, even if previous nodes in
the DAG have failed. Final nodes can be used for tasks such as cleaning up intermediate files and
checking the output of previous nodes.

TheFINAL key word specifies a job to be run at the end of the DAG. The syntax used for each
FINAL entry is

FINAL JobName SubmitDescriptionFileName[DIR directory] [NOOP]

The FINAL node is identified byJobName, and the Condor job is described by the contents of
the Condor submit description file given bySubmitDescriptionFileName.

The key wordsDIR andNOOPare not case sensitive. Note thatDIR andNOOP, if used, must
appear in the order shown above. See section 2.10.2 for the descriptions of these two keywords.

The only case in which a FINAL node is not run is if the configuration variable
DAGMAN_STARTUP_CYCLE_DETECTis set toTrue , and a cycle is detected at start up time. If
DAGMAN_STARTUP_CYCLE_DETECTis set toFalse and a cycle is detected during the course
of the run, the FINAL node will be run.

One of the most important considerations with a FINAL node isthat the success or failure of
the FINAL node overrides all previous status in determiningthe success or failure of the DAG. For
example, if some nodes of a DAG fail, but the FINAL node succeeds, the DAG will be considered
successful. Therefore, it is important to be careful about setting the exit status of the FINAL node.

FINAL node-related macros

Two special macros have been introduced for use by FINAL nodes: $DAG_STATUSand
$FAILED_COUNT. These macros may also be used by other nodes.

$DAG_STATUSis the status of the DAG, defined with the following values:

• 0: OK

• 1: error; an error condition different than those listed here

• 2: one or more nodes in the DAG have failed

• 3: the DAG has been aborted by an ABORT-DAG-ON specification

• 4: removed; the DAG has been removed bycondor_rm

• 5: cycle; a cycle was found in the DAG

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 99

• 6: halted; the DAG has been halted (see section 2.10.6)

$FAILED_COUNTis defined by the number of nodes that have failed in the DAG.

The$DAG_STATUSand$FAILED_COUNTmacros can be used both as PRE and POST script
arguments, and in node job submit description files. As an example of this, here are the partial
contents of the DAG input file,

FINAL final_node final_node.sub
SCRIPT PRE final_node final_pre.pl $DAG_STATUS $FAILED_C OUNT

and here are the partial contents of the submit description file, final_node.sub

arguments = "$(DAG_STATUS) $(FAILED_COUNT)"

If there is a FINAL node specified for a DAG, it will be run at theend of the workflow. If this
FINAL node must not do anything in certain cases, use the$DAG_STATUSand$FAILED_COUNT
macros to take appropriate actions. Here is an example of that behavior. It uses a PRE script that
aborts if the DAG has been removed withcondor_rm, which, in turn, causes the FINAL node to be
considered failed without actually submitting the Condor job specified for the node. Partial contents
of the DAG input file:

FINAL final_node final_node.sub
SCRIPT PRE final_node final_pre.pl $DAG_STATUS

and partial contents of the Perl PRE script,final_pre.pl :

#! /usr/bin/env perl

if ($ARGV[0] eq 4) {
exit(1);

}

FINAL node limitations

There are restrictions on usage of a FINAL node. There is no DONE option for the Condor job.
And, other nodes maynot reference the FINAL node in specifications of

• PARENT, CHILD

• RETRY

• ABORT-DAG-ON

• PRIORITY

• CATEGORY

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 100

2.10.8 Job Recovery: The Rescue DAG

DAGMan can help with the re-running of uncompleted portionsof a DAG, when one or more nodes
result in failure, or when a running DAG is removed withcondor_rm. If any node in the DAG fails,
the remainder of the DAG is continued until no more forward progress can be made based on the
DAG’s dependencies. At this point, DAGMan produces a file called a Rescue DAG. A Rescue DAG
is also produced if thecondor_dagmanjob itself is removed withcondor_rm.

If the DAG is resubmitted utilizing the Rescue DAG, the successfully completed nodes will not
be re-executed. As of Condor version 7.7.2, the Rescue DAG file is a partial DAG file.

A partial Rescue DAG file contains only information about which nodes are done, and the num-
ber of retries remaining for nodes with retries. It does not contain information such as the actual
DAG structure and the specification of the submit file for eachnode job. Partial Rescue DAGs are
automatically parsed in combination with the original DAG file, which contains information about
the DAG structure. This updated implementation means that achange in the original DAG input file,
such as specifying a different submit description file for a node job, will take effect when running
the partial Rescue DAG.

The previous behavior of producing full DAG input file is implemented by setting the configu-
ration variableDAGMAN_WRITE_PARTIAL_RESCUEto the non-default value ofFalse .

Note that the removal of a node from the original DAG input file, together with aDONEspecifi-
cation in the Rescue DAG for a node that no longer exists is a warning, as opposed to an error, unless
theDAGMAN_USE_STRICTconfiguration variable is set to a value of 1 or higher. Comment out
the line withDONE in the partial Rescue DAG file to avoid a warning or error.

To run a full Rescue DAG, either one left over from an older version of DAGMan, or one pro-
duced by settingDAGMAN_WRITE_PARTIAL_RESCUEto False , directly specify the full Res-
cue DAG file instead of the original DAG file. For example:

condor_submit_dag my.dag.rescue002

Re-submission of the original DAG input file causescondor_dagmanto try to parse the Rescue
DAG file in combination with the original DAG input file, whichwill result in failure if the Rescue
DAG is a full Rescue DAG file.

Note that if multiple DAG input files are specified on thecondor_submit_dagcommand line, a
single Rescue DAG encompassing all of the input DAGs is generated.

If the Rescue DAG file is generated before all retries of a nodeare completed, then the Rescue
DAG file will also containRetryentries. The number of retries will be set to the appropriateremain-
ing number of retries. The configuration variableDAGMAN_RESET_RETRIES_UPON_RESCUE,
section 3.3.25, controls whether or not node retries are reset in a Rescue DAG.

The granularity defining success or failure in the Rescue DAGis the node. For a node that fails,
all parts of the node will be re-run, even if some parts were successful the first time. For example,
if a node’s PRE script succeeds, but then the node’s Condor job cluster fails, the entire node, which

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 101

includes the PRE script will be re-run. A job cluster may result in the submission of multiple Condor
jobs. If one of the multiple jobs fails, the node fails. Therefore, the Rescue DAG will re-run the
entire node, implying the submission of the entire cluster of jobs, not just the one(s) that failed.

Statistics about the failed DAG execution are presented as comments at the beginning of the
Rescue DAG input file.

The Rescue DAG is automatically generated bycondor_dagmanwhen a node within the DAG
fails or whencondor_dagmanitself is removed withcondor_rm. The file name of the Rescue DAG,
and usage of the Rescue DAG changed from explicit specification to implicit usage beginning with
Condor version 7.1.0. Current naming of the Rescue DAG appends the string.rescue<XXX> to
the original DAG input file name. Values for<XXX>start at001 and continue to002 , 003 , and
beyond. If a Rescue DAG exists, the Rescue DAG with the largest magnitude value for<XXX>will
be used, and its usage is implied.

Here is an example showing file naming and DAG submission for the case of a failed DAG. The
initial DAG is submitted with

condor_submit_dag my.dag

A failure of this DAG results in the Rescue DAG namedmy.dag.rescue001 . The DAG is
resubmitted using the same command:

condor_submit_dag my.dag

This resubmission of the DAG uses the Rescue DAG filemy.dag.rescue001 , because it exists.
Failure of this Rescue DAG results in another Rescue DAG calledmy.dag.rescue002 . If the
DAG is again submitted, using the same command as with the first two submissions, but not repeated
here, then this third submission uses the Rescue DAG filemy.dag.rescue002 , because it exists,
and because the value002 is larger in magnitude than001 .

To explicitly specify a particular Rescue DAG, use the optional command-line argument
-dorescuefromwith condor_submit_dag. Note that this will have the side effect of renaming ex-
isting Rescue DAG files with larger magnitude values of<XXX>. Each renamed file has its
existing name appended with the string.old . For example, assume thatmy.dag has failed
4 times, resulting in the Rescue DAGs namedmy.dag.rescue001 , my.dag.rescue002 ,
my.dag.rescue003 , and my.dag.rescue004 . A decision is made to re-run using
my.dag.rescue002 . The submit command is

condor_submit_dag -dorescuefrom 2 my.dag

The DAG specified by the DAG input filemy.dag.rescue002 is submitted. And, the exist-
ing Rescue DAGmy.dag.rescue003 is renamed to bemy.dag.rescue003.old , while the
existing Rescue DAGmy.dag.rescue004 is renamed to bemy.dag.rescue004.old .

The configuration variableDAGMAN_MAX_RESCUE_NUMsets a maximum value forXXX. See
section 3.3.25 for the complete definition of this configuration variable.

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 102

Rescue DAG Generated When There Are Parse Errors

Starting in Condor version 7.5.5, the-DumpRescueoption to eithercondor_dagmanor con-
dor_submit_dagcausescondor_dagmanto output a Rescue DAG file, even if the parsing of a DAG
input file fails. In this parse failure case,condor_dagmanproduces a specially named Rescue DAG
containing whatever it had successfully parsed up until thepoint of the parse error. This Rescue
DAG may be useful in debugging parse errors in complex DAGs, especially ones using splices. This
incomplete Rescue DAG is not meant to be used when resubmitting a failed DAG. Note that this in-
complete Rescue DAG generated by the-DumpRescueoption is a full DAG input file, as produced
by versions of Condor prior to Condor version 7.7.2. It is nota partial Rescue DAG file, regardless
of the value of the configuration variableDAGMAN_WRITE_PARTIAL_RESCUE.

To avoid confusion between this incomplete Rescue DAG generated in the case of a parse fail-
ure and a usable Rescue DAG, a different name is given to the incomplete Rescue DAG. The name
appends the string.parse_failed to the original DAG input file name. Therefore, if the sub-
mission of a DAG with

condor_submit_dag my.dag

has a parse failure, the resulting incomplete Rescue DAG will be named
my.dag.parse_failed .

To further prevent one of these incomplete Rescue DAG files from being used, a line within the
file contains the single keywordREJECT. This causescondor_dagmanto reject the DAG, if used as
a DAG input file. This is done because the incomplete Rescue DAG may be a syntactically correct
DAG input file. It will be incomplete relative to the originalDAG, such that if the incomplete Rescue
DAG could be run, it could erroneously be perceived as havingsuccessfully executed the desired
workflow, when, in fact, it did not.

Outdated Naming of Rescue DAG

As of Condor version 7.7.2, the following file naming scheme is no longer available.

Prior to Condor version 7.1.0, the naming of a Rescue DAG appended the string.rescue to the
existing DAG input file name. And, the Rescue DAG file would be explicitly placed in the command
line that submitted it. For example, a first submission

condor_submit_dag my.dag

Assuming that this DAG failed, the filemy.dag.rescue would be created. To run this Rescue
DAG, the submission command is

condor_submit_dag my.dag.rescue

If this Rescue DAG also failed, a new Rescue DAG namedmy.dag.rescue.rescue would be
created.

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 103

2.10.9 File Paths in DAGs

By default, condor_dagmanassumes that all relative paths in a DAG input file and the asso-
ciated Condor submit description files are relative to the current working directory whencon-
dor_submit_dagis run. Note that relative paths in submit description files can be modified by
the submit commandinitialdir ; see thecondor_submitmanual page within Chapter 10 for more
details. The rest of this discussion ignoresinitialdir .

In most cases, path names relative to the current working directory is the desired behavior.
However, if running multiple DAGs with a singlecondor_dagman, and each DAG is in its own
directory, this will cause problems. In this case, use the-usedagdircommand-line argument to
condor_submit_dag(see thecondor_submit_dagmanual page within Chapter 10 for more details).
This tellscondor_dagmanto run each DAG as ifcondor_submit_daghad been run in the directory
in which the relevant DAG file exists.

For example, assume that a directory calledparent contains two subdirectories calleddag1
anddag2 , and thatdag1 contains the DAG input fileone.dag anddag2 contains the DAG input
file two.dag . Further, assume that each DAG is set up to be run from its own directory with the
following command:

cd dag1; condor_submit_dag one.dag

This will correctly runone.dag .

The goal is to run the two, independent DAGs located withindag1 anddag2 while the current
working directory isparent . To do so, run the following command:

condor_submit_dag -usedagdir dag1/one.dag dag2/two.dag

Of course, if all paths in the DAG input file(s) and the relevant submit description files are
absolute, the-usedagdirargument is not needed; however, using absolute paths is NOTgenerally a
good idea.

If you do notuse-usedagdir, relative paths can still work for multiple DAGs, if all file paths
are given relative to the current working directory ascondor_submit_dagis executed. However,
this means that, if the DAGs are in separate directories, they cannot be submitted from their own
directories, only from the parent directory the paths are set up for.

Note that if you use the-usedagdirargument, and your run results in a rescue DAG, the rescue
DAG file will be written to the current working directory, andshould be run from that directory. The
rescue DAG includes all the path information necessary to run each node job in the proper directory.

2.10.10 Visualizing DAGs withdot

It can be helpful to see a picture of a DAG. DAGMan can assist you in visualizing a DAG by
creating the input files used by the AT&T Research Labsgraphvizpackage.dot is a program within

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 104

this package, available from http://www.graphviz.org/, and it is used to draw pictures of DAGs.

DAGMan produces one or more dot files as the result of an extra line in a DAGMan input file.
The line appears as

DOT dag.dot

This creates a file calleddag.dot . which contains a specification of the DAG before any jobs
within the DAG are submitted to Condor. Thedag.dot file is used to create a visualization of the
DAG by using this file as input todot. This example creates a Postscript file, with a visualization of
the DAG:

dot -Tps dag.dot -o dag.ps

Within the DAGMan input file, the DOT command can take severaloptional parameters:

• UPDATE This will update the dot file every time a significant update happens.

• DONT-UPDATE Creates a single dot file, when the DAGMan begins executing. This is the
default if the parameterUPDATE is not used.

• OVERWRITE Overwrites the dot file each time it is created. This is the default, unless
DONT-OVERWRITE is specified.

• DONT-OVERWRITE Used to create multiple dot files, instead of overwriting thesingle one
specified. To create file names, DAGMan uses the name of the fileconcatenated with a period
and an integer. For example, the DAGMan input file line

DOT dag.dot DONT-OVERWRITE

causes filesdag.dot.0 , dag.dot.1 , dag.dot.2 , etc. to be created. This option is most
useful when combined with theUPDATE option to visualize the history of the DAG after it
has finished executing.

• INCLUDE path-to-filenameIncludes the contents of a file given bypath-to-filename
in the file produced by theDOT command. The include file contents are always placed after
the line of the formlabel= . This may be useful if further editing of the created files would
be necessary, perhaps because you are automatically visualizing the DAG as it progresses.

If conflicting parameters are used in a DOT command, the last one listed is used.

2.10.11 Capturing the Status of Nodes in a File

DAGMan can capture the status of all DAG nodes, such that the user or a script may easily monitor
the status of all DAG nodes. A node status file is periodicallyrewritten by DAGMan. To enable this
feature, the DAG input file contains a line with theNODE_STATUS_FILEkey word.

Condor Version 7.7.6 Manual

http://www.graphviz.org/

2.10. DAGMan Applications 105

The syntax for aNODE_STATUS_FILEspecification is

NODE_STATUS_FILE statusFileName[minimumUpdateTime]

The status file is written on the machine where the DAG is submitted; its location is given by
statusFileName. This will be the same machine where thecondor_dagmanjob is running.

The optionalminimumUpdateTimespecifies the minimum number of seconds that must elapse
between updates to the node status file. This setting exists to avoid having DAGMan spend too
much time writing the node status file for very large DAGs. If no value is specified, no limit is set.
The node status file can be updated at most once perDAGMAN_USER_LOG_SCAN_INTERVAL,
as defined at section 3.3.25, no matter how small theminimumUpdateTimevalue.

As an example, if the DAG input file contains the line

NODE_STATUS_FILE my.dag.status 30

the filemy.dag.status will be rewritten at intervals of 30 seconds or more.

This node status file is overwritten each time it is updated. Therefore, it only holds information
about thecurrent status of each node; it does not provide a history of the node status. The file
contains one line describing the status of every node in the DAG. The file contents do not distinguish
between Condor jobs and Stork jobs. Here is an example of a node status file:

BEGIN 1281041745 (Thu Aug 5 15:55:45 2010)
Status of nodes of DAG(s): my.dag

JOB A STATUS_DONE ()
JOB B STATUS_SUBMITTED (not_idle)
JOB C STATUS_SUBMITTED (idle)
JOB D STATUS_UNREADY ()

DAG status: STATUS_SUBMITTED ()
Next scheduled update: 1281041775 (Thu Aug 5 15:56:15 2010)
END 1281041745 (Thu Aug 5 15:55:45 2010)

Possible node status values are:

• STATUS_UNREADYAt least one parent has not yet finished.

• STATUS_READYAll parents have finished, but not yet running.

• STATUS_PRERUNThe PRE script is running.

• STATUS_SUBMITTEDThe node’s Condor or Stork job(s) are in the queue.

• STATUS_POSTRUNThe POST script is running.

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 106

• STATUS_DONEThe node has completed successfully.

• STATUS_ERRORThe node has failed.

A NODE_STATUS_FILEkey word inside any splice is ignored. If multiple DAG files are spec-
ified on thecondor_submit_dagcommand line, and more than one specifies a node status file, the
first specification takes precedence.

2.10.12 A Machine-Readable Event History, the jobstate.log File

DAGMan can produce a machine-readable history of events. The jobstate.log file is designed
for use by the Pegasus Workflow Management System, which operates as a layer on top of DAGMan.
Pegasus uses thejobstate.log file to monitor the state of a workflow. Thejobstate.log
file can used by any automated tool for the monitoring of workflows.

DAGMan produces this file when the keywordJOBSTATE_LOGis in the DAG input file. The
syntax forJOBSTATE_LOGis

JOBSTATE_LOG JobstateLogFileName

No more than onejobstate.log file can be created by a single instance ofcondor_dagman.
If more than onejobstate.log file is specified, the first file name specified will take effect,and a
warning will be printed in thedagman.out file when subsequentJOBSTATE_LOGspecifications
are parsed. Multiple specifications may exist in the same DAGfile, within splices, or within multiple,
independent DAGs run with a singlecondor_dagmaninstance.

The jobstate.log file can be considered a filtered version of thedagman.out file, in a
machine-readable format. It contains the actual node job events that fromcondor_dagman, plus
some additional meta-events.

Thejobstate.log file is different from the node status file, in that thejobstate.log file
is appended to, rather than being overwritten as the DAG runs. Therefore, it contains a history of
the DAG, rather than a snapshot of the current state of the DAG.

There are 5 line types in thejobstate.log file. Each line begins with a Unix timestamp
in the form of seconds since the Epoch. Fields within each line are separated by a single space
character.

DAGMan start This line identifies thecondor_dagmanjob. The formatting of the line is

timestampINTERNAL *** DAGMAN_STARTED dagmanCondorID***

ThedagmanCondorIDfield is thecondor_dagmanjob’s ClusterId attribute, a period, and
theProcId attribute.

DAGMan exit This line identifies the completion of thecondor_dagmanjob. The formatting of the
line is

timestampINTERNAL *** DAGMAN_FINISHED exitCode***

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 107

TheexitCodefield is value thecondor_dagmanjob returns upon exit.

Recovery started If the condor_dagmanjob goes into recovery mode, this meta-event is printed.
During recovery mode, events will only be printed in the file if they were not already printed
before recovery mode started. The formatting of the line is

timestampINTERNAL *** RECOVERY_STARTED ***

Recovery finished or Recovery failureAt the end of recovery mode, either a RECOV-
ERY_FINISHED or RECOVERY_FAILURE meta-event will be printed, as appropriate.

The formatting of the line is

timestampINTERNAL *** RECOVERY_FINISHED ***

or

timestampINTERNAL *** RECOVERY_FAILURE ***

Normal This line is used for all other event and meta-event types. The formatting of the line is

timestamp JobName eventName condorID jobTag- sequenceNumber

The JobNameis the name given to the node job as defined in the DAG input file with the
keywordJOB. It identifies the node within the DAG.

TheeventNameis one of the many defined event or meta-events given in the lists below.

ThecondorIDfield is the job’sClusterId attribute, a period, and theProcId attribute.
There is nocondorIDassigned yet for some meta-events, such as PRE_SCRIPT_STARTED.
For these, the dash character (’-’) is printed.

The jobTagfield is defined for the Pegasus workflow manager. Its usage is generalized to be
useful to other workflow managers. Pegasus-managed jobs adda line of the following form
to their Condor submit description file:

+pegasus_site = "local"

This defines the stringlocal as thejobTagfield.

Generalized usage adds a set of 2 commands to the Condor submit description file to define a
string as thejobTagfield:

+job_tag_name = "+job_tag_value"
+job_tag_value = "viz"

This defines the stringviz as thejobTagfield. Without any of these added lines within the
Condor submit description file, the dash character (’-’) is printed for thejobTagfield.

ThesequenceNumberis a monotonically-increasing number that starts at one. Itis associated
with each attempt at running a node. If a node is retried, it gets a new sequence number;
a submit failure does not result in a new sequence number. When a rescue DAG is run,
the sequence numbers pick up from where they left off within the previous attempt at run-
ning the DAG. Note that this only applies if the rescue DAG is run automatically or with the
-dorescuefromcommand-line option.

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 108

Here is an example of a very simple Pegasusjobstate.log file, assuming the example
jobTagfield of local :

1292620511 INTERNAL *** DAGMAN_STARTED 4972.0 ***
1292620523 NodeA PRE_SCRIPT_STARTED - local - 1
1292620523 NodeA PRE_SCRIPT_SUCCESS - local - 1
1292620525 NodeA SUBMIT 4973.0 local - 1
1292620525 NodeA EXECUTE 4973.0 local - 1
1292620526 NodeA JOB_TERMINATED 4973.0 local - 1
1292620526 NodeA JOB_SUCCESS 0 local - 1
1292620526 NodeA POST_SCRIPT_STARTED 4973.0 local - 1
1292620531 NodeA POST_SCRIPT_TERMINATED 4973.0 local - 1
1292620531 NodeA POST_SCRIPT_SUCCESS 4973.0 local - 1
1292620535 INTERNAL *** DAGMAN_FINISHED 0 ***

Events defining the eventName field • SUBMIT

• EXECUTE

• EXECUTABLE_ERROR

• CHECKPOINTED

• JOB_EVICTED

• JOB_TERMINATED

• IMAGE_SIZE

• SHADOW_EXCEPTION

• GENERIC

• JOB_ABORTED

• JOB_SUSPENDED

• JOB_UNSUSPENDED

• JOB_HELD

• JOB_RELEASED

• NODE_EXECUTE

• NODE_TERMINATED

• POST_SCRIPT_TERMINATED

• GLOBUS_SUBMIT

• GLOBUS_SUBMIT_FAILED

• GLOBUS_RESOURCE_UP

• GLOBUS_RESOURCE_DOWN

• REMOTE_ERROR

• JOB_DISCONNECTED

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 109

• JOB_RECONNECTED

• JOB_RECONNECT_FAILED

• GRID_RESOURCE_UP

• GRID_RESOURCE_DOWN

• GRID_SUBMIT

• JOB_AD_INFORMATION

• JOB_STATUS_UNKNOWN

• JOB_STATUS_KNOWN

• JOB_STAGE_IN

• JOB_STAGE_OUT

Meta-Events defining the eventName field • SUBMIT_FAILURE

• JOB_SUCCESS

• JOB_FAILURE

• PRE_SCRIPT_STARTED

• PRE_SCRIPT_SUCCESS

• PRE_SCRIPT_FAILURE

• POST_SCRIPT_STARTED

• POST_SCRIPT_SUCCESS

• POST_SCRIPT_FAILURE

• DAGMAN_STARTED

• DAGMAN_FINISHED

• RECOVERY_STARTED

• RECOVERY_FINISHED

• RECOVERY_FAILURE

2.10.13 Utilizing the Power of DAGMan for Large Numbers of Jobs

Using DAGMan is recommended when submitting large numbers of jobs. The recommendation
holds whether the jobs are represented by a DAG due to dependencies, or all the jobs are independent
of each other, such as they might be in a parameter sweep. DAGMan offers:

• Throttling to limit the number of submitted jobs at any point in time.

• Retry of jobs that fail. A useful tool when an intermittent error may cause a job to fail or fail
to run to completion when attempted at one point in time, but not at another point in time.
And, note that what constitutes failure is user-defined.

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 110

• Automatic generation of the administrative support that facilitates the rerunning of only jobs
that fail.

• The ability to run scripts before and/or after the execution of individual jobs.

Each of these capabilities is described in detail (above) within this manual section about DAG-
Man. To make effective use of DAGMan, there is no way around reading the appropriate subsections.

To run DAGMan with large numbers of independent jobs, there are generally two ways of orga-
nizing and specifying the files that control the jobs. Both ways presume that programs or scripts will
generate the files, because the files are either large and repetitive or because there are a large number
of similar files to be generated representing the large numbers of jobs. The two file types needed are
the DAG input file and the submit description file(s) for the Condor jobs represented. Each of the
two ways is presented separately:

A unique submit description file for each of the many jobs.A single DAG input file lists each
of the jobs and specifies a distinct Condor submit description file for each job. The DAG
input file is simple to generate, as it chooses an identifier for each job and names the submit
description file. For example, the simplest DAG input file fora set of 1000 independent jobs,
as might be part of a parameter sweep, appears as

file sweep.dag
JOB job0 job0.submit
JOB job1 job1.submit
JOB job2 job2.submit
.
.
.
JOB job999 job999.submit

There are 1000 submit description files, with a unique one foreach of the job<N> jobs. As-
suming that all files associated with this set of jobs are in the same directory, and that files con-
tinue the same naming and numbering scheme, the submit description file for job6.submit
might appear as

file job6.submit
universe = vanilla
executable = /path/to/executable
log = job6.log
input = job6.in
output = job6.out
notification = Never
arguments = "-file job6.out"
queue

Submission of the entire set of jobs is

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 111

condor_submit_dag sweep.dag

A benefit to having unique submit description files for each ofthe jobs is that they are avail-
able, if one of the jobs needs to be submitted individually. Adrawback to having unique
submit description files for each of the jobs is that there arelots of files, one for each job.

Single submit description file. A single Condor submit description file might be used for all the
many jobs of the parameter sweep. To distinguish the jobs andtheir associated distinct input
and output files, the DAG input file assigns a unique identifierwith theVARSkeyword.

file sweep.dag
JOB job0 common.submit
VARS job0 runnumber="0"
JOB job1 common.submit
VARS job1 runnumber="1"
JOB job2 common.submit
VARS job2 runnumber="2"
.
.
.
JOB job999 common.submit
VARS job999 runnumber="999"

The single submit description file for all these jobs utilizes therunnumber variable value in
its identification of the job’s files. This submit description file might appear as

file common.submit
universe = vanilla
executable = /path/to/executable
log = wholeDAG.log
input = job$(runnumber).in
output = job$(runnumber).out
notification = Never
arguments = "-$(runnumber)"
queue

The job withrunnumber="8" expects to find its input filejob8.in in the single, common
directory, and it sends its output tojob8.out . The single log for all job events of the entire
DAG is wholeDAG.log . Using one file for the entire DAG meets the limitation that no
macro substitution may be specified for the job log file, and itis likely more efficient as well.
This node’s executable is invoked with

/path/to/executable -8

These examples work well with respect to file naming and placement when there are less than
several thousand jobs submitted as part of a DAG. The large numbers of files per directory becomes

Condor Version 7.7.6 Manual

2.10. DAGMan Applications 112

an issue when there are greater than several thousand jobs submitted as part of a DAG. In this case,
consider a more hierarchical structure for the files insteadof a single directory. Introduce a separate
directory for each run. For example, if there were 10,000 jobs, there would be 10,000 directories,
one for each of these jobs. The directories are presumed to begenerated and populated by programs
or scripts that, like the previous examples, utilize a run number. Each of these directories named
utilizing the run number will be used for the input, output, and log files for one of the many jobs.

As an example, for this set of 10,000 jobs and directories, assume that there is a run number of
600. The directory will be nameddir.600 , and it will hold the 3 files calledin , out , andlog ,
representing the input, output, and Condor job log files associated with run number 600.

The DAG input file sets a variable representing the run number, as in the previous example:

file biggersweep.dag
JOB job0 common.submit
VARS job0 runnumber="0"
JOB job1 common.submit
VARS job1 runnumber="1"
JOB job2 common.submit
VARS job2 runnumber="2"
.
.
.
JOB job9999 common.submit
VARS job9999 runnumber="9999"

A single Condor submit description file may be written. It resides in the same directory as the
DAG input file.

file bigger.submit
universe = vanilla
executable = /path/to/executable
log = log
input = in
output = out
notification = Never
arguments = "-$(runnumber)"
initialdir = dir.$(runnumber)
queue

One item to care about with this set up is the underlying file system for the pool. The transfer of
files (or not) when usinginitialdir differs based upon the jobuniverseand whether or not there is a
shared file system. See section 10 for the details on the submit commandinitialdir .

Submission of this set of jobs is no different than the previous examples. With the current
working directory the same as the one containing the submit description file, the DAG input file, and
the subdirectories,

Condor Version 7.7.6 Manual

2.11. Virtual Machine Applications 113

condor_submit_dag biggersweep.dag

2.11 Virtual Machine Applications

Thevm universe facilitates a Condor job that matches and then lands a disk image on an execute
machine within a Condor pool. This disk image is intended to be a virtual machine. In this manner,
the virtual machine is the job to be executed.

This section describes this type of Condor job. See section 3.3.28 for details of configuration
variables.

2.11.1 The Submit Description File

Different than all other universe jobs, thevm universe job specifies a disk image, not an executable.
Therefore, the submit commandsinput , output, anderror do not apply. If specified,condor_submit
rejects the job with an error. Theexecutablecommand changes definition within avm universe job.
It no longer specifies an executable file, but instead provides a string that identifies the job for tools
such ascondor_q. Other commands specific to the type of virtual machine software identify the disk
image.

VMware, Xen, and KVM virtual machine software are supported. As these differ from each
other, the submit description file specifies one of

vm_type = vmware

or

vm_type = xen

or

vm_type = kvm

The job is required to specify its memory needs for the disk image withvm_memory, which is
given in Mbytes. Condor uses this number to assure a match with a machine that can provide the
needed memory space.

Virtual machine networking is enabled with the command

vm_networking = true

Condor Version 7.7.6 Manual

2.11. Virtual Machine Applications 114

And, when networking is enabled, a definition ofvm_networking_type as bridge matches
the job only with a machine that is configured to use bridge networking. A definition of
vm_networking_typeasnat matches the job only with a machine that is configured to use NAT net-
working. When no definition ofvm_networking_type is given, Condor may match the job with a
machine that enables networking, and further, the choice ofbridge or NAT networking is determined
by the machine’s configuration.

Modified disk images are transferred back to the machine fromwhich the job was submitted
as thevm universe job completes. Job completion for avm universe job occurs when the virtual
machine is shut down, and Condor notices (as the result of a periodic check on the state of the virtual
machine). Should the job not want any files transferred back (modified or not), for example because
the job explicitly transferred its own files, the submit command to prevent the transfer is

vm_no_output_vm = true

The required disk image must be identified for a virtual machine. Thisvm_disk command
specifies a list of comma-separated files. Each disk file is specified by colon-separated fields. The
first field is the path and file name of the disk file. The second field specifies the device. The third
field specifies permissions, and the optional fourth specifies the format. Here is an example that
identifies a single file:

vm_disk = /var/lib/libvirt/images/swap.img:sda2:w:raw

Setting values in the submit description file for some commands have consequences for the
virtual machine description file. These commands are

• vm_memory

• vm_macaddr

• vm_networking

• vm_networking_type

• vm_disk

For VMware virtual machines, setting values for these commands causes Condor to modify the
.vmx file, overwriting existing values. For KVM and Xen virtual machines, Condor uses these
values when it produces the description file.

For Xen and KVM jobs, if any files need to be transferred from the submit machine to the
machine where thevm universe job will execute, Condor must be explicitly told todo so with the
standard file transfer attributes:

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = /myxen/diskfile.img,/myxen/swa p.img

Condor Version 7.7.6 Manual

2.11. Virtual Machine Applications 115

Any and all needed files on a system without a shared file system(between the submit machine and
the machine where the job will execute) must be listed.

Further commands specify information that is specific to thevirtual machine type targeted.

VMware-Specific Submit Commands

Specific to VMware, the submit description file commandvmware_dir gives the path and directory
(on the machine from which the job is submitted) to where VMware-specific files and applications
reside. One example of a VMware-specific application is the VMDK files, which form a virtual hard
drive (disk image) for the virtual machine. VMX files containing the primary configuration for the
virtual machine would also be in this directory.

Condor must be told whether or not the contents of thevmware_dir directory must be trans-
ferred to the machine where the job is to be executed. This required information is given with the
submit commandvmware_should_transfer_files. With a value ofTrue , Condor does transfer the
contents of the directory. With a value ofFalse , Condor does not transfer the contents of the
directory, and instead presumes that access to this directory is available through a shared file system.

By default, Condor uses a snapshot disk for new and modified files. They may also be utilized
for checkpoints. The snapshot disk is initially quite small, growing only as new files are created or
files are modified. Whenvmware_should_transfer_filesis True , a job may specify that a snapshot
disk isnot to be used with the command

vmware_snapshot_disk = False

In this case, Condor will utilize original disk files in producing checkpoints. Note
that condor_submit issues an error message and does not submit the job if both
vmware_should_transfer_filesandvmware_snapshot_diskareFalse .

Note that if snapshot disks are requested and file transfer isnot being used, thevmware_dir
setting given in the submit description file should not contain any symbolic link path components.
This is to work around the issue discussed in the FAQ entry in section 7.3.

Here is a sample submit description file for a VMware virtual machine:

universe = vm
executable = vmware_sample_job
log = simple.vm.log.txt
vm_type = vmware
vm_memory = 64
vmware_dir = C:\condor-test
vmware_should_transfer_files = True
queue

This sample uses thevmware_dir command to identify the location of the disk image to be executed

Condor Version 7.7.6 Manual

2.11. Virtual Machine Applications 116

as a Condor job. The contents of this directory are transferred to the machine assigned to execute
the Condor job.

Xen-Specific Submit Commands

A Xen vm universe job requires specification of the guest kernel. Thexen_kernel command ac-
complishes this, utilizing one of the following definitions.

1. xen_kernel = included implies that the kernel is to be found in disk image given by the
definition of the single file specified invm_disk.

2. xen_kernel = path-to-kernelgives a full path and file name of the required kernel. If this
kernel must be transferred to machine on which thevm universe job will execute, it must also
be included in thexen_transfer_filescommand.

This form of thexen_kernelcommand also requires further definition of thexen_rootcom-
mand.xen_rootdefines the device containing files needed byroot .

2.11.2 Checkpoints

Creating a checkpoint is straightforward for a virtual machine, as a checkpoint is a set of files that
represent a snapshot of both disk image and memory. The checkpoint is created and all files are
transferred back to the$(SPOOL) directory on the machine from which the job was submitted.
The submit command to create checkpoints is

vm_checkpoint = true

Without this command, no checkpoints are created (by default). With the command, a checkpoint is
created any time thevm universe jobs is evicted from the machine upon which it is executing. This
occurs as a result of the machine configuration indicating that it will no longer execute this job.

vm universe jobs cannot use a checkpoint server.

Periodic creation of checkpoints is not supported at this time.

Enabling both networking and checkpointing for avm universe job can cause networking prob-
lems when the job restarts, particularly if the job migratesto a different machine.condor_submit
will normally reject such jobs. To enable both, then add the command

when_to_transfer_output = ON_EXIT_OR_EVICT

Take care with respect to the use of network connections within the virtual machine and their
interaction with checkpoints. Open network connections atthe time of the checkpoint will likely
be lost when the checkpoint is subsequently used to resume execution of the virtual machine. This
occurs whether or not the execution resumes on the same machine or a different one within the
Condor pool.

Condor Version 7.7.6 Manual

2.11. Virtual Machine Applications 117

2.11.3 Disk Images

VMware on Windows and Linux

Following the platform-specific guest OS installation instructions found at
http://partnerweb.vmware.com/GOSIG/home.html, creates a VMware disk image.

Xen and KVM

While the following web page contains instructions specificto Fedora on how to create a virtual
guest image, it should provide a good starting point for other platforms as well.

http://fedoraproject.org/wiki/Virtualization_Quick_Start

2.11.4 Job Completion in the vm Universe

Job completion for avm universe job occurs when the virtual machine is shut down, and Condor
notices (as the result of a periodic check on the state of the virtual machine). This is different from
jobs executed under the environment of other universes.

Shut down of a virtual machine occurs from within the virtualmachine environment. A script,
executed with the proper authorization level, is the likelysource of the shut down commands.

Under a Windows 2000, Windows XP, or Vista virtual machine, an administrator issues the
command

shutdown -s -t 01

Under a Linux virtual machine, theroot user executes

/sbin/poweroff

The command/sbin/halt will not completely shut down some Linux distributions, andinstead
causes the job to hang.

Since the successful completion of thevm universe job requires the successful shut down of the
virtual machine, it is good advice to try the shut down procedure outside of Condor, before avm
universe job is submitted.

Condor Version 7.7.6 Manual

http://partnerweb.vmware.com/GOSIG/home.html
http://fedoraproject.org/wiki/Virtualization_Quick_Start

2.12. Time Scheduling for Job Execution 118

2.12 Time Scheduling for Job Execution

Jobs may be scheduled to begin execution at a specified time inthe future with Condor’s job deferral
functionality. All specifications are in a job’s submit description file. Job deferral functionality is
expanded to provide for the periodic execution of a job, known as the CronTab scheduling.

2.12.1 Job Deferral

Job deferral allows the specification of the exact date and time at which a job is to begin executing.
Condor attempts to match the job to an execution machine justlike any other job, however, the job
will wait until the exact time to begin execution. A user can specify Condor to allow some flexibility
to execute jobs that miss their execution time.

Deferred Execution Time

A job’s deferral time is the exact time that Condor should attempt to execute the job. The deferral
time attribute is defined as an expression that evaluates to aUnix Epoch timestamp (the number of
seconds elapsed since 00:00:00 on January 1, 1970, Coordinated Universal Time). This is the time
that Condor will begin to execute the job.

After a job is matched and all of its files have been transferred to an execution machine, Condor
checks to see if the job’s ad contains a deferral time. If it does, Condor calculates the number
of seconds between the execution machine’s current system time to the job’s deferral time. If the
deferral time is in the future, the job waits to begin execution. While a job waits, its job ClassAd
attributeJobStatus indicates the job is running. As the deferral time arrives, the job begins to
execute. If a job misses its execution time, that is, if the deferral time is in the past, the job is evicted
from the execution machine and put on hold in the queue.

The specification of a deferral time does not interfere with Condor’s behavior. For example,
if a job is waiting to begin execution when acondor_holdcommand is issued, the job is removed
from the execution machine and is put on hold. If a job is waiting to begin execution when a
condor_suspendcommand is issued, the job continues to wait. When the deferral time arrives,
Condor begins execution for the job, but immediately suspends it.

Missed Execution Window

If a job arrives at its execution machine after the deferral time passes, the job is evicted from the
machine and put on hold in the job queue. This may occur, for example, because the transfer
of needed files took too long due to a slow network connection.A deferral window permits the
execution of a job that misses its deferral time by specifying a window of time within which the job
may begin.

The deferral window is the number of seconds after the deferral time, within which the job

Condor Version 7.7.6 Manual

2.12. Time Scheduling for Job Execution 119

may begin. When a job arrives too late, Condor calculates thedifference in seconds between the
execution machine’s current time and the job’s deferral time. If this difference is less than or equal
to the deferral window, the job immediately begins execution. If this difference is greater than the
deferral window, the job is evicted from the execution machine and is put on hold in the job queue.

Preparation Time

When a job defines a deferral time far in the future and then is matched to an execution machine,
potential computation cycles are lost because the deferredjob has claimed the machine, but is not
actually executing. Other jobs could execute during the interval when the job waits for its deferral
time. To make use of the wasted time, a job defines adeferral_prep_timewith an integer expression
that evaluates to a number of seconds. At this number of seconds before the deferral time, the job
may be matched with a machine.

Usage Examples

Here are examples of how the job deferral time, deferral window, and the preparation time may be
used.

The job’s submit description file specifies that the job is to begin execution on January 1st, 2006
at 12:00 pm:

deferral_time = 1136138400

The Unixdateprogram may be used to calculate a Unix epoch time. The syntaxof the command
to do this depends on the options provided within that flavor of Unix. In some, it appears as

% date --date "MM/DD/YYYY HH:MM:SS" +%s

and in others, it appears as

% date -d "YYYY-MM-DD HH:MM:SS" +%s

MMis a 2-digit month number,DDis a 2-digit day of the month number, andYYYYis a 4-digit
year. HHis the 2-digit hour of the day,MMis the 2-digit minute of the hour, andSS are the 2-digit
seconds within the minute. The characters+%s tell thedateprogram to give the output as a Unix
epoch time.

The job always waits 60 seconds before beginning execution:

deferral_time = (CurrentTime + 60)

Condor Version 7.7.6 Manual

2.12. Time Scheduling for Job Execution 120

In this example, assume that the deferral time is 45 seconds in the past as the job is available.
The job begins execution, because 75 seconds remain in the deferral window:

deferral_window = 120

In this example, a job is scheduled to execute far in the future, on January 1st, 2010 at 12:00
pm. Thedeferral_prep_time attribute delays the job from being matched until 60 secondsbefore
the job is to begin execution.

deferral_time = 1262368800
deferral_prep_time = 60

Limitations

There are some limitations to Condor’s job deferral feature.

• Job deferral is not available for scheduler universe jobs.A scheduler universe job defining the
deferral_time produces a fatal error when submitted.

• The time that the job begins to execute is based on the execution machine’s system clock, and
not the submission machine’s system clock. Be mindful of theramifications when the two
clocks show dramatically different times.

• A job’s JobStatus attribute is always in the running state when job deferral isused. There
is currently no way to distinguish between a job that is executing and a job that is waiting for
its deferral time.

2.12.2 CronTab Scheduling

Condor’s CronTab scheduling functionality allows jobs to be scheduled to execute periodically. A
job’s execution schedule is defined by commands within the submit description file. The notation is
much like that used by the Unixcron daemon. As such, Condor developers are fond of referring to
CronTab scheduling asCrondor. The scheduling of jobs using Condor’s CronTab feature calculates
and utilizes theDeferralTime ClassAd attribute.

Also, unlike the Unixcron daemon, Condor never runs more than one instance of a job at the
same time.

The capability for repetitive or periodic execution of the job is enabled by specifying an
on_exit_removecommand for the job, such that the job does not leave the queueuntil desired.

Condor Version 7.7.6 Manual

2.12. Time Scheduling for Job Execution 121

Submit Command Allowed Values
cron_minute 0 - 59
cron_hour 0 - 23
cron_day_of_month 1 - 31
cron_month 1 - 12
cron_day_of_week 0 - 7 (Sunday is 0 or 7)

Table 2.2: The list of submit commands and their value ranges.

Semantics for CronTab Specification

A job’s execution schedule is defined by a set of specifications within the submit description file.
Condor uses these to calculate aDeferralTime for the job.

Table 2.2 lists the submit commands and acceptable values for these commands. At least one
of these must be defined in order for Condor to calculate aDeferralTime for the job. Once
one CronTab value is defined, the default for all the others uses all the values in the allowed values
ranges.

The day of a job’s execution can be specified by both thecron_day_of_month and the
cron_day_of_weekattributes. The day will be the logical or of both.

The semantics allow more than one value to be specified by using the* operator, ranges, lists,
and steps (strides) within ranges.

The asterisk operator The* (asterisk) operator specifies that all of the allowed valuesare used for
scheduling. For example,

cron_month = *

becomes any and all of the list of possible months: (1,2,3,4,5,6,7,8,9,10,11,12). Thus, a job
runs any month in the year.

Ranges A range creates a set of integers from all the allowed values between two integers separated
by a hyphen. The specified range is inclusive, and the integerto the left of the hyphen must
be less than the right hand integer. For example,

cron_hour = 0-4

represents the set of hours from 12:00 am (midnight) to 4:00 am, or (0,1,2,3,4).

Lists A list is the union of the values or ranges separated by commas. Multiple entries of the same
value are ignored. For example,

Condor Version 7.7.6 Manual

2.12. Time Scheduling for Job Execution 122

cron_minute = 15,20,25,30
cron_hour = 0-3,9-12,15

cron_minute represents (15,20,25,30) andcron_hour represents (0,1,2,3,9,10,11,12,15).

Steps Steps select specific numbers from a range, based on an interval. A step is specified by
appending a range or the asterisk operator with a slash character (/), followed by an integer
value. For example,

cron_minute = 10-30/5
cron_hour = */3

cron_minute specifies every five minutes within the specified range to represent
(10,15,20,25,30). cron_hour specifies every three hours of the day to represent
(0,3,6,9,12,15,18,21).

Preparation Time and Execution Window

Thecron_prep_timecommand is analogous to the deferral time’sdeferral_prep_time command.
It specifies the number of seconds before the deferral time that the job is to be matched and sent
to the execution machine. This permits Condor to make necessary preparations before the deferral
time occurs.

Consider the submit description file example that includes

cron_minute = 0
cron_hour = *
cron_prep_time = 300

The job is scheduled to begin execution at the top of every hour. Note that the setting ofcron_hour
in this example is not required, as the default value will be* , specifying any and every hour of the
day. The job will be matched and sent to an execution machine no more than five minutes before the
next deferral time. For example, if a job is submitted at 9:30am, then the next deferral time will be
calculated to be 10:00am. Condor may attempt to match the jobto a machine and send the job once
it is 9:55am.

As the CronTab scheduling calculates and uses deferral time, jobs may also make use of the
deferral window. The submit commandcron_window is analogous to the submit commanddefer-
ral_window. Consider the submit description file example that includes

cron_minute = 0
cron_hour = *
cron_window = 360

Condor Version 7.7.6 Manual

2.12. Time Scheduling for Job Execution 123

As the previous example, the job is scheduled to begin execution at the top of every hour. Yet with
no preparation time, the job is likely to miss its deferral time. The 6-minute window allows the job
to begin execution, as long as it arrives and can begin within6 minutes of the deferral time, as seen
by the time kept on the execution machine.

Scheduling

When a job using the CronTab functionality is submitted to Condor, use of at least one of the submit
description file commands beginning withcron_ causes Condor to calculate and set a deferral time
for when the job should run. A deferral time is determined based on the current time rounded later
in time to the next minute. The deferral time is the job’sDeferralTime attribute. A new deferral
time is calculated when the job first enters the job queue, when the job is re-queued, or when the job
is released from the hold state. New deferral times forall jobs in the job queue using the CronTab
functionality are recalculated when acondor_reconfigor acondor_restartcommand that affects the
job queue is issued.

A job’s deferral time is not always the same time that a job will receive a match and be sent to the
execution machine. This is because Condor operates on the job queue at times that are independent
of job events, such as when job execution completes. Therefore, Condor may operate on the job
queue just after a job’s deferral time states that it is to begin execution. Condor attempts to start a
job when the following pseudo-code boolean expression evaluates toTrue :

(CurrentTime + SCHEDD_INTERVAL) >= (DeferralTime - CronPr epTime)

If the CurrentTime plus the number of seconds until the next time Condor checks the job
queue is greater than or equal to the time that the job should be submitted to the execution machine,
then the job is to be matched and sent now.

Jobs using the CronTab functionality are not automaticallyre-queued by Condor after their
execution is complete. The submit description file for a job must specify an appropriate
on_exit_removecommand to ensure that a job remains in the queue. This job maintains its original
ClusterId andProcId .

Usage Examples

Here are some examples of the submit commands necessary to schedule jobs to run at multifarious
times. Please note that it is not necessary to explicitly define each attribute; the default value is* .

Run 23 minutes after every two hours, every day of the week:

on_exit_remove = false
cron_minute = 23
cron_hour = 0-23/2
cron_day_of_month = *

Condor Version 7.7.6 Manual

2.13. Job Monitor 124

cron_month = *
cron_day_of_week = *

Run at 10:30pm on each of May 10th to May 20th, as well as every remaining Monday within
the month of May:

on_exit_remove = false
cron_minute = 30
cron_hour = 20
cron_day_of_month = 10-20
cron_month = 5
cron_day_of_week = 2

Run on every 10 minutes and every 6 minutes before noon on January 18th with a 2-minute
preparation time:

on_exit_remove = false
cron_minute = */10,*/6
cron_hour = 0-11
cron_day_of_month = 18
cron_month = 1
cron_day_of_week = *
cron_prep_time = 120

Limitations

The use of the CronTab functionality has all of the same limitations of deferral times, because the
mechanism is based upon deferral times.

• It is impossible to schedule vanilla and standard universejobs at intervals that are smaller than
the interval at which Condor evaluates jobs. This interval is determined by the configuration
variableSCHEDD_INTERVAL. As a vanilla or standard universe job completes execution
and is placed back into the job queue, it may not be placed in the idle state in time. This
problem does not afflict local universe jobs.

• Condor cannot guarantee that a job will be matched in order to make its scheduled deferral
time. A job must be matched with an execution machine just as any other Condor job; if
Condor is unable to find a match, then the job will miss its chance for executing and must wait
for the next execution time specified by the CronTab schedule.

2.13 Job Monitor

The Condor Job Monitor is a Java application designed to allow users to view user log files.

Condor Version 7.7.6 Manual

2.13. Job Monitor 125

To view a user log file, select it using the open file command in the File menu. After the file
is parsed, it will be visually represented. Each horizontalline represents an individual job. The
x-axis is time. Whether a job is running at a particular time is represented by its color at that time –
white for running, black for idle. For example, a job which appears predominantly white has made
efficient progress, whereas a job which appears predominantly black has received an inordinately
small proportion of computational time.

2.13.1 Transition States

A transition state is the state of a job at any time. It is called a "transition" because it is defined by the
two events which bookmark it. There are two basic transitionstates: running and idle. An idle job
typically is a job which has just been submitted into the Condor pool and is waiting to be matched
with an appropriate machine or a job which has vacated from a machine and has been returned to
the pool. A running job, by contrast, is a job which is making active progress.

Advanced users may want a visual distinction between two types of running transitions: "good-
put" or "badput". Goodput is the transition state precedingan eventual job completion or checkpoint.
Badput is the transition state preceding a non-checkpointed eviction event. Note that "badput" is po-
tentially a misleading nomenclature; a job which is not checkpointed by the Condor program may
checkpoint itself or make progress in some other way. To viewthese two transition as distinct
transitions, select the appropriate option from the "View"menu.

2.13.2 Events

There are two basic kinds of events: checkpoint events and error events. Plus advanced users can
ask to see more events.

2.13.3 Selecting Jobs

To view any arbitrary selection of jobs in a job file, use the job selector tool. Jobs appear visually
by order of appearance within the actual text log file. For example, the log file might contain jobs
775.1, 775.2, 775.3, 775.4, and 775.5, which appear in that order. A user who wishes to see only
jobs 775.2 and 775.5 can select only these two jobs in the job selector tool and click the "Ok" or
"Apply" button. The job selector supports double clicking;double click on any single job to see it
drawn in isolation.

2.13.4 Zooming

To view a small area of the log file, zoom in on the area which youwould like to see in greater
detail. You can zoom in, out and do a full zoom. A full zoom redraws the log file in its entirety. For

Condor Version 7.7.6 Manual

2.14. Special Environment Considerations 126

example, if you have zoomed in very close and would like to go all the way back out, you could do
so with a succession of zoom outs or with one full zoom.

There is a difference between using the menu driven zooming and the mouse driven zooming.
The menu driven zooming will recenter itself around the current center, whereas mouse driven zoom-
ing will recenter itself (as much as possible) around the mouse click. To help you re-find the clicked
area, a box will flash after the zoom. This is called the "zoom finder" and it can be turned off in the
zoom menu if you prefer.

2.13.5 Keyboard and Mouse Shortcuts

1. The Keyboard shortcuts:

• Arrows - an approximate ten percent scrollbar movement

• PageUp and PageDown - an approximate one hundred percent scrollbar movement

• Control + Left or Right - approximate one hundred percent scrollbar movement

• End and Home - scrollbar movement to the vertical extreme

• Others - as seen beside menu items

2. The mouse shortcuts:

• Control + Left click - zoom in

• Control + Right click - zoom out

• Shift + left click - re-center

2.14 Special Environment Considerations

2.14.1 AFS

The Condor daemons do not run authenticated to AFS; they do not possess AFS tokens. Therefore,
no child process of Condor will be AFS authenticated. The implication of this is that you must set
file permissions so that your job can access any necessary files residing on an AFS volume without
relying on having your AFS permissions.

If a job you submit to Condor needs to access files residing in AFS, you have the following
choices:

1. Copy the needed files from AFS to either a local hard disk where Condor can access them
using remote system calls (if this is a standard universe job), or copy them to an NFS volume.

Condor Version 7.7.6 Manual

2.14. Special Environment Considerations 127

2. If the files must be kept on AFS, then set a host ACL (using theAFS fs setaclcommand)
on the subdirectory to serve as the current working directory for the job. If this is a standard
universe job, then the host ACL needs to give read/write permission to any process on the
submit machine. If this is a vanilla universe job, then set the ACL such that any host in the
pool can access the files without being authenticated. If youdo not know how to use an AFS
host ACL, ask the person at your site responsible for the AFS configuration.

The Condor Team hopes to improve upon how Condor deals with AFS authentication in a sub-
sequent release.

Please see section 3.12.1 on page 400 in the Administrators Manual for further discussion of this
problem.

2.14.2 NFS

If the current working directory when a job is submitted, as with condor_submit, is accessed via
an NFS automounter, Condor may have problems if the automounter later decides to unmount the
volume before the job has completed. This is becausecondor_submitlikely has stored the dynamic
mount point as the job’s initial current working directory,and this mount point could become auto-
matically unmounted by the automounter.

There is a simple work around. When submitting the job, use the initialdir command in the sub-
mit description file to point to the stable access point. For example, suppose the NFS automounter is
configured to mount a volume at mount point/a/myserver.company.com/vol1/johndoe
whenever the directory/home/johndoe is accessed. Adding the following line to the submit
description file solves the problem.

initialdir = /home/johndoe

As of Condor version 7.4.0, Condor attempts to flush the NFS cache on a submit machine in
order to refresh a job’s initial working directory. This allows files written by the job into an NFS
mounted initial working directory to be immediately visible on the submit machine. Since the flush
operation can require multiple round trips to the NFS server, it is expensive. Therefore, a job may
disable the flushing by setting

+IwdFlushNFSCache = False

in the job’s submit description file. See page 961 for a definition of the job ClassAd attribute.

2.14.3 Condor Daemons That Do Not Run as root

Condor is normally installed such that the Condor daemons have root permission. This allows
Condor to run the condor_shadow process and your job with your UID and file access rights. When
Condor is started as root, your Condor jobs can access whatever files you can.

Condor Version 7.7.6 Manual

2.14. Special Environment Considerations 128

However, it is possible that whomever installed Condor did not have root access, or decided not
to run the daemons as root. That is unfortunate, since Condoris designed to be run as the Unix user
root. To see if Condor is running as root on a specific machine,enter the command

condor_status -master -l <machine-name>

wheremachine-name is the name of the specified machine. This command displays a con-
dor_master ClassAd; if the attributeRealUid equals zero, then the Condor daemons are indeed
running with root access. If theRealUid attribute is not zero, then the Condor daemons do not
have root access.

NOTE: The Unix programps is not an effective method of determining if Condor is running
with root access. When usingps, it may often appear that the daemons are running as the condor
user instead of root. However, note that theps, command shows the currenteffectiveowner of the
process, not thereal owner. (See thegetuid(2) andgeteuid(2) Unix man pages for details.) In
Unix, a process running under the real UID of root may switch its effective UID. (See theseteuid(2)
man page.) For security reasons, the daemons only set the effective UID to root when absolutely
necessary (to perform a privileged operation).

If they are not running with root access, you need to make any/all files and/or directories that
your job will touch readable and/or writable by the UID (userid) specified by the RealUid attribute.
Often this may mean using the Unix commandchmod 777 on the directory where you submit
your Condor job.

2.14.4 Job Leases

A job lease specifies how long a given job will attempt to run ona remote resource, even if that
resource loses contact with the submitting machine. Similarly, it is the length of time the submitting
machine will spend trying to reconnect to the (now disconnected) execution host, before the submit-
ting machine gives up and tries to claim another resource to run the job. The goal aims at run only
once semantics, so that thecondor_schedddaemon does not allow the same job to run on multiple
sites simultaneously.

If the submitting machine is alive, it periodically renews the job lease, and all is well. If the
submitting machine is dead, or the network goes down, the joblease will no longer be renewed.
Eventually the lease expires. While the lease has not expired, the execute host continues to try to
run the job, in the hope that the submit machine will come backto life and reconnect. If the job
completes and the lease has not expired, yet the submitting machine is still dead, thecondor_starter
daemon will wait for acondor_shadowdaemon to reconnect, before sending final information on
the job, and its output files. Should the lease expire, thecondor_startddaemon kills off thecon-
dor_starterdaemon and user job.

A default value equal to 20 minutes exists for a job’s ClassAdattribute
job_lease_duration , or this attribute may be set in the submit description file tokeep
a job running in the case that the submit side no longer renewsthe lease. There is a trade off in
setting the value ofjob_lease_duration . Too small a value, and the job might get killed

Condor Version 7.7.6 Manual

2.15. Potential Problems 129

before the submitting machine has a chance to recover. Forward progress on the job will be lost.
Too large a value, and an execute resource will be tied up waiting for the job lease to expire. The
value should be chosen based on how long the user is willing totie up the execute machines, how
quickly submit machines come back up, and how much work wouldbe lost if the lease expires, the
job is killed, and the job must start over from its beginning.

As a special case, a submit description file setting of

job_lease_duration = 0

as well as utilizing submission other thancondor_submitthat do not setJobLeaseDuration
(such as using the web services interface) results in the corresponding job ClassAd attribute to be
explicitly undefined. This has the further effect of changing the duration of a claim lease, the amount
of time that the execution machine waits before dropping a claim due to missing keep alive messages.

2.15 Potential Problems

2.15.1 Renaming of argv[0]

When Condor starts up your job, it renames argv[0] (which usually contains the name of the pro-
gram) to condor_exec. This is convenient when examining a machine’s processes with the Unix
commandps; the process is easily identified as a Condor job.

Unfortunately, some programs read argv[0] expecting theirown program name and get confused
if they find something unexpected like condor_exec.

Condor Version 7.7.6 Manual

CHAPTER

THREE

Administrators’ Manual

3.1 Introduction

This is the Condor Administrator’s Manual for Unix. Its purpose is to aid in the installation and
administration of a Condor pool. For help on using Condor, see the Condor User’s Manual.

A Condor pool is comprised of a single machine which serves asthecentral manager, and an
arbitrary number of other machines that have joined the pool. Conceptually, the pool is a collection
of resources (machines) and resource requests (jobs). The role of Condor is to match waiting re-
quests with available resources. Every part of Condor sendsperiodic updates to the central manager,
the centralized repository of information about the state of the pool. Periodically, the central man-
ager assesses the current state of the pool and tries to matchpending requests with the appropriate
resources.

Each resource has an owner, the user who works at the machine.This person has absolute power
over their own resource and Condor goes out of its way to minimize the impact on this owner caused
by Condor. It is up to the resource owner to define a policy for when Condor requests will serviced
and when they will be denied.

Each resource request has an owner as well: the user who submitted the job. These people want
Condor to provide as many CPU cycles as possible for their work. Often the interests of the resource
owners are in conflict with the interests of the resource requesters.

The job of the Condor administrator is to configure the Condorpool to find the happy medium
that keeps both resource owners and users of resources satisfied. The purpose of this manual is to
help you understand the mechanisms that Condor provides to enable you to find this happy medium
for your particular set of users and resource owners.

130

3.1. Introduction 131

3.1.1 The Different Roles a Machine Can Play

Every machine in a Condor pool can serve a variety of roles. Most machines serve more than one
role simultaneously. Certain roles can only be performed bysingle machines in your pool. The
following list describes what these roles are and what resources are required on the machine that is
providing that service:

Central Manager There can be only one central manager for your pool. The machine is the col-
lector of information, and the negotiator between resources and resource requests. These two
halves of the central manager’s responsibility are performed by separate daemons, so it would
be possible to have different machines providing those two services. However, normally they
both live on the same machine. This machine plays a very important part in the Condor pool
and should be reliable. If this machine crashes, no further matchmaking can be performed
within the Condor system (although all current matches remain in effect until they are broken
by either party involved in the match). Therefore, choose for central manager a machine that
is likely to be up and running all the time, or at least one thatwill be rebooted quickly if some-
thing goes wrong. The central manager will ideally have a good network connection to all the
machines in your pool, since they all send updates over the network to the central manager.
All queries go to the central manager.

Execute Any machine in your pool (including your Central Manager) can be configured for whether
or not it should execute Condor jobs. Obviously, some of yourmachines will have to serve
this function or your pool won’t be very useful. Being an execute machine doesn’t require
many resources at all. About the only resource that might matter is disk space, since if the
remote job dumps core, that file is first dumped to the local disk of the execute machine before
being sent back to the submit machine for the owner of the job.However, if there isn’t much
disk space, Condor will simply limit the size of the core file that a remote job will drop. In
general the more resources a machine has (swap space, real memory, CPU speed, etc.) the
larger the resource requests it can serve. However, if thereare requests that don’t require many
resources, any machine in your pool could serve them.

Submit Any machine in your pool (including your Central Manager) can be configured for whether
or not it should allow Condor jobs to be submitted. The resource requirements for a submit
machine are actually much greater than the resource requirements for an execute machine.
First of all, every job that you submit that is currently running on a remote machine generates
another process on your submit machine. So, if you have lots of jobs running, you will need a
fair amount of swap space and/or real memory. In addition allthe checkpoint files from your
jobs are stored on the local disk of the machine you submit from. Therefore, if your jobs have
a large memory image and you submit a lot of them, you will needa lot of disk space to hold
these files. This disk space requirement can be somewhat alleviated with a checkpoint server
(described below), however the binaries of the jobs you submit are still stored on the submit
machine.

Checkpoint Server One machine in your pool can be configured as a checkpoint server. This is
optional, and is not part of the standard Condor binary distribution. The checkpoint server is
a centralized machine that stores all the checkpoint files for the jobs submitted in your pool.

Condor Version 7.7.6 Manual

3.1. Introduction 132

This machine should have lots of disk space and a good networkconnection to the rest of your
pool, as the traffic can be quite heavy.

Now that you know the various roles a machine can play in a Condor pool, we will describe the
actual daemons within Condor that implement these functions.

3.1.2 The Condor Daemons

The following list describes all the daemons and programs that could be started under Condor and
what they do:

condor_masterThis daemon is responsible for keeping all the rest of the Condor daemons running
on each machine in your pool. It spawns the other daemons, andperiodically checks to see
if there are new binaries installed for any of them. If there are, the master will restart the
affected daemons. In addition, if any daemon crashes, the master will send e-mail to the
Condor Administrator of your pool and restart the daemon. Thecondor_masteralso supports
various administrative commands that let you start, stop orreconfigure daemons remotely. The
condor_masterwill run on every machine in your Condor pool, regardless of what functions
each machine are performing.

condor_startdThis daemon represents a given resource (namely, a machine capable of running
jobs) to the Condor pool. It advertises certain attributes about that resource that are used to
match it with pending resource requests. The startd will runon any machine in your pool
that you wish to be able to execute jobs. It is responsible forenforcing the policy that re-
source owners configure which determines under what conditions remote jobs will be started,
suspended, resumed, vacated, or killed. When the startd is ready to execute a Condor job, it
spawns thecondor_starter, described below.

condor_starterThis program is the entity that actually spawns the remote Condor job on a given
machine. It sets up the execution environment and monitors the job once it is running. When
a job completes, the starter notices this, sends back any status information to the submitting
machine, and exits.

condor_scheddThis daemon represents resource requests to the Condor pool. Any machine that
you wish to allow users to submit jobs from needs to have acondor_scheddrunning. When
users submit jobs, they go to the schedd, where they are stored in the job queue, which the
schedd manages. Various tools to view and manipulate the jobqueue (such ascondor_submit,
condor_q, or condor_rm) all must connect to the schedd to do their work. If the scheddis
down on a given machine, none of these commands will work.

Thecondor_scheddadvertises the number of waiting jobs in its job queue and is responsible
for claiming available resources to serve those requests. Once a schedd has been matched
with a given resource, the schedd spawns acondor_shadow(described below) to serve that
particular request.

Condor Version 7.7.6 Manual

3.1. Introduction 133

condor_shadowThis program runs on the machine where a given request was submitted and acts
as the resource manager for the request. Jobs that are linkedfor Condor’s standard universe,
which perform remote system calls, do so via thecondor_shadow. Any system call performed
on the remote execute machine is sent over the network, back to thecondor_shadowwhich
actually performs the system call (such as file I/O) on the submit machine, and the result is
sent back over the network to the remote job. In addition, theshadow is responsible for making
decisions about the request (such as where checkpoint files should be stored, how certain files
should be accessed, etc).

condor_collectorThis daemon is responsible for collecting all the information about the status
of a Condor pool. All other daemons periodically send ClassAd updates to the collector.
These ClassAds contain all the information about the state of the daemons, the resources
they represent or resource requests in the pool (such as jobsthat have been submitted to a
given schedd). Thecondor_statuscommand can be used to query the collector for specific
information about various parts of Condor. In addition, theCondor daemons themselves query
the collector for important information, such as what address to use for sending commands to
a remote machine.

condor_negotiatorThis daemon is responsible for all the match-making within the Condor system.
Periodically, the negotiator begins anegotiation cycle, where it queries the collector for the
current state of all the resources in the pool. It contacts each schedd that has waiting resource
requests in priority order, and tries to match available resources with those requests. The
negotiator is responsible for enforcing user priorities inthe system, where the more resources
a given user has claimed, the less priority they have to acquire more resources. If a user with
a better priority has jobs that are waiting to run, and resources are claimed by a user with a
worse priority, the negotiator can preempt that resource and match it with the user with better
priority.

NOTE: A higher numerical value of the user priority in Condor translate into worse priority
for that user. The best priority you can have is 0.5, the lowest numerical value, and your
priority gets worse as this number grows.

condor_kbddThis daemon is used on Linux and Windows. On those platforms,thecondor_startd
frequently cannot determine console (keyboard or mouse) activity directly from the system,
and requires a separate process to do so. On Linux, thecondor_kbddconnects to the X Server
and periodically checks to see if there has been any activity. On Windows, thecondor_kbdd
runs as the logged-in user and registers with the system to receive keyboard and mouse events.
When it detects console activity, thecondor_kbddsends a command to the startd. That way,
the startd knows the machine owner is using the machine againand can perform whatever
actions are necessary, given the policy it has been configured to enforce.

condor_ckpt_serverThis is the checkpoint server. It services requests to storeand retrieve check-
point files. If your pool is configured to use a checkpoint server but that machine (or the server
itself is down) Condor will revert to sending the checkpointfiles for a given job back to the
submit machine.

condor_gridmanagerThis daemon handles management and execution of allgrid universe jobs.
Thecondor_scheddinvokes thecondor_gridmanagerwhen there aregrid universe jobs in the

Condor Version 7.7.6 Manual

3.1. Introduction 134

queue, and thecondor_gridmanagerexits when there are no moregrid universe jobs in the
queue.

condor_creddThis daemon runs on Windows platforms to manage password storage in a secure
manner.

condor_had This daemon implements the high availability of a pool’s central manager through
monitoring the communication of necessary daemons. If the current, functioning, central
manager machine stops working, then this daemon ensures that another machine takes its
place, and becomes the central manager of the pool.

condor_replicationThis daemon assists thecondor_haddaemon by keeping an updated copy of
the pool’s state. This state provides a better transition from one machine to the next, in the
event that the central manager machine stops working.

condor_transfererThis short lived daemon is invoked by thecondor_replicationdaemon to ac-
complish the task of transferring a state file before exiting.

condor_procdThis daemon controls and monitors process families within Condor. Its use is op-
tional in general but it must be used if privilege separation(see Section 3.6.14) or group-ID
based tracking (see Section 3.12.11) is enabled.

condor_job_routerThis daemon transformsvanilla universe jobs intogrid universe jobs, such that
the transformed jobs are capable of running elsewhere, as appropriate.

condor_lease_managerThis daemon manages leases in a persistent manner. Leases are represented
by ClassAds.

condor_roosterThis daemon wakes hibernating machines based upon configuration details.

condor_defragThis daemon manages draining of machines with fragmented partitionable slots so
that they become available for jobs requiring a whole machine or larger fraction of a machine.

condor_shared_portThis daemon listens for incoming TCP packets on behalf of Condor daemons,
thereby reducing the number of required ports that must be opened when Condor is accessible
through a firewall.

When compiled from source code, the following daemons may becompiled in to provide op-
tional functionality.

condor_hdfsThis daemon manages the configuration of a Hadoop file system as well as the invo-
cation of a properly configured Hadoop file system.

condor_quill This daemon builds and manages a database that represents a copy of the Condor job
queue. Thecondor_qandcondor_historytools can then query the database.

condor_dbmsdThis daemon assists thecondor_quilldaemon.

See figure 3.1 for a graphical representation of the pool architecture.

Condor Version 7.7.6 Manual

3.2. Installation 135

Condor_Syscall_Library

User’s Code

User’s Job

Controlling Daemons
Controlling Daemons

Condor_Shadow Process

Central Manager

Submit Machine Execution Machine

Checkpoint File is

All System Calls
Performed As
Remote Procedure
Calls back to the
Submit Machine.

Saved to Disk

Control via Unix Signals to alert
job when to checkpoint.

Condor_Collector

Condor_Negotiator

Figure 3.1: Pool Architecture

3.2 Installation

This section contains the instructions for installing Condor. The installation will have a default con-
figuration that can be customized. Sections of the manual that follow this one explain customization.

Read this entire section before starting installation.

Please read the copyright and disclaimer information in section on page xv of the manual.
Installation and use of Condor is acknowledgment that you have read and agree to the terms.

3.2.1 Obtaining Condor

The first step to installing Condor is to download it from the Condor web site,
http://www.cs.wisc.edu/condor. The downloads are available from the downloads page, at
http://www.cs.wisc.edu/condor/downloads/.

The platform-dependent Condor files are currently available from two sites. The main site is
at the University of Wisconsin–Madison, Madison, Wisconsin, USA. A second site is the Istituto
Nazionale di Fisica Nucleare Sezione di Bologna, Bologna, Italy. Please choose the site nearest to
you.

Make note of the location of where you download the binary into.

Condor Version 7.7.6 Manual

http://www.cs.wisc.edu/condor
http://www.cs.wisc.edu/condor/downloads/

3.2. Installation 136

The Condor binary distribution is packaged in the followingfiles and directories:

DOC directions on where to find Condor documentation

INSTALL these installation directions

LICENSE-2.0.TXT the licensing agreement. By installing Condor, you agree tothe contents of
this file

README general information

condor_configure the Perl script used to install and configure Condor

condor_install the Perl script used to install Condor

examples directory containing C, Fortran and C++ example programs torun with Condor

bin directory which contains the distribution Condor user programs.

sbin directory which contains the distribution Condor system programs.

etc directory which contains the distribution Condor configuration data.

lib directory which contains the distribution Condor libraries.

libexec directory which contains the distribution Condor programsthat are only used internally
by Condor.

man directory which contains the distribution Condor manual pages.

src directory which contains the distribution Condor source code for CHIRP and DRMAA.

Before you install, please consider joining the condor-world mailing list. Traffic on this list is
kept to an absolute minimum. It is only used to announce new releases of Condor. To subscribe,
send a message to majordomo@cs.wisc.edu with the body:

subscribe condor-world

3.2.2 Preparation

Before installation, make a few important decisions about the basic layout of your pool. The deci-
sions answer the questions:

1. What machine will be the central manager?

2. What machines should be allowed to submit jobs?

3. Will Condor run as root or not?

Condor Version 7.7.6 Manual

mailto:majordomo@cs.wisc.edu

3.2. Installation 137

4. Who will be administering Condor on the machines in your pool?

5. Will you have a Unix user named condor and will its home directory be shared?

6. Where should the machine-specific directories for Condorgo?

7. Where should the parts of the Condor system be installed?

• Configuration files

• Release directory

– user binaries

– system binaries

– lib directory

– etc directory

• Documentation

8. Am I using AFS?

9. Do I have enough disk space for Condor?

1. What machine will be the central manager?One machine in your pool must be the central
manager. Install Condor on this machine first. This is the centralized information reposi-
tory for the Condor pool, and it is also the machine that does match-making between available
machines and submitted jobs. If the central manager machinecrashes, any currently active
matches in the system will keep running, but no new matches will be made. Moreover, most
Condor tools will stop working. Because of the importance ofthis machine for the proper
functioning of Condor, install the central manager on a machine that is likely to stay up all the
time, or on one that will be rebooted quickly if it does crash.

Also consider network traffic and your network layout when choosing your central manager.
All the daemons send updates (by default, every 5 minutes) tothis machine. Memory require-
ments for the central manager differ by the number of machines in the pool. A pool with
up to about 100 machines will require approximately 25 Mbytes of memory for the central
manager’s tasks. A pool with about 1000 machines will require approximately 100 Mbytes of
memory for the central manager’s tasks.

A faster CPU will improve the time to do matchmaking.

2. Which machines should be allowed to submit jobs?Condor can restrict the machines allowed
to submit jobs. Alternatively, it can allow any machine the network allows to connect to a
submit machine to submit jobs. If the Condor pool is behind a firewall, and all machines
inside the firewall are trusted, theHOSTALLOW_WRITEconfiguration entry can be set to *.
Otherwise, it should be set to reflect the set of machines permitted to submit jobs to this pool.
Condor tries to be secure by default, so out of the box, the configuration file ships with an
invalid definition for this configuration variable. This invalid value allows no machine to con-
nect and submit jobs, so after installation, change this entry. Look for the entry defined with
the valueYOU_MUST_CHANGE_THIS_INVALID_CONDOR_CONFIGURATION_VALUE.

Condor Version 7.7.6 Manual

3.2. Installation 138

3. Will Condor run as root or not? Start up the Condor daemons as the Unix user root. Without
this, Condor can do very little to enforce security and policy decisions. You can install Condor
as any user, however there are both serious security and performance consequences. Please
see section 3.6.13 on page 361 in the manual for the details and ramifications of running
Condor as a Unix user other than root.

4. Who will administer Condor? Either root will be administering Condor directly, or someone
else would be acting as the Condor administrator. If root hasdelegated the responsibility to
another person, keep in mind that as long as Condor is startedup as root, it should be clearly
understood that whoever has the ability to edit the condor configuration files can effectively
run arbitrary programs as root.

5. Will you have a Unix user named condor, and will its home directory be shared?To sim-
plify installation of Condor, create a Unix user named condor on all machines in the pool.
The Condor daemons will create files (such as the log files) owned by this user, and the home
directory can be used to specify the location of files and directories needed by Condor. The
home directory of this user can either be shared among all machines in your pool, or could
be a separate home directory on the local partition of each machine. Both approaches have
advantages and disadvantages. Having the directories centralized can make administration
easier, but also concentrates the resource usage such that you potentially need a lot of space
for a single shared home directory. See the section below on machine-specific directories for
more details.

Note that the user condor must not be an account into which a person can log in. If a person
can log in as user condor, it permits a major security breach,in that the user condor could
submit jobs that run as any other user, providing complete access to the user’s data by the
jobs. A standard way of not allowing log in to an account on Unix platforms is to enter an
invalid shell in the password file.

If you choose not to create a user named condor, then you must specify either via the
CONDOR_IDSenvironment variable or theCONDOR_IDSconfig file setting which uid.gid
pair should be used for the ownership of various Condor files.See section 3.6.13 on UIDs in
Condor on page 360 in the Administrator’s Manual for details.

6. Where should the machine-specific directories for Condorgo? Condor needs a few directo-
ries that are unique on every machine in your pool. These arespool , log , andexecute .
Generally, all three are subdirectories of a single machinespecific directory called the local
directory (specified by theLOCAL_DIR macro in the configuration file). Each should be
owned by the user that Condor is to be run as.

If you have a Unix user named condor with a local home directory on each machine, the
LOCAL_DIRcould just be user condor’s home directory (LOCAL_DIR= $(TILDE) in the
configuration file). If this user’s home directory is shared among all machines in your pool,
you would want to create a directory for each host (named by host name) for the local directory
(for example,LOCAL_DIR= $(TILDE) /hosts/$(HOSTNAME)). If you do not have a con-
dor account on your machines, you can put these directories wherever you’d like. However,
where to place them will require some thought, as each one hasits own resource needs:

execute This is the directory that acts as the current working directory for any Condor jobs
that run on a given execute machine. The binary for the remotejob is copied into this

Condor Version 7.7.6 Manual

3.2. Installation 139

directory, so there must be enough space for it. (Condor willnot send a job to a machine
that does not have enough disk space to hold the initial binary). In addition, if the remote
job dumps core for some reason, it is first dumped to the execute directory before it is
sent back to the submit machine. So, put the execute directory on a partition with enough
space to hold a possible core file from the jobs submitted to your pool.

spool Thespool directory holds the job queue and history files, and the checkpoint files
for all jobs submitted from a given machine. As a result, diskspace requirements for
the spool directory can be quite large, particularly if users are submitting jobs with
very large executables or image sizes. By using a checkpointserver (see section 3.8
on Installing a Checkpoint Server on page 379 for details), you can ease the disk space
requirements, since all checkpoint files are stored on the server instead of the spool
directories for each machine. However, the initial checkpoint files (the executables for
all the clusters you submit) are still stored in the spool directory, so you will need some
space, even with a checkpoint server.

log Each Condor daemon writes its own log file, and each log file is placed in thelog
directory. You can specify what size you want these files to grow to before they are
rotated, so the disk space requirements of the directory areconfigurable. The larger
the log files, the more historical information they will holdif there is a problem,
but the more disk space they use up. If you have a network file system installed at
your pool, you might want to place the log directories in a shared location (such as
/usr/local/condor/logs/$(HOSTNAME)), so that you can view the log files
from all your machines in a single location. However, if you take this approach, you will
have to specify a local partition for thelock directory (see below).

lock Condor uses a small number of lock files to synchronize accessto certain files that are
shared between multiple daemons. Because of problems encountered with file lock-
ing and network file systems (particularly NFS), these lock files should be placed on a
local partition on each machine. By default, they are placedin the log directory. If
you place yourlog directory on a network file system partition, specify a localpar-
tition for the lock files with theLOCK parameter in the configuration file (such as
/var/lock/condor).

Generally speaking, it is recommended that you do not put these directories (exceptlock)
on the same partition as/var , since if the partition fills up, you will fill up/var as well.
This will cause lots of problems for your machines. Ideally,you will have a separate partition
for the Condor directories. Then, the only consequence of filling up the directories will be
Condor’s malfunction, not your whole machine.

7. Where should the parts of the Condor system be installed? • Configuration Files

• Release directory

– User Binaries

– System Binaries

– lib Directory

– etc Directory

• Documentation

Condor Version 7.7.6 Manual

3.2. Installation 140

Configuration Files There are a number of configuration files that allow you different levels
of control over how Condor is configured at each machine in your pool. The global
configuration file is shared by all machines in the pool. For ease of administration, this
file should be located on a shared file system, if possible. In addition, there is a local
configuration file for each machine, where you can override settings in the global file.
This allows you to have different daemons running, different policies for when to start
and stop Condor jobs, and so on. You can also have configuration files specific to each
platform in your pool. See section 3.12.3 on page 403 about Configuring Condor for
Multiple Platforms for details.

In general, there are a number of places that Condor will lookto find its configura-
tion files. The first file it looks for is the global configuration file. These locations are
searched in order until a configuration file is found. If none contain a valid configuration
file, Condor will print an error message and exit:

1. File specified in theCONDOR_CONFIGenvironment variable

2. $(HOME)/.condor/condor_config

3. /etc/condor/condor_config

4. /usr/local/etc/condor_config

5. ˜condor/condor_config

6. $(GLOBUS_LOCATION)/etc/condor_config

If you specify a file in theCONDOR_CONFIGenvironment variable and there’s a prob-
lem reading that file, Condor will print an error message and exit right away, instead of
continuing to search the other options. However, if noCONDOR_CONFIGenvironment
variable is set, Condor will search through the other options.

Next, Condor tries to load the local configuration file(s). The only way to
specify the local configuration file(s) is in the global configuration file, with the
LOCAL_CONFIG_FILE macro. If that macro is not set, no local configuration file
is used. This macro can be a list of files or a single file.

Release DirectoryEvery binary distribution contains a contains five subdirectories: bin ,
etc , lib , sbin , andlibexec . Wherever you choose to install these five directories
we call the release directory (specified by theRELEASE_DIR macro in the configura-
tion file). Each release directory contains platform-dependent binaries and libraries, so
you will need to install a separate one for each kind of machine in your pool. For ease of
administration, these directories should be located on a shared file system, if possible.

• User Binaries:
All of the files in thebin directory are programs the end Condor users should ex-
pect to have in their path. You could either put them in a well known location (such
as/usr/local/condor/bin) which you have Condor users add to theirPATH
environment variable, or copy those files directly into a well known place already
in the user’s PATHs (such as/usr/local/bin). With the above examples, you
could also leave the binaries in/usr/local/condor/bin and put in soft links
from /usr/local/bin to point to each program.

• System Binaries:

Condor Version 7.7.6 Manual

3.2. Installation 141

All of the files in thesbin directory are Condor daemons and agents, or programs
that only the Condor administrator would need to run. Therefore, add these pro-
grams only to thePATHof the Condor administrator.

• Private Condor Binaries:
All of the files in thelibexec directory are Condor programs that should never
be run by hand, but are only used internally by Condor.

• lib Directory:
The files in thelib directory are the Condor libraries that must be linked in with
user jobs for all of Condor’s checkpointing and migration features to be used.lib
also contains scripts used by thecondor_compileprogram to help re-link jobs with
the Condor libraries. These files should be placed in a location that is world-
readable, but they do not need to be placed in anyone’sPATH. Thecondor_compile
script checks the configuration file for the location of thelib directory.

• etc Directory:
etc contains anexamples subdirectory which holds various example configu-
ration files and other files used for installing Condor.etc is the recommended
location to keep the master copy of your configuration files. You can put in soft
links from one of the places mentioned above that Condor checks automatically to
find its global configuration file.

Documentation The documentation provided with Condor is currently available in HTML,
Postscript and PDF (Adobe Acrobat). It can be locally installed wherever is cus-
tomary at your site. You can also find the Condor documentation on the web at:
http://www.cs.wisc.edu/condor/manual.

7. Am I using AFS? If you are using AFS at your site, be sure to read the section 3.12.1 on
page 399 in the manual. Condor does not currently have a way toauthenticate itself to AFS. A
solution is not ready for Version 7.7.6. This implies that you are probably not going to want to
have theLOCAL_DIR for Condor on AFS. However, you can (and probably should) have the
CondorRELEASE_DIRon AFS, so that you can share one copy of those files and upgrade
them in a centralized location. You will also have to do something special if you submit jobs
to Condor from a directory on AFS. Again, read manual section3.12.1 for all the details.

8. Do I have enough disk space for Condor?Condor takes up a fair amount of space. This is an-
other reason why it is a good idea to have it on a shared file system. The compressed down-
loads currently range from a low of about 100 Mbytes for Windows to about 500 Mbytes for
Linux. The compressed source code takes approximately 16 Mbytes.

In addition, you will need a lot of disk space in the local directory of any machines that are
submitting jobs to Condor. See question 6 above for details on this.

3.2.3 Newer Unix Installation Procedure

The Perl scriptcondor_configureinstalls Condor. Command-line arguments specify all needed in-
formation to this script. The script can be executed multiple times, to modify or further set the

Condor Version 7.7.6 Manual

http://www.cs.wisc.edu/condor/manual

3.2. Installation 142

configuration.condor_configurehas been tested using Perl 5.003. Use this or a more recent version
of Perl.

After download, all the files are in a compressed, tar format.They need to be untarred, as

tar xzf completename.tar.gz

After untarring, the directory will have the Perl scriptscondor_configureandcondor_install, as well
as a “bin”, “etc”, “examples”, “include”, “lib”, “libexec”, “man”, “sbin”, “sql” and “src” subdirec-
tories.

condor_configureandcondor_installare the same program, but have different default behav-
iors. condor_installis identical to running “condor_configure–install=.”. condor_configureand
condor_installwork on above directories (“sbin”, etc.). As the names imply, condor_installis used
to install Condor, whereascondor_configureis used to modify the configuration of an existing Con-
dor install.

condor_configureandcondor_installare completely command-line driven; it is not interactive.
Several command-line arguments are always needed withcondor_configureandcondor_install. The
argument

--install=/path/to/release.

specifies the path to the Condor release directories (see above). The default forcondor_installis
“–install=.”. The argument

--install-dir=directory

or

--prefix=directory

specifies the path to the install directory.

The argument

--local-dir=directory

specifies the path to the local directory.

The–typeoption tocondor_configurespecifies one or more of the roles that a machine may take
on within the Condor pool: central manager, submit or execute. These options are given in a comma
separated list. So, if a machine is both a submit and execute machine, the proper command-line
option is

Condor Version 7.7.6 Manual

3.2. Installation 143

--type=manager,execute

Install Condor on the central manager machine first. If Condor will run as root in this pool (Item
3 above), runcondor_installas root, and it will install and set the file permissions correctly. On the
central manager machine, runcondor_installas follows.

% condor_install --prefix=~condor \
--local-dir=/scratch/condor --type=manager

To update the above Condor installation, for example, to also be submit machine:

% condor_configure --prefix=~condor \
--local-dir=/scratch/condor --type=manager,submit

As in the above example, the central manager can also be a submit point or and execute machine,
but this is only recommended for very small pools. If this is the case, the–type option changes to
manager,execute or manager,submit or manager,submit,execute .

After the central manager is installed, the execute and submit machines should then be config-
ured. Decisions about whether to run Condor as root should beconsistent throughout the pool. For
each machine in the pool, run

% condor_install --prefix=~condor \
--local-dir=/scratch/condor --type=execute,submit

See thecondor_configuremanual page in section 10 on page 762 for details.

3.2.4 Starting Condor Under Unix After Installation

Now that Condor has been installed on the machine(s), there are a few things to check before starting
up Condor.

1. Read through the<release_dir >/etc/condor_config file. There are a lot of pos-
sible settings and you should at least take a look at the first two main sections to make sure
everything looks okay. In particular, you might want to set up security for Condor. See the
section 3.6.1 on page 326 to learn how to do this.

2. For Linux platforms, run thecondor_kbddto monitor keyboard and mouse activity on all
machines within the pool that will run acondor_startd; these are machines that execute jobs.
To do this, the subsystemKBDDwill need to be added to theDAEMON_LISTconfiguration
variable definition.

For Unix platforms other than Linux, Condor can monitor the activity of your mouse and
keyboard, provided that you tell it where to look. You do thiswith theCONSOLE_DEVICES

Condor Version 7.7.6 Manual

3.2. Installation 144

entry in the condor_startd section of the configuration file.On most platforms, reasonable
defaults are provided. For example, the default device for the mouse is ’mouse’, since most in-
stallations have a soft link from/dev/mouse that points to the right device (such astty00
if you have a serial mouse,psaux if you have a PS/2 bus mouse, etc). If you do not have
a /dev/mouse link, you should either create one (you will be glad you did),or change the
CONSOLE_DEVICESentry in Condor’s configuration file. This entry is a comma separated
list, so you can have any devices in/dev count as ’console devices’ and activity will be
reported in the condor_startd’s ClassAd asConsoleIdleTime .

3. (Linux only) Condor needs to be able to find theutmp file. According to the Linux File
System Standard, this file should be/var/run/utmp . If Condor cannot find it there, it
looks in/var/adm/utmp . If it still cannot find it, it gives up. So, if your Linux distribution
places this file somewhere else, be sure to put a soft link from/var/run/utmp to point to
the real location.

To start up the Condor daemons, execute<release_dir >/sbin/condor_master . This
is the Condor master, whose only job in life is to make sure theother Condor daemons are running.
The master keeps track of the daemons, restarts them if they crash, and periodically checks to see if
you have installed new binaries (and if so, restarts the affected daemons).

If you are setting up your own pool, you should start Condor onyour central manager machine
first. If you have done a submit-only installation and are adding machines to an existing pool, the
start order does not matter.

To ensure that Condor is running, you can run either:

ps -ef | egrep condor_

or

ps -aux | egrep condor_

depending on your flavor of Unix. On a central manager machinethat can submit jobs as well as
execute them, there will be processes for:

• condor_master

• condor_collector

• condor_negotiator

• condor_startd

• condor_schedd

On a central manager machine that does not submit jobs nor execute them, there will be processes
for:

Condor Version 7.7.6 Manual

3.2. Installation 145

• condor_master

• condor_collector

• condor_negotiator

For a machine that only submits jobs, there will be processesfor:

• condor_master

• condor_schedd

For a machine that only executes jobs, there will be processes for:

• condor_master

• condor_startd

Once you are sure the Condor daemons are running, check to make sure that they are communi-
cating with each other. You can runcondor_statusto get a one line summary of the status of each
machine in your pool.

Once you are sure Condor is working properly, you should addcondor_masterinto your
startup/bootup scripts (i.e./etc/rc) so that your machine runscondor_masterupon bootup.
condor_masterwill then fire up the necessary Condor daemons whenever your machine is rebooted.

If your system uses System-V style init scripts, you can lookin
<release_dir >/etc/examples/condor.boot for a script that can be used to
start and stop Condor automatically by init. Normally, you would install this script as
/etc/init.d/condor and put in soft link from various directories (for example,
/etc/rc2.d) that point back to/etc/init.d/condor . The exact location of these
scripts and links will vary on different platforms.

If your system uses BSD style boot scripts, you probably havean /etc/rc.local file. Add
a line to start up<release_dir >/sbin/condor_master .

Now that the Condor daemons are running, there are a few things you can and should do:

1. (Optional) Do a full install for thecondor_compilescript. condor_compile assists in linking
jobs with the Condor libraries to take advantage of all of Condor’s features. As it is currently
installed, it will work by placing it in front of any of the following commands that you would
normally use to link your code: gcc, g++, g77, cc, acc, c89, CC, f77, fort77 and ld. If
you complete the full install, you will be able to use condor_compile with any command
whatsoever, in particular, make. See section 3.12.4 on page406 in the manual for directions.

2. Try building and submitting some test jobs. Seeexamples/README for details.

3. If your site uses the AFS network file system, see section 3.12.1 on page 399 in the manual.

Condor Version 7.7.6 Manual

3.2. Installation 146

4. We strongly recommend that you start up Condor (run thecondor_masterdaemon) as user
root. If you must start Condor as some user other than root, see section 3.6.13 on page 361.

3.2.5 Installation on Windows

This section contains the instructions for installing the Windows version of Condor. The install
program will set up a slightly customized configuration file that may be further customized after the
installation has completed.

Please read the copyright and disclaimer information in section on page xv of the manual.
Installation and use of Condor is acknowledgment that you have read and agree to the terms.

Be sure that the Condor tools are of the same version as the daemons installed. The Condor
executable for distribution is packaged in a single file named similar to:

condor-7.4.3-winnt50-x86.msi

This file is approximately 80 Mbytes in size, and it may be removed once Condor is fully installed.

Before installing Condor, please consider joining the condor-world mailing list. Traffic on this
list is kept to an absolute minimum. It is only used to announce new releases of Condor. To sub-
scribe, follow the directions given at http://www.cs.wisc.edu/condor/mail-lists/.

For any installation, Condor services are installed and runas the Local System account. Running
the Condor services as any other account (such as a domain user) is not supported and could be
problematic.

Installation Requirements

• Condor for Windows requires Windows 2000 SP4, Windows XP SP2, or a more recent ver-
sion.

• 300 megabytes of free disk space is recommended. Significantly more disk space could be
desired to be able to run jobs with large data files.

• Condor for Windows will operate on either an NTFS or FAT file system. However, for security
purposes, NTFS is preferred.

• Condor for Windows requires the Visual C++ 2008 C runtime library.

Preparing to Install Condor under Windows

Before installing the Windows version of Condor, there are two major decisions to make about the
basic layout of the pool.

Condor Version 7.7.6 Manual

http://www.cs.wisc.edu/condor/mail-lists/

3.2. Installation 147

1. What machine will be the central manager?

2. Is there enough disk space for Condor?

If the answers to these questions are already known, skip to the Windows Installation Procedure
section below, section 3.2.5 on page 147. If unsure, read on.

• What machine will be the central manager?

One machine in your pool must be the central manager. This is the centralized information
repository for the Condor pool and is also the machine that matches available machines with
waiting jobs. If the central manager machine crashes, any currently active matches in the
system will keep running, but no new matches will be made. Moreover, most Condor tools
will stop working. Because of the importance of this machinefor the proper functioning of
Condor, we recommend installing it on a machine that is likely to stay up all the time, or at the
very least, one that will be rebooted quickly if it does crash. Also, because all the services will
send updates (by default every 5 minutes) to this machine, itis advisable to consider network
traffic and network layout when choosing the central manager.

Install Condor on the central manager before installing on the other machines within the pool.

• Is there enough disk space for Condor?

The Condor release directory takes up a fair amount of space.The size requirement for the
release directory is approximately 250 Mbytes. Condor itself, however, needs space to store
all of the jobs and their input files. If there will be large numbers of jobs, consider installing
Condor on a volume with a large amount of free space.

Installation Procedure Using the MSI Program

Installation of Condor must be done by a user with administrator privileges. After installation, the
Condor services will be run under the local system account. When Condor is running a user job,
however, it will run that user job with normal user permissions.

Download Condor, and start the installation process by running the installer. The Condor instal-
lation is completed by answering questions and choosing options within the following steps.

If Condor is already installed. If Condor has been previously installed, a dialog box will appear
before the installation of Condor proceeds. The question asks if you wish to preserve your
current Condor configuration files. Answer yes or no, as appropriate.

If you answer yes, your configuration files will not be changed, and you will proceed to the
point where the new binaries will be installed.

If you answer no, then there will be a second question that asks if you want to use answers
given during the previous installation as default answers.

Condor Version 7.7.6 Manual

3.2. Installation 148

STEP 1: License Agreement.The first step in installing Condor is a welcome screen and license
agreement. You are reminded that it is best to run the installation when no other Windows
programs are running. If you need to close other Windows programs, it is safe to cancel the
installation and close them. You are asked to agree to the license. Answer yes or no. If you
should disagree with the License, the installation will notcontinue.

Also fill in name and company information, or use the defaultsas given.

STEP 2: Condor Pool Configuration. The Condor configuration needs to be set based upon if this
is a new pool or to join an existing one. Choose the appropriate radio button.

For a new pool, enter a chosen name for the pool. To join an existing pool, enter the host name
of the central manager of the pool.

STEP 3: This Machine’s Roles.Each machine within a Condor pool may either submit jobs or
execute submitted jobs, or both submit and execute jobs. A check box determines if this
machine will be a submit point for the pool.

A set of radio buttons determines the ability and configuration of the ability to execute jobs.
There are four choices:

Do not run jobs on this machine. This machine will not execute Condor jobs.

Always run jobs and never suspend them.

Run jobs when the keyboard has been idle for 15 minutes.

Run jobs when the keyboard has been idle for 15 minutes, and the CPU is idle.

For testing purposes, it is often helpful to use the always run Condor jobs option.

For a machine that is to execute jobs and the choice is one of the last two in the list, Condor
needs to further know what to do with the currently running jobs. There are two choices:

Keep the job in memory and continue when the machine meets thecondition chosen for when to run jobs.

Restart the job on a different machine.

This choice involves a trade off. Restarting the job on a different machine is less intrusive on
the workstation owner than leaving the job in memory for a later time. A suspended job left in
memory will require swap space, which could be a scarce resource. Leaving a job in memory,
however, has the benefit that accumulated run time is not lostfor a partially completed job.

STEP 4: The Account Domain. Enter the machine’s accounting (or UID) domain. On this ver-
sion of Condor for Windows, this setting is only used for userpriorities (see section 3.4 on
page 285) and to form a default e-mail address for the user.

STEP 5: E-mail Settings. Various parts of Condor will send e-mail to a Condor administrator if
something goes wrong and requires human attention. Specifythe e-mail address and the
SMTP relay host of this administrator. Please pay close attention to this e-mail, since it will
indicate problems in the Condor pool.

STEP 6: Java Settings.In order to run jobs in thejava universe, Condor must have the path to the
jvm executable on the machine. The installer will search forand list the jvm path, if it finds
one. If not, enter the path. To disable use of thejava universe, leave the field blank.

Condor Version 7.7.6 Manual

3.2. Installation 149

STEP 7: Host Permission Settings.Machines within the Condor pool will need various types of
access permission. The three categories of permission are read, write, and administrator. Enter
the machines or domain to be given access permissions, or usethe defaults provided. Wild
cards and macros are permitted.

Read Read access allows a machine to obtain information about Condor such as the status of
machines in the pool and the job queues. All machines in the pool should be given read
access. In addition, giving read access to *.cs.wisc.edu will allow the Condor team to
obtain information about the Condor pool, in the event that debugging is needed.

Write All machines in the pool should be given write access. It allows the machines you
specify to send information to your local Condor daemons, for example, to start a Condor
job. Note that for a machine to join the Condor pool, it must have both read and write
access to all of the machines in the pool.

Administrator A machine with administrator access will be allowed more extended per-
mission to do things such as change other user’s priorities,modify the job queue, turn
Condor services on and off, and restart Condor. The central manager should be given ad-
ministrator access and is the default listed. This setting is granted to the entire machine,
so care should be taken not to make this too open.

For more details on these access permissions, and others that can be manually changed in your
configuration file, please see the section titled Setting Up IP/Host-Based Security in Condor
in section section 3.6.9 on page 353.

STEP 8: VM Universe Setting. A radio button determines whether this machine will be config-
ured to runvm universe jobs utilizing VMware. In addition to having the VMware Server
installed, Condor also needsPerl installed. The resources available forvm universe jobs can
be tuned with these settings, or the defaults listed may be used.

Version Use the default value, as only one version is currently supported.

Maximum Memory The maximum memory that each virtual machine is permitted touse on
the target machine.

Maximum Number of VMs The number of virtual machines that can be run in parallel on
the target machine.

Networking Support The VMware instances can be configured to use network support.
There are four options in the pull-down menu.

• None: No networking support.

• NAT: Network address translation.

• Bridged: Bridged mode.

• NAT and Bridged: Allow both methods.

Path to Perl Executable The path to thePerl executable.

STEP 9: HDFS Settings.A radio button enables support for the Hadoop Distributed File System
(HDFS). When enabled, a further radio button specifies either name node or data node mode.

Condor Version 7.7.6 Manual

3.2. Installation 150

Running HDFS requires Java to be installed, and Condor must know where the installation is.
Running HDFS in data node mode also requires the installation of Cygwin, and the path to
the Cygwin directory must be added to the globalPATHenvironment variable.

HDFS has several configuration options that must be filled in to be used.

Primary Name Node The full host name of the primary name node.

Name Node Port The port that the name node is listening on.

Name Node Web Port The port the name node’s web interface is bound to. It should be
different from the name node’s main port.

STEP 10: Choose Setup TypeThe next step is where the destination of the Condor files willbe
decided. We recommend that Condor be installed in the location shown as the default in the
install choice:C:\Condor . This is due to several hard coded paths in scripts and configura-
tion files. Clicking on the Custom choice permits changing the installation directory.

Installation on the local disk is chosen for several reasons. The Condor services run as local
system, and within Microsoft Windows, local system has no network privileges. Therefore,
for Condor to operate, Condor should be installed on a local hard drive, as opposed to a
network drive (file server).

The second reason for installation on the local disk is that the Windows usage of drive letters
has implications for where Condor is placed. The drive letter used must be not change, even
when different users are logged in. Local drive letters do not change under normal operation
of Windows.

While it is strongly discouraged, it may be possible to placeCondor on a hard drive that is not
local, if a dependency is added to the service control manager such that Condor starts after the
required file services are available.

Unattended Installation Procedure Using the Included Set Up Program

This section details how to run the Condor for Windows installer in an unattended batch mode. This
mode is one that occurs completely from the command prompt, without the GUI interface.

The Condor for Windows installer uses the Microsoft Installer (MSI) technology, and it can be
configured for unattended installs analogous to any other ordinary MSI installer.

The following is a sample batch file that is used to set all the properties necessary for an unat-
tended install.

@echo on
set ARGS=
set ARGS=NEWPOOL="N"
set ARGS=%ARGS% POOLNAME=""
set ARGS=%ARGS% RUNJOBS="C"
set ARGS=%ARGS% VACATEJOBS="Y"
set ARGS=%ARGS% SUBMITJOBS="Y"

Condor Version 7.7.6 Manual

3.2. Installation 151

set ARGS=%ARGS% CONDOREMAIL="you@yours.com"
set ARGS=%ARGS% SMTPSERVER="smtp.localhost"
set ARGS=%ARGS% HOSTALLOWREAD="*"
set ARGS=%ARGS% HOSTALLOWWRITE="*"
set ARGS=%ARGS% HOSTALLOWADMINISTRATOR="$(IP_ADDRESS)"
set ARGS=%ARGS% INSTALLDIR="C:\Condor"
set ARGS=%ARGS% POOLHOSTNAME="$(IP_ADDRESS)"
set ARGS=%ARGS% ACCOUNTINGDOMAIN="none"
set ARGS=%ARGS% JVMLOCATION="C:\Windows\system32\java .exe"
set ARGS=%ARGS% USEVMUNIVERSE="N"set ARGS=%ARGS% VMMEMORY="128"
set ARGS=%ARGS% VMMAXNUMBER="$(NUM_CPUS)"
set ARGS=%ARGS% VMNETWORKING="N"
set ARGS=%ARGS% USEHDFS="N"
set ARGS=%ARGS% NAMENODE=""
set ARGS=%ARGS% HDFSMODE="HDFS_NAMENODE"
set ARGS=%ARGS% HDFSPORT="5000"
set ARGS=%ARGS% HDFSWEBPORT="4000"

msiexec /qb /l* condor-install-log.txt /i condor-7.1.0-w innt50-x86.msi %ARGS%

Each property corresponds to answers that would have been supplied while running an inter-
active installer. The following is a brief explanation of each property as it applies to unattended
installations:

NEWPOOL = < Y | N > determines whether the installer will create a new pool withthe target
machine as the central manager.

POOLNAME sets the name of the pool, if a new pool is to be created. Possible values are either
the name or the empty string"" .

RUNJOBS =< N | A | I | C > determines when Condor will run jobs. This can be set to:

• Never run jobs (N)

• Always run jobs (A)

• Only run jobs when the keyboard and mouse are Idle (I)

• Only run jobs when the keyboard and mouse are idle and the CPUusage is low (C)

VACATEJOBS = < Y | N > determines what Condor should do when it has to stop the execution
of a user job. When set to Y, Condor will vacate the job and start it somewhere else if possible.
When set to N, Condor will merely suspend the job in memory andwait for the machine to
become available again.

SUBMITJOBS = < Y | N > will cause the installer to configure the machine as a submit node
when set to Y.

CONDOREMAIL sets the e-mail address of the Condor administrator. Possible values are an
e-mail address or the empty string"" .

Condor Version 7.7.6 Manual

3.2. Installation 152

HOSTALLOWREAD is a list of host names that are allowed to issue READ commandsto Condor
daemons. This value should be set in accordance with theHOSTALLOW_READsetting in the
configuration file, as described in section 3.6.9 on page 353.

HOSTALLOWWRITE is a list of host names that are allowed to issue WRITE commands to
Condor daemons. This value should be set in accordance with the HOSTALLOW_WRITE
setting in the configuration file, as described in section 3.6.9 on page 353.

HOSTALLOWADMINISTRATOR is a list of host names that are allowed to issue ADMIN-
ISTRATOR commands to Condor daemons. This value should be set in accordance with
the HOSTALLOW_ADMINISTRATORsetting in the configuration file, as described in sec-
tion 3.6.9 on page 353.

INSTALLDIR defines the path to the directory where Condor will be installed.

POOLHOSTNAME defines the host name of the pool’s central manager.

ACCOUNTINGDOMAIN defines the accounting (or UID) domain the target machine will be in.

JVMLOCATION defines the path to Java virtual machine on the target machine.

SMTPSERVER defines the host name of the SMTP server that the target machine is to use to send
e-mail.

VMMEMORY an integer value that defines the maximum memory each VM run onthe target
machine.

VMMAXNUMBER an integer value that defines the number of VMs that can be run in parallel on
the target machine.

VMNETWORKING = < N | A | B | C > determines if VM Universe can use networking. This
can be set to:

• None (N)

• NAT (A)

• Bridged (B)

• NAT and Bridged (C)

USEVMUNIVERSE = < Y | N > will cause the installer to enable VM Universe jobs on the tar-
get machine.

PERLLOCATION defines the path toPerl on the target machine. This is required in order to use
thevm universe.

USEHDFS =< Y | N > determines if HDFS is run.

HDFSMODE < HDFS_DATANODE | HDFS_NAMENODE > sets the mode HDFS runs in.

NAMENODE sets the host name of the primary name node.

HDFSPORT sets the port number that the primary name node listens to.

Condor Version 7.7.6 Manual

3.2. Installation 153

HDFSWEBPORT sets the port number that the name node web interface is boundto.

After defining each of these properties for the MSI installer, the installer can be started with the
msiexeccommand. The following command starts the installer in unattended mode, and it dumps a
journal of the installer’s progress to a log file:

msiexec /qb /lxv* condor-install-log.txt /i condor-7.2.2 -winnt50-x86.msi [property=value] ...

More information on the features ofmsiexeccan be found at Microsoft’s website at
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/msiexec.mspx.

Manual Installation Condor on Windows

If you are to install Condor on many different machines, you may wish to use some other mechanism
to install Condor on additional machines rather than running the Setup program described above on
each machine.

WARNING: This is for advanced users only! All others should use the Setup program described
above.

Here is a brief overview of how to install Condor manually without using the provided GUI-
based setup program:

The Service The service that Condor will install is called "Condor". TheStartup Type is Automatic.
The service should log on as System Account, butdo not enable"Allow Service to Interact
with Desktop". The program that is run iscondor_master.exe.

The Condor service can be installed and removed using thesc.exe tool, which is included
in Windows XP and Windows 2003 Server. The tool is also available as part of the Windows
2000 Resource Kit.

Installation can be done as follows:

sc create Condor binpath= c:\condor\bin\condor_master.e xe

To remove the service, use:

sc delete Condor

The Registry Condor uses a few registry entries in its operation. The key that Condor uses is
HKEY_LOCAL_MACHINE/Software/Condor. The values that Condor puts in this registry
key serve two purposes.

1. The values of CONDOR_CONFIG and RELEASE_DIR are used for Condor to start its
service.
CONDOR_CONFIG should point to thecondor_config file. In this version of Con-
dor, it must reside on the local disk.
RELEASE_DIR should point to the directory where Condor is installed. This is typically
C:\Condor , and again, thismust reside on the local disk.

Condor Version 7.7.6 Manual

http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/msiexec.mspx

3.2. Installation 154

2. The other purpose is storing the entries from the last installation so that they can be used
for the next one.

The File System The files that are needed for Condor to operate are identical to the Unix version
of Condor, except that executable files end in.exe . For example the on Unix one of the files
is condor_master and on Condor the corresponding file iscondor_master.exe .

These files currently must reside on the local disk for a variety of reasons. Advanced Windows
users might be able to put the files on remote resources. The main concern is twofold. First,
the files must be there when the service is started. Second, the files must always be in the
same spot (including drive letter), no matter who is logged into the machine.

Note also that when installing manually, you will need to create the directories that Condor
will expect to be present given your configuration. This normally is simply a matter of creating
the log , spool , andexecute directories.

Starting Condor Under Windows After Installation

After the installation of Condor is completed, the Condor service must be started. If you used the
GUI-based setup program to install Condor, the Condor service should already be started. If you
installed manually, Condor must be started by hand, or you can simply reboot. NOTE: The Condor
service will start automatically whenever you reboot your machine.

To start Condor by hand:

1. From the Start menu, choose Settings.

2. From the Settings menu, choose Control Panel.

3. From the Control Panel, choose Services.

4. From Services, choose Condor, and Start.

Or, alternatively you can enter the following command from acommand prompt:

net start condor

Run the Task Manager (Control-Shift-Escape) to check that Condor services are running. The
following tasks should be running:

• condor_master.exe

• condor_negotiator.exe, if this machine is a central manager.

• condor_collector.exe, if this machine is a central manager.

• condor_startd.exe, if you indicated that this Condor node should start jobs

Condor Version 7.7.6 Manual

3.2. Installation 155

• condor_schedd.exe, if you indicated that this Condor node should submit jobs tothe Condor
pool.

Also, you should now be able to open up a new cmd (DOS prompt) window, and the Condor bin
directory should be in your path, so you can issue the normal Condor commands, such ascondor_q
andcondor_status.

Condor is Running Under Windows ... Now What?

Once Condor services are running, try submitting test jobs.Example 2 within section 2.5.1 on
page 19 presents a vanilla universe job.

3.2.6 RPMs

RPMs are available in Condor Version 7.7.6. We provide a Yum repository, as well as installation and
configuration in one easy step. This RPM installation is currently available for Red Hat-compatible
systems only. As of Condor version 7.5.1, the Condor RPM installs into FHS locations.

Yum repositories are at http://www.cs.wisc.edu/condor/yum/ . The repositories are named to
distinguish stable releases from development releases andby Red Hat version number. The 4 repos-
itories are:

• condor-stable-rhel4.repo

• condor-stable-rhel5.repo

• condor-development-rhel4.repo

• condor-development-rhel5.repo

Here are an ordered set of steps that get Condor running usingthe RPM.

1. The Condor package will automatically add acondor user/group, if it does not exist already.
Sites wishing to control the attributes of this user/group should add thecondor user/group
manually before installation.

2.

3. Download and install the meta-data that describes the appropriate YUM repository. This
example is for the stable series, on RHEL 5.

cd /etc/yum.repos.d
wget http://www.cs.wisc.edu/condor/yum/repo.d/condor -stable-rhel5.repo

Note that this step need be done only once; do not get the same repository more than once.

Condor Version 7.7.6 Manual

http://www.cs.wisc.edu/condor/yum/

3.2. Installation 156

4. Install Condor. For 32-bit machines:

yum install condor

For 64-bit machines:

yum install condor.x86_64

5. As needed, edit the Condor configuration files to customize. The configuration files are in the
directory/etc/condor/ . Do not usecondor_configureor condor_installfor configura-
tion. The installation will be able to find configuration fileswithout additional administrative
intervention, as the configuration files are placed in/etc , and Condor searches this directory.

6. Start Condor daemons:

/sbin/service condor start

3.2.7 Debian Packages

Debian packages are available in Condor Version 7.7.6. We provide an APT repository, as well
as installation and configuration in one easy step. These Debian packages of Condor are currently
available for Debian 4 (Etch) and Debian 5 (Lenny). As of Condor version 7.5.1, the Condor Debian
package installs into FHS locations.

The Condor APT repositories are specified at http://www.cs.wisc.edu/condor/debian/ . See this
web page for repository information.

Here are an ordered set of steps that get Condor running.

1. The Condor package will automatically add acondor user/group, if it does not exist already.
Sites wishing to control the attributes of this user/group should add thecondor user/group
manually before installation.

2. If not already present, set up access to the appropriate APT repository; they are dis-
tinguished as stable or development release, and by operating system. Ensure that the
correct one of the following release and operating system-specific lines is in the file
/etc/apt/sources.list .

deb http://www.cs.wisc.edu/condor/debian/stable/ etch contrib
deb http://www.cs.wisc.edu/condor/debian/development / etch contrib
deb http://www.cs.wisc.edu/condor/debian/stable/ lenn y contrib
deb http://www.cs.wisc.edu/condor/debian/development / lenny contrib

Note that this step need be done only once; do not add the same repository more than once.

3. Install and start Condor services:

apt-get update
apt-get install condor

Condor Version 7.7.6 Manual

http://www.cs.wisc.edu/condor/debian/

3.2. Installation 157

4. As needed, edit the Condor configuration files to customize. The configuration files are in the
directory/etc/condor/ . Do not usecondor_configureor condor_installfor configura-
tion. The installation will be able to find configuration fileswithout additional administrative
intervention, as the configuration files are placed in/etc , and Condor searches this directory.

Then, if any configuration changes are made, restart Condor with

/etc/init.d/condor restart

3.2.8 Upgrading - Installing a Newer Version of Condor

Section 3.10.1 on page 388 within the section on Pool Management describes strategies for doing an
upgrade: changing the running version of Condor from the current installation to a newer version.

3.2.9 Dynamic Deployment

Dynamic deployment is a mechanism that allows rapid, automated installation and start up of Condor
resources on a given machine. In this way any machine can be added to a Condor pool. The dynamic
deployment tool set also provides tools to remove a machine from the pool, without leaving residual
effects on the machine such as leftover installations, log files, and working directories.

Installation and start up is provided bycondor_cold_start. Thecondor_cold_startprogram de-
termines the operating system and architecture of the target machine, and transfers the correct instal-
lation package from an ftp, http, or grid ftp site. After transfer, it installs Condor and creates a local
working directory for Condor to run in. As a last step,condor_cold_startbegins running Condor in
a manner which allows for later easy and reliable shut down.

The program that reliably shuts down and uninstalls a previously dynamically installed Condor
instance iscondor_cold_stop. condor_cold_stopbegins by safely and reliably shutting off the run-
ning Condor installation. It ensures that Condor has completely shut down before continuing, and
optionally ensures that there are no queued jobs at the site.Next, condor_cold_stopremoves and
optionally archives the Condor working directories, including thelog directory. These archives can
be stored to a mounted file system or to a grid ftp site. As a laststep,condor_cold_stopuninstalls
the Condor executables and libraries. The end result is thatthe machine resources are left unchanged
after a dynamic deployment of Condor leaves.

Configuration and Usage

Dynamic deployment is designed for the expert Condor user and administrator. Tool design choices
were made for functionality, not ease-of-use.

Like every installation of Condor, a dynamically deployed installation relies on a configuration.
To add a target machine to a previously created Condor pool, the global configuration file for that
pool is a good starting point. Modifications to that configuration can be made in a separate, local

Condor Version 7.7.6 Manual

3.2. Installation 158

configuration file used in the dynamic deployment. The globalconfiguration file must be placed
on an ftp, http, grid ftp, or file server accessible bycondor_cold_start. The local configuration file
is to be on a file system accessible by the target machine. There are some specific configuration
variables that may be set for dynamic deployment. A list of executables and directories which must
be present for Condor to start on the target machine may be setwith the configuration variables
DEPLOYMENT_REQUIRED_EXECSandDEPLOYMENT_REQUIRED_DIRS. If defined and the
comma-separated list of executables or directories are notpresent, thencondor_cold_startexits with
error. Note this does not affect what is installed, only whether start up is successful.

A list of executables and directories which are recommendedto be present for
Condor to start on the target machine may be set with the configuration variables
DEPLOYMENT_RECOMMENDED_EXECSandDEPLOYMENT_RECOMMENDED_DIRS. If defined
and the comma-separated lists of executables or directories are not present, thencondor_cold_start
prints a warning message and continues. Here is a portion of the configuration relevant to a dynamic
deployment of a Condor submit node:

DEPLOYMENT_REQUIRED_EXECS = MASTER, SCHEDD, PREEN, STARTER, \
STARTER_STANDARD, SHADOW, \
SHADOW_STANDARD, GRIDMANAGER, GAHP, CONDOR_GAHP

DEPLOYMENT_REQUIRED_DIRS = SPOOL, LOG, EXECUTE
DEPLOYMENT_RECOMMENDED_EXECS = CREDD
DEPLOYMENT_RECOMMENDED_DIRS = LIB, LIBEXEC

Additionally, the user must specify which Condor services will be started. This is done through
theDAEMON_LISTconfiguration variable. Another excerpt from a dynamic submit node deploy-
ment configuration:

DAEMON_LIST = MASTER, SCHEDD

Finally, the location of the dynamically installed Condor executables is tricky to set, since the
location is unknown before installation. Therefore, the variableDEPLOYMENT_RELEASE_DIRis
defined in the environment. It corresponds to the location ofthe dynamic Condor installation. If,
as is often the case, the configuration file specifies the location of Condor executables in relation
to theRELEASE_DIRvariable, the configuration can be made dynamically deployable by setting
RELEASE_DIRto DEPLOYMENT_RELEASE_DIRas

RELEASE_DIR = $(DEPLOYMENT_RELEASE_DIR)

In addition to setting up the configuration, the user must also determine where the installation
package will reside. The installation package can be in either tar or gzipped tar form, and may
reside on a ftp, http, grid ftp, or file server. Create this installation package by tar’ing up the binaries
and libraries needed, and place them on the appropriate server. The binaries can be tar’ed in a flat
structure or withinbin andsbin . Here is a list of files to give an example structure for a dynamic
deployment of thecondor_schedddaemon.

% tar tfz latest-i686-Linux-2.4.21-37.ELsmp.tar.gz

Condor Version 7.7.6 Manual

3.3. Configuration 159

bin/
bin/condor_config_val
bin/condor_q
sbin/
sbin/condor_preen
sbin/condor_shadow.std
sbin/condor_starter.std
sbin/condor_schedd
sbin/condor_master
sbin/condor_gridmanager
sbin/gahp_server
sbin/condor_starter
sbin/condor_shadow
sbin/condor_c-gahp
sbin/condor_off

3.3 Configuration

This section describes how to configure all parts of the Condor system. General information about
the configuration files and their syntax is followed by a description of settings that affect all Condor
daemons and tools. The settings that control the policy under which Condor will start, suspend,
resume, vacate or kill jobs are described in section 3.5 on Startd Policy Configuration.

3.3.1 Introduction to Configuration Files

The Condor configuration files are used to customize how Condor operates at a given site. The basic
configuration as shipped with Condor works well for most sites.

Each Condor program will, as part of its initialization process, configure itself by calling a li-
brary routine which parses the various configuration files that might be used including pool-wide,
platform-specific, and machine-specific configuration files. Environment variables may also con-
tribute to the configuration.

The result of configuration is a list of key/value pairs. Eachkey is a configuration variable
name, and each value is a string literal that may utilize macro substitution (as defined below). Some
configuration variables are evaluated by Condor as ClassAd expressions; some are not. Consult the
documentation for each specific case. Unless otherwise noted, configuration values that are expected
to be numeric or boolean constants may be any valid ClassAd expression of operators on constants.
Example:

MINUTE = 60
HOUR = (60 * $(MINUTE))
SHUTDOWN_GRACEFUL_TIMEOUT = ($(HOUR)*24)

Condor Version 7.7.6 Manual

3.3. Configuration 160

Ordered Evaluation to Set the Configuration

Multiple files, as well as a program’s environment variablesdetermine the configuration. The order
in which attributes are defined is important, as later definitions override existing definitions. The
order in which the (multiple) configuration files are parsed is designed to ensure the security of
the system. Attributes which must be set a specific way must appear in the last file to be parsed.
This prevents both the naive and the malicious Condor user from subverting the system through its
configuration. The order in which items are parsed is

1. global configuration file

2. local configuration file

3. specific environment variables prefixed with_CONDOR_

The locations for these files are as given in section 3.2.2 on page 139.

Some Condor tools utilize environment variables to set their configuration. These tools search
for specifically-named environment variables. The variables are prefixed by the string_CONDOR_
or _condor_ . The tools strip off the prefix, and utilize what remains as configuration. As the use of
environment variables is the last within the ordered evaluation, the environment variable definition
is used. The security of the system is not compromised, as only specific variables are considered for
definition in this manner, not any environment variables with the_CONDOR_prefix.

Configuration File Macros

Macro definitions are of the form:

<macro_name> = <macro_definition>

The macro name given on the left hand side of the definition is acase sensitive identifier. There
must be white space between the macro name, the equals sign (=), and the macro definition. The
macro definition is a string literal that may utilize macro substitution.

Macro invocations are of the form:

$(macro_name)

Macro definitions may contain references to other macros, even ones that are not yet defined, as
long as they are eventually defined in the configuration files.All macro expansion is done after all
configuration files have been parsed, with the exception of macros that reference themselves.

A = xxx
C = $(A)

Condor Version 7.7.6 Manual

3.3. Configuration 161

is a legal set of macro definitions, and the resulting value ofC is xxx . Note thatC is actually bound
to $(A) , not its value.

As a further example,

A = xxx
C = $(A)
A = yyy

is also a legal set of macro definitions, and the resulting value ofC is yyy .

A macro may be incrementally defined by invoking itself in itsdefinition. For example,

A = xxx
B = $(A)
A = $(A)yyy
A = $(A)zzz

is a legal set of macro definitions, and the resulting value ofA is xxxyyyzzz . Note that invocations
of a macro in its own definition are immediately expanded.$(A) is immediately expanded in line
3 of the example. If it were not, then the definition would be impossible to evaluate.

Recursively defined macros such as

A = $(B)
B = $(A)

are not allowed. They create definitions that Condor refusesto parse.

All entries in a configuration file must have an operator, which will be an equals sign (=). Identi-
fiers are alphanumerics combined with the underscore character, optionally with a subsystem name
and a period as a prefix. As a special case, a line without an operator that begins with a left square
bracket will be ignored. The following two-line example treats the first line as a comment, and
correctly handles the second line.

[Condor Settings]
my_classad = [foo=bar]

To simplify pool administration, any configuration variable name may be prefixed by a subsys-
tem (see the$(SUBSYSTEM)macro in section 3.3.1 for the list of subsystems) and the period (.)
character. For configuration variables defined this way, thevalue is applied to the specific subsystem.
For example, the ports that Condor may use can be restricted to a range using theHIGHPORTand
LOWPORTconfiguration variables. If the range of intended ports is different for specific daemons,
this syntax may be used.

Condor Version 7.7.6 Manual

3.3. Configuration 162

MASTER.LOWPORT = 20000
MASTER.HIGHPORT = 20100
NEGOTIATOR.LOWPORT = 22000
NEGOTIATOR.HIGHPORT = 22100

Note that all configuration variables may utilize this syntax, but nonsense configuration variables
may result. For example, it makes no sense to define

NEGOTIATOR.MASTER_UPDATE_INTERVAL = 60

since thecondor_negotiatordaemon does not use theMASTER_UPDATE_INTERVALvariable.

It makes little sense to do so, but Condor will configure correctly with a definition such as

MASTER.MASTER_UPDATE_INTERVAL = 60

Thecondor_masteruses this configuration variable, and the prefix ofMASTER.causes this config-
uration to be specific to thecondor_masterdaemon.

This syntax has been further expanded to allow for the specification of a local name on the
command line using the command line option

-local-name <local-name>

This allows multiple instances of a daemon to be run by the same condor_masterdaemon, each
instance with its own local configuration variable.

The ordering used to look up a variable, called<parameter name> :

1. <subsystem name>.<local name>.<parameter name>

2. <local name>.<parameter name>

3. <subsystem name>.<parameter name>

4. <parameter name>

If this local name is not specified on the command line, numbers 1 and 2 are skipped. As soon
as the first match is found, the search is completed, and the corresponding value is used.

This example configures acondor_masterto run 2condor_schedddaemons. Thecondor_master
daemon needs the configuration:

XYZZY = $(SCHEDD)
XYZZY_ARGS = -local-name xyzzy
DAEMON_LIST = $(DAEMON_LIST) XYZZY
DC_DAEMON_LIST = + XYZZY
XYZZY_LOG = $(LOG)/SchedLog.xyzzy

Condor Version 7.7.6 Manual

3.3. Configuration 163

Using this example configuration, thecondor_masterstarts up a secondcondor_schedddaemon,
where this secondcondor_schedddaemon is passed-local-namexyzzyon the command line.

Continuing the example, configure thecondor_schedddaemon namedxyzzy . This con-
dor_schedddaemon will share all configuration variable definitions with the othercondor_schedd
daemon, except for those specified separately.

SCHEDD.XYZZY.SCHEDD_NAME = XYZZY
SCHEDD.XYZZY.SCHEDD_LOG = $(XYZZY_LOG)
SCHEDD.XYZZY.SPOOL = $(SPOOL).XYZZY

Note that the exampleSCHEDD_NAMEandSPOOLare specific to thecondor_schedddaemon,
as opposed to a different daemon such as thecondor_startd. Other Condor daemons using this
feature will have different requirements for which parameters need to be specified individually.
This example works for thecondor_schedd, and more local configuration can, and likely would be
specified.

Also note that each daemon’s log file must be specified individually, and in two places: one
specification is for use by thecondor_master, and the other is for use by the daemon itself. In
the example, theXYZZYcondor_scheddconfiguration variableSCHEDD.XYZZY.SCHEDD_LOG
definition references thecondor_masterdaemon’sXYZZY_LOG.

Comments and Line Continuations

A Condor configuration file may contain comments and line continuations. A comment is any line
beginning with a pound character (#). A continuation is any entry that continues across multiples
lines. Line continuation is accomplished by placing the backslash character (\) at the end of any
line to be continued onto another. Valid examples of line continuation are

START = (KeyboardIdle > 15 * $(MINUTE)) && \
((LoadAvg - CondorLoadAvg) <= 0.3)

and

ADMIN_MACHINES = condor.cs.wisc.edu, raven.cs.wisc.edu , \
stork.cs.wisc.edu, ostrich.cs.wisc.edu, \
bigbird.cs.wisc.edu
HOSTALLOW_ADMIN = $(ADMIN_MACHINES)

Note that a line continuation character may currently be used within a comment, so the following
example doesnot set the configuration variableFOO:

This comment includes the following line, so FOO is NOT set \
FOO = BAR

Condor Version 7.7.6 Manual

3.3. Configuration 164

It is a poor idea to use this functionality, as it is likely to stop working in future Condor releases.

Executing a Program to Produce Configuration Macros

Instead of reading from a file, Condor may run a program to obtain configuration macros. The ver-
tical bar character (|) as the last character defining a file name provides the syntaxnecessary to tell
Condor to run a program. This syntax may only be used in the definition of theCONDOR_CONFIG
environment variable, or theLOCAL_CONFIG_FILE configuration variable.

The command line for the program is formed by the characters preceding the vertical bar char-
acter. The standard output of the program is parsed as a configuration file would be.

An example:

LOCAL_CONFIG_FILE = /bin/make_the_config|

Program/bin/make_the_configis executed, and its output is the set of configuration macros.

Note that either a program is executed to generate the configuration macros or the configuration
is read from one or more files. The syntax uses space characters to separate command line elements,
if an executed program produces the configuration macros. Space characters would otherwise sepa-
rate the list of files. This syntax does not permit distinguishing one from the other, so only one may
be specified.

Macros That Will Require a Restart When Changed

When any of the following listed configuration variables arechanged, Condor must be restarted.
Reconfiguration usingcondor_reconfigwill not be enough.

• BIND_ALL_INTERFACES

• FetchWorkDelay

• MAX_NUM_CPUS

• MAX_TRACKING_GID

• MIN_TRACKING_GID

• NETWORK_INTERFACE

• NUM_CPUS

• PREEMPTION_REQUIREMENTS_STABLE

• PRIVSEP_ENABLED

• PROCD_ADDRESS

Condor Version 7.7.6 Manual

3.3. Configuration 165

Pre-Defined Macros

Condor provides pre-defined macros that help configure Condor. Pre-defined macros are listed as
$(macro_name) .

This first set are entries whose values are determined at run time and cannot be overwritten.
These are inserted automatically by the library routine which parses the configuration files. This
implies that a change to the underlying value of any of these variables will require a full restart of
Condor in order to use the changed value.

$(FULL_HOSTNAME)The fully qualified host name of the local machine, which is host name
plus domain name.

$(HOSTNAME) The host name of the local machine (no domain name).

$(IP_ADDRESS) The ASCII string version of the local machine’s IP address.

$(TILDE) The full path to the home directory of the Unix user condor, ifsuch a user exists on the
local machine.

$(SUBSYSTEM) The subsystem name of the daemon or tool that is evaluating the macro. This
is a unique string which identifies a given daemon within the Condor system. The possible
subsystem names are:

• C_GAHP

• CKPT_SERVER

• COLLECTOR

• DBMSD

• DEFRAG

• EC2_GAHP

• GRIDMANAGER

• HAD

• HDFS

• JOB_ROUTER

• KBDD

• LEASEMANAGER

• MASTER

• NEGOTIATOR

• QUILL

• REPLICATION

• ROOSTER

• SCHEDD

Condor Version 7.7.6 Manual

3.3. Configuration 166

• SHADOW

• STARTD

• STARTER

• SUBMIT

• TOOL

• TRANSFERER

This second set of macros are entries whose default values are determined automatically at run
time but which can be overwritten.

$(ARCH) Defines the string used to identify the architecture of the local machine to Condor. The
condor_startdwill advertise itself with this attribute so that users can submit binaries com-
piled for a given platform and force them to run on the correctmachines.condor_submitwill
append a requirement to the job ClassAd that it must run on thesameARCHandOPSYSof
the machine where it was submitted, unless the user specifiesARCHand/orOPSYSexplicitly
in their submit file. See the thecondor_submitmanual page on page 873 for details.

$(OPSYS) Defines the string used to identify the operating system of the local machine to Condor.
If it is not defined in the configuration file, Condor will automatically insert the operating
system of this machine as determined byuname.

$(OPSYS_VER) Defines the integer used to identify the operating system version number.

$(OPSYS_AND_VER)Defines the string used prior to Condor version 7.7.2 as$(OPSYS) .

$(UNAME_ARCH) The architecture as reported byuname(2)’s machine field. Always the same
asARCHon Windows.

$(UNAME_OPSYS) The operating system as reported byuname(2)’s sysname field. Always the
same asOPSYSon Windows.

$(DETECTED_MEMORY)The amount of detected physical memory (RAM) in Mbytes.

$(DETECTED_CORES)The number of detected CPU cores. This includes hyper threaded cores,
if there are any.

$(PID) The process ID for the daemon or tool.

$(PPID) The process ID of the parent process for the daemon or tool.

$(USERNAME) The user name of the UID of the daemon or tool. For daemons started as root, but
running under another UID (typically the user condor), thiswill be the other UID.

$(FILESYSTEM_DOMAIN)Defaults to the fully qualified host name of the machine it is evalu-
ated on. See section 3.3.7, Shared File System ConfigurationFile Entries for the full descrip-
tion of its use and under what conditions you would want to change it.

$(UID_DOMAIN)Defaults to the fully qualified host name of the machine it is evaluated on. See
section 3.3.7 for the full description of this configurationvariable.

Condor Version 7.7.6 Manual

3.3. Configuration 167

Since$(ARCH) and$(OPSYS) will automatically be set to the correct values, we recommend
that you do not overwrite them. Only do so if you know what you are doing.

3.3.2 Special Macros

References to the Condor process’s environment are allowedin the configuration files. Environment
references use theENV macro and are of the form:

$ENV(environment_variable_name)

For example,

A = $ENV(HOME)

bindsA to the value of the HOME environment variable. Environment references are not currently
used in standard Condor configurations. However, they can sometimes be useful in custom configu-
rations.

This same syntax is used in theRANDOM_CHOICE()macro to allow a random choice of a
parameter within a configuration file. These references are of the form:

$RANDOM_CHOICE(list of parameters)

This allows a random choice within the parameter list to be made at configuration time. Of the list
of parameters, one is chosen when encountered during configuration. For example, if one of the
integers 0-8 (inclusive) should be randomly chosen, the macro usage is

$RANDOM_CHOICE(0,1,2,3,4,5,6,7,8)

TheRANDOM_INTEGER()macro is similar to theRANDOM_CHOICE()macro, and is used
to select a random integer within a configuration file. References are of the form:

$RANDOM_INTEGER(min, max [, step])

A random integer within the rangemin andmax, inclusive, is selected at configuration time. The
optionalstep parameter controls the stride within the range, and it defaults to the value 1. For
example, to randomly chose an even integer in the range 0-8 (inclusive), the macro usage is

$RANDOM_INTEGER(0, 8, 2)

See section 7.2 on page 585 for an actual use of this specialized macro.

Condor Version 7.7.6 Manual

3.3. Configuration 168

3.3.3 Condor-wide Configuration File Entries

This section describes settings which affect all parts of the Condor system. Other system-wide
settings can be found in section 3.3.6 on “Network-Related Configuration File Entries”, and sec-
tion 3.3.7 on “Shared File System Configuration File Entries”.

CONDOR_HOST This macro is used to define the$(COLLECTOR_HOST)macro. Normally the
condor_collectorandcondor_negotiatorwould run on the same machine. If for some reason
they were not run on the same machine,$(CONDOR_HOST)would not be needed. Some
of the host-based security macros use$(CONDOR_HOST)by default. See section 3.6.9, on
Setting up IP/host-based security in Condor for details.

COLLECTOR_HOST The host name of the machine where thecondor_collectoris running for your
pool. Normally, it is defined relative to the$(CONDOR_HOST)macro. There is no default
value for this macro;COLLECTOR_HOSTmust be defined for the pool to work properly.

In addition to defining the host name, this setting can optionally be used to specify the network
port of thecondor_collector. The port is separated from the host name by a colon (’: ’). For
example,

COLLECTOR_HOST = $(CONDOR_HOST):1234

If no port is specified, the default port of 9618 is used. Usingthe default port is recommended
for most sites. It is only changed if there is a conflict with another service listening on the
same network port. For more information about specifying a non-standard port for thecon-
dor_collectordaemon, see section 3.7.1 on page 371.

NEGOTIATOR_HOST This configuration variable is no longer used. It previouslydefined the host
name of the machine where thecondor_negotiatoris running. At present, the port where the
condor_negotiatoris listening is dynamically allocated.

CONDOR_VIEW_HOST A list of CondorView servers, separated by commas and/or spaces. Each
CondorView server is denoted by the host name of the machine it is running on, option-
ally appended by a colon and the port number. This service is optional, and requires ad-
ditional configuration to enable it. There is no default value for CONDOR_VIEW_HOST. If
CONDOR_VIEW_HOSTis not defined, no CondorView server is used. See section 3.12.6 on
page 408 for more details.

SCHEDD_HOST The host name of the machine where thecondor_scheddis running for your
pool. This is the host that queues submitted jobs. If the hostspecifiesSCHEDD_NAMEor
MASTER_NAME, that name must be included in the form name@hostname. In most condor
installations, there is acondor_scheddrunning on each host from which jobs are submitted.
The default value ofSCHEDD_HOSTis the current host with the optional name included. For
most pools, this macro is not defined, nor does it need to be defined..

RELEASE_DIR The full path to the Condor release directory, which holds the bin , etc , lib ,
andsbin directories. Other macros are defined relative to this one. There is no default value
for RELEASE_DIR.

Condor Version 7.7.6 Manual

3.3. Configuration 169

BIN This directory points to the Condor directory where user-level programs are installed. It is
usually defined relative to the$(RELEASE_DIR) macro. There is no default value forBIN
.

LIB This directory points to the Condor directory where libraries used to link jobs for Condor’s
standard universe are stored. Thecondor_compileprogram uses this macro to find these
libraries, so it must be defined forcondor_compileto function. $(LIB) is usually defined
relative to the$(RELEASE_DIR) macro, and has no default value.

LIBEXEC This directory points to the Condor directory where supportcommands that Condor
needs will be placed. Do not add this directory to a user or system-wide path.

INCLUDE This directory points to the Condor directory where header files reside.$(INCLUDE)
would usually be defined relative to the$(RELEASE_DIR) configuration macro. There is
no default value, but if defined, it can make inclusion of necessary header files for compilation
of programs (such as those programs that uselibcondorapi.a) easier through the use of
condor_config_val.

SBIN This directory points to the Condor directory where Condor’s system binaries (such as the
binaries for the Condor daemons) and administrative tools are installed. Whatever directory
$(SBIN) points to ought to be in thePATHof users acting as Condor administrators.SBIN
has no default value.

LOCAL_DIR The location of the local Condor directory on each machine inyour pool. One
common option is to use the condor user’s home directory which may be specified with
$(TILDE) . There is no default value forLOCAL_DIR. For example:

LOCAL_DIR = $(tilde)

On machines with a shared file system, where either the$(TILDE) directory or another
directory you want to use is shared among all machines in yourpool, you might use the
$(HOSTNAME)macro and have a directory with many subdirectories, one foreach machine
in your pool, each named by host names. For example:

LOCAL_DIR = $(tilde)/hosts/$(hostname)

or:

LOCAL_DIR = $(release_dir)/hosts/$(hostname)

LOG Used to specify the directory where each Condor daemon writes its log files. The names of the
log files themselves are defined with other macros, which use the$(LOG) macro by default.
The log directory also acts as the current working directoryof the Condor daemons as the run,
so if one of them should produce a core file for any reason, it would be placed in the directory
defined by this macro.LOGis required to be defined. Normally,$(LOG) is defined in terms
of $(LOCAL_DIR) .

Condor Version 7.7.6 Manual

3.3. Configuration 170

RUN A path and directory name to be used by the Condor init script to specify the directory
where thecondor_mastershould write its process ID (PID) file. The default if not defined
is $(LOG) .

SPOOL The spool directory is where certain files used by thecondor_scheddare stored, such as
the job queue file and the initial executables of any jobs thathave been submitted. In addition,
for systems not using a checkpoint server, all the checkpoint files from jobs that have been
submitted from a given machine will be store in that machine’s spool directory. Therefore,
you will want to ensure that the spool directory is located ona partition with enough disk
space. If a given machine is only set up to execute Condor jobsand not submit them, it would
not need a spool directory (or this macro defined). There is nodefault value forSPOOL, and
the condor_scheddwill not function without it SPOOL defined. Normally,$(SPOOL) is
defined in terms of$(LOCAL_DIR) .

EXECUTE This directory acts as a place to create the scratch directory of any Condor job that is
executing on the local machine. The scratch directory is thedestination of any input files that
were specified for transfer. It also serves as the job’s working directory if the job is using
file transfer mode and no other working directory was specified. If a given machine is set up
to only submit jobs and not execute them, it would not need an execute directory, and this
macro need not be defined. There is no default value forEXECUTE, and thecondor_startd
will not function if EXECUTEis undefined. Normally,$(EXECUTE) is defined in terms of
$(LOCAL_DIR) . To customize the execute directory independently for eachbatch slot, use
SLOT<N>_EXECUTE.

SLOT<N>_EXECUTE Specifies an execute directory for use by a specific batch slot. <N> rep-
resents the number of the batch slot, such as 1, 2, 3, etc. Thisexecute directory serves the
same purpose asEXECUTE, but it allows the configuration of the directory independently for
each batch slot. Having slots each using a different partition would be useful, for example,
in preventing one job from filling up the same disk that other jobs are trying to write to. If
this parameter is undefined for a given batch slot, it will useEXECUTEas the default. Note
that each slot will advertiseTotalDisk andDisk for the partition containing its execute
directory.

LOCAL_CONFIG_FILE Identifies the location of the local, machine-specific configuration file
for each machine in the pool. The two most common choices would be putting this file in
the$(LOCAL_DIR) , or putting all local configuration files for the pool in a shared directory,
each one named by host name. For example,

LOCAL_CONFIG_FILE = $(LOCAL_DIR)/condor_config.local

or,

LOCAL_CONFIG_FILE = $(release_dir)/etc/$(hostname).lo cal

or, not using the release directory

Condor Version 7.7.6 Manual

3.3. Configuration 171

LOCAL_CONFIG_FILE = /full/path/to/configs/$(hostname) .local

The value ofLOCAL_CONFIG_FILEis treated as a list of files, not a single file. The items
in the list are delimited by either commas or space characters. This allows the specification
of multiple files as the local configuration file, each one processed in the order given (with
parameters set in later files overriding values from previous files). This allows the use of
one global configuration file for multiple platforms in the pool, defines a platform-specific
configuration file for each platform, and uses a local configuration file for each machine. If
the list of files is changed in one of the later read files, the new list replaces the old list, but
any files that have already been processed remain processed,and are removed from the new
list if they are present to prevent cycles. See section 3.3.1on page 164 for directions on using
a program to generate the configuration macros that would otherwise reside in one or more
files as described here. IfLOCAL_CONFIG_FILEis not defined, no local configuration files
are processed. For more information on this, see section 3.12.3 about Configuring Condor for
Multiple Platforms on page 403.

If all files in a directory are local configuration files to be processed, then consider using
LOCAL_CONFIG_DIR, defined at section 3.3.3.

REQUIRE_LOCAL_CONFIG_FILEA boolean value that defaults toTrue . WhenTrue , Condor
exits with an error, if any file listed inLOCAL_CONFIG_FILE cannot be read. A value
of False allows local configuration files to be missing. This is most useful for sites that
have both large numbers of machines in the pool and a local configuration file that uses the
$(HOSTNAME)macro in its definition. Instead of having an empty file for every host in the
pool, files can simply be omitted.

LOCAL_CONFIG_DIR A directory may be used as a container for local configurationfiles. The
files found in the directory are sorted into lexicographicalorder by file name, and then each
file is treated as though it was listed inLOCAL_CONFIG_FILE. LOCAL_CONFIG_DIR
is processed before any files listed inLOCAL_CONFIG_FILE, and is checked again af-
ter processing theLOCAL_CONFIG_FILE list. It is a list of directories, and each di-
rectory is processed in the order it appears in the list. The process is not recursive,
so any directories found inside the directory being processed are ignored. See also
LOCAL_CONFIG_DIR_EXCLUDE_REGEXP.

LOCAL_CONFIG_DIR_EXCLUDE_REGEXPA regular expression that specifies file names
to be ignored when looking for configuration files within the directories specified via
LOCAL_CONFIG_DIR. The default expression ignores files with names beginning with a
‘.’ or a ‘ #’, as well as files with names ending in ‘˜’. This avoids accidents that can be caused
by treating temporary files created by text editors as configuration files.

CONDOR_IDS The User ID (UID) and Group ID (GID) pair that the Condor daemons should
run as, if the daemons are spawned as root. This value can alsobe specified in the
CONDOR_IDSenvironment variable. If the Condor daemons are not startedas root, then
neither thisCONDOR_IDSconfiguration macro nor theCONDOR_IDSenvironment vari-
able are used. The value is given by two integers, separated by a period. For example,
CONDOR_IDS = 1234.1234. If this pair is not specified in either the configuration file or

Condor Version 7.7.6 Manual

3.3. Configuration 172

in the environment, and the Condor daemons are spawned as root, then Condor will search
for a condor user on the system, and run as that user’s UID and GID. See section 3.6.13 on
UIDs in Condor for more details.

CONDOR_ADMIN The email address that Condor will send mail to if something goes wrong in
the pool. For example, if a daemon crashes, thecondor_mastercan send anobituary to this
address with the last few lines of that daemon’s log file and a brief message that describes what
signal or exit status that daemon exited with. There is no default value forCONDOR_ADMIN.

<SUBSYS>_ADMIN_EMAIL The email address that Condor will send mail to if something goes
wrong with the named<SUBSYS>. Identical toCONDOR_ADMIN, but done on a per subsys-
tem basis. There is no default value.

CONDOR_SUPPORT_EMAIL The email address to be included at the bottom of all email Con-
dor sends out under the label “Email address of the local Condor administrator:”. This is
the address where Condor users at your site should send theirquestions about Condor and
get technical support. If this setting is not defined, Condorwill use the address specified in
CONDOR_ADMIN(described above).

EMAIL_SIGNATURE Every e-mail sent by Condor includes a short signature line appended to the
body. By default, this signature includes the URL to the global Condor project website. When
set, this variable defines an alternative signature line to be used instead of the default. Note
that the value can only be one line in length. This variable could be used to direct users to
look at local web site with information specific to the installation of Condor.

MAIL The full path to a mail sending program that uses-s to specify a subject for the message.
On all platforms, the default shipped with Condor should work. Only if you installed things
in a non-standard location on your system would you need to change this setting. There is no
default value forMAIL, and thecondor_scheddwill not function unlessMAIL is defined.

MAIL_FROM The e-mail address that notification e-mails appear to come from. Contents is that of
theFrom header. There is no default value; if undefined, theFrom header may be nonsensi-
cal.

SMTP_SERVER For Windows platforms only, the host name of the server through which to
route notification e-mail. There is no default value; if undefined and the debug level is at
FULLDEBUG, an error message will be generated.

RESERVED_SWAP The amount of swap space in Mbytes to reserve for this machine. Condor will
not start up morecondor_shadowprocesses if the amount of free swap space on this machine
falls below this level. The default value is 0, which disables this check. It is anticipated that
this configuration variable will no longer be used in the nearfuture. If RESERVED_SWAPis
not set to 0, the value ofSHADOW_SIZE_ESTIMATEis used.

RESERVED_DISK Determines how much disk space you want to reserve for your own machine.
When Condor is reporting the amount of free disk space in a given partition on your machine,
it will always subtract this amount. An example is thecondor_startd, which advertises the
amount of free space in the$(EXECUTE) directory. The default value ofRESERVED_DISK
is zero.

Condor Version 7.7.6 Manual

3.3. Configuration 173

LOCK Condor needs to create lock files to synchronize access to various log files. Because of
problems with network file systems and file locking over the years, wehighly recommend
that you put these lock files on a local partition on each machine. If you do not have your
$(LOCAL_DIR) on a local partition, be sure to change this entry.

Whatever user or group Condor is running as needs to have write access to this directory. If
you are not running as root, this is whatever user you startedup thecondor_masteras. If you
are running as root, and there is a condor account, it is most likely condor. Otherwise, it is
whatever you set in theCONDOR_IDSenvironment variable, or whatever you define in the
CONDOR_IDSsetting in the Condor config files. See section 3.6.13 on UIDs in Condor for
details.

If no value forLOCKis provided, the value ofLOGis used.

HISTORY Defines the location of the Condor history file, which stores information about all
Condor jobs that have completed on a given machine. This macro is used by both the
condor_scheddwhich appends the information andcondor_history, the user-level program
used to view the history file. This configuration macro is given the default value of
$(SPOOL)/history in the default configuration. If not defined, no history file iskept.

ENABLE_HISTORY_ROTATION If this is defined to be true, then the history file will be rotated.
If it is false, then it will not be rotated, and it will grow indefinitely, to the limits allowed by
the operating system. If this is not defined, it is assumed to be true. The rotated files will be
stored in the same directory as the history file.

MAX_HISTORY_LOG Defines the maximum size for the history file, in bytes. It defaults to 20MB.
This parameter is only used if history file rotation is enabled.

MAX_HISTORY_ROTATIONS When history file rotation is turned on, this controls how many
backup files there are. It default to 2, which means that theremay be up to three history files
(two backups, plus the history file that is being currently written to). When the history file is
rotated, and this rotation would cause the number of backupsto be too large, the oldest file is
removed.

MAX_JOB_QUEUE_LOG_ROTATIONSThe schedd periodically rotates the job queue database
file in order to save disk space. This option controls how manyrotated files are saved. It
defaults to 1, which means there may be up to two history files (the previous one, which was
rotated out of use, and the current one that is being written to). When the job queue file is
rotated, and this rotation would cause the number of backupsto be larger the the maximum
specified, the oldest file is removed. The primary reason to save one or more rotated job queue
files is if you are using Quill, and you want to ensure that Quill keeps an accurate history of
all events logged in the job queue file. Quill keeps track of where it last left off when reading
logged events, so when the file is rotated, Quill will resume reading from where it last left
off, provided that the rotated file still exists. If Quill finds that it needs to read events from
a rotated file that has been deleted, it will be forced to skip the missing events and resume
reading in the next chronological job queue file that can be found. Such an event should not
lead to an inconsistency in Quill’s view of the current queuecontents, but it would create a
inconsistency in Quill’s record of the history of the job queue.

Condor Version 7.7.6 Manual

3.3. Configuration 174

DEFAULT_DOMAIN_NAME The value to be appended to a machine’s host name, representing a
domain name, which Condor then uses to form a fully qualified host name. This is required
if there is no fully qualified host name in file/etc/hosts or in NIS. Set the value in the
global configuration file, as Condor may depend on knowing this value in order to locate the
local configuration file(s). The default value as given in thesample configuration file of the
Condor download is bogus, and must be changed. If this variable is removed from the global
configuration file, or if the definition is empty, then Condor attempts to discover the value.

NO_DNS A boolean value that defaults toFalse . WhenTrue , Condor constructs host names
using the host’s IP address together with the value defined for DEFAULT_DOMAIN_NAME.

CM_IP_ADDR If neither COLLECTOR_HOSTnor COLLECTOR_IP_ADDRmacros are defined,
then this macro will be used to determine the IP address of thecentral manager (collector
daemon). This macro is defined by an IP address.

EMAIL_DOMAIN By default, if a user does not specifynotify_user in the submit description
file, any email Condor sends about that job will go to "username@UID_DOMAIN". If your
machines all share a common UID domain (so that you would setUID_DOMAINto be the
same across all machines in your pool), but email to user@UID_DOMAIN is not the right
place for Condor to send email for your site, you can define thedefault domain to use for
email. A common example would be to setEMAIL_DOMAINto the fully qualified host name
of each machine in your pool, so users submitting jobs from a specific machine would get
email sent to user@machine.your.domain, instead of user@your.domain. You would do this
by settingEMAIL_DOMAINto $(FULL_HOSTNAME). In general, you should leave this
setting commented out unless two things are true: 1)UID_DOMAINis set to your domain, not
$(FULL_HOSTNAME), and 2) email to user@UID_DOMAIN will not work.

CREATE_CORE_FILES Defines whether or not Condor daemons are to create a core file in the
LOG directory if something really bad happens. It is used to set the resource limit for the
size of a core file. If not defined, it leaves in place whatever limit was in effect when the
Condor daemons (normally thecondor_master) were started. This allows Condor to inherit
the default system core file generation behavior at start up.For Unix operating systems, this
behavior can be inherited from the parent shell, or specifiedin a shell script that starts Condor.
If this parameter is set andTrue , the limit is increased to the maximum. If it is set toFalse ,
the limit is set at 0 (which means that no core files are created). Core files greatly help the
Condor developers debug any problems you might be having. Byusing the parameter, you
do not have to worry about tracking down where in your boot scripts you need to set the core
limit before starting Condor. You set the parameter to whatever behavior you want Condor
to enforce. This parameter defaults to undefined to allow theinitial operating system default
value to take precedence, and is commented out in the defaultconfiguration file.

CKPT_PROBE Defines the path and executable name of the helper process Condor will use to
determine information for theCheckpointPlatform attribute in the machine’s ClassAd.
The default value is$(LIBEXEC)/condor_ckpt_probe .

ABORT_ON_EXCEPTION When Condor programs detect a fatal internal exception, they normally
log an error message and exit. If you have turned onCREATE_CORE_FILES, in some cases
you may also want to turn onABORT_ON_EXCEPTIONso that core files are generated when
an exception occurs. Set the following to True if that is whatyou want.

Condor Version 7.7.6 Manual

3.3. Configuration 175

Q_QUERY_TIMEOUT Defines the timeout (in seconds) thatcondor_quses when trying to connect
to thecondor_schedd. Defaults to 20 seconds.

DEAD_COLLECTOR_MAX_AVOIDANCE_TIMEDefines the interval of time (in seconds) between
checks for a failed primarycondor_collectordaemon. If connections to the dead primarycon-
dor_collectortake very little time to fail, new attempts to query the primary condor_collector
may be more frequent than the specified maximum avoidance time. The default value equals
one hour. This variable has relevance to flocked jobs, as it defines the maximum time they
may be reporting to the primarycondor_collectorwithout thecondor_negotiatornoticing.

PASSWD_CACHE_REFRESH Condor can cause NIS servers to become overwhelmed by queries
for uid and group information in large pools. In order to avoid this problem, Condor caches
UID and group information internally. This integer value allows pool administrators to specify
(in seconds) how long Condor should wait until refreshes a cache entry. The default is set to
300 seconds, or 5 minutes, plus a random number of seconds between 0 and 60 to avoid
having lots of processes refreshing at the same time. This means that if a pool administrator
updates the user or group database (for example,/etc/passwd or /etc/group), it can
take up to 6 minutes before Condor will have the updated information. This caching feature
can be disabled by setting the refresh interval to 0. In addition, the cache can also be flushed
explicitly by running the commandcondor_reconfig. This configuration variable has no effect
on Windows.

SYSAPI_GET_LOADAVG If set to False, then Condor will not attempt to compute the load average
on the system, and instead will always report the system loadaverage to be 0.0. Defaults to
True.

NETWORK_MAX_PENDING_CONNECTSThis specifies a limit to the maximum number of simul-
taneous network connection attempts. This is primarily relevant tocondor_schedd, which
may try to connect to large numbers of startds when claiming them. The negotiator may
also connect to large numbers of startds when initiating security sessions used for sending
MATCH messages. On Unix, the default for this parameter is eighty percent of the process
file descriptor limit. On windows, the default is 1600.

WANT_UDP_COMMAND_SOCKET This setting, added in version 6.9.5, controls if Condor daemons
should create a UDP command socket in addition to the TCP command socket (which is
required). The default isTrue , and modifying it requires restarting all Condor daemons, not
just acondor_reconfigor SIGHUP.

Normally, updates sent to thecondor_collectoruse UDP, in addition to certain keep alive
messages and other non-essential communication. However,in certain situations, it might be
desirable to disable the UDP command port.

Unfortunately, due to a limitation in how these command sockets are created, it is not
possible to define this setting on a per-daemon basis, for example, by trying to set
STARTD.WANT_UDP_COMMAND_SOCKET. At least for now, this setting must be defined
machine wide to function correctly.

If this setting is set to true on a machine running acondor_collector, the pool should be config-
ured to use TCP updates to that collector (see section 3.7.4 on page 378 for more information).

Condor Version 7.7.6 Manual

3.3. Configuration 176

ALLOW_SCRIPTS_TO_RUN_AS_EXECUTABLESA boolean value that, whenTrue , permits
scripts on Windows platforms to be used in place of theexecutablein a job submit description
file, in place of acondor_dagmanpre or post script, or in producing the configuration, for
example. Allows a script to be used in any circumstance previously limited to a Windows
executable or a batch file. The default value isTrue . See section 6.2.7 on page 571 for
further description.

OPEN_VERB_FOR_<EXT>_FILESA string that defines a Windowsverb for use in a root hive
registry look up. <EXT> defines the file name extension, which represents a scriptinglan-
guage, also needed for the look up. See section 6.2.7 on page 571 for a more complete
description.

STRICT_CLASSAD_EVALUATIONA boolean value that controls how ClassAd expressions are
evaluated. If set toTrue , then New ClassAd evaluation semantics are used. This means
that attribute references without aMY. or TARGET. prefix are only looked up in the local
ClassAd. If set to the default value ofFalse , Old ClassAd evaluation semantics are used.
See section 4.1.1 on page 448 for details.

CLASSAD_USER_LIBS A comma separated list of paths to shared libraries that contain addi-
tional ClassAd functions to be used during ClassAd evaluation.

CONDOR_FSYNC A boolean value that controls whether Condor calls fsync when writing the user
job and transaction logs. Setting this value to false will disable calls to fsync, which can help
performance for schedd log writes at the cost of some durability of the log contents should
there be a power or hardware failure. This value is true by default.

3.3.4 Daemon Logging Configuration File Entries

These entries control how and where the Condor daemons writeto log files. Many of the entries in
this section represents multiple macros. There is one for each subsystem (listed in section 3.3.1).
The macro name for each substitutes<SUBSYS>with the name of the subsystem corresponding to
the daemon.

<SUBSYS>_LOG The name of the log file for a given subsystem. For example,$(STARTD_LOG)
gives the location of the log file forcondor_startd. The default is$(LOG)/<SUBSYS>LOG.
If the log file cannot be written to, then the daemon will attempt to log this into a new file of
the name$(LOG)/dprintf_failure.<SUBSYS> before the daemon exits.

MAX_<SUBSYS>_LOG Controls the maximum length in bytes to which a log will be allowed
to grow. Each log file will grow to the specified length, then besaved to a file with an
ISO timestamp suffix. The oldest rotated file receives the ending .old . The .old files
are overwritten each time the maximum number of rotated files(determined by the value of
MAX_NUM_<SUBSYS>_LOG) is exceeded. Thus, the maximum space devoted to logging for
any one program will beMAX_NUM_<SUBSYS>_LOG + 1times the maximum length of its
log file. A value of 0 specifies that the file may grow without bounds. The default is 1 Mbyte.

Condor Version 7.7.6 Manual

3.3. Configuration 177

MAX_NUM_<SUBSYS>_LOG An integer that controls the maximum number of rotations a log
file is allowed to perform before the oldest one will be rotated away. Thus, at most
MAX_NUM_<SUBSYS>_LOG + 1log files of the same program coexist at a given time.
The default value is 1.

TRUNC_<SUBSYS>_LOG_ON_OPEN If this macro is defined and set toTrue , the affected log
will be truncated and started from an empty file with each invocation of the program. Oth-
erwise, new invocations of the program will append to the previous log file. By default this
setting isFalse for all daemons.

<SUBSYS>_LOG_KEEP_OPEN A boolean value that controls whether or not the log file is kept
open between writes. WhenTrue , the daemon will not open and close the log file be-
tween writes. Instead the daemon will hold the log file open until the log needs to be
rotated. WhenFalse , the daemon reverts to the previous behavior of opening and clos-
ing the log file between writes. When the$(<SUBSYS>_LOCK) macro is defined, setting
$(<SUBSYS>_LOG_KEEP_OPEN)has no effect, as the daemon will unconditionally revert
back to the open/close between writes behavior. On Windows platforms, the value defaults
to True for all daemons. On Linux platforms, the value defaults toTrue for all daemons,
except thecondor_shadow, due to a global file descriptor limit.

<SUBSYS>_LOCK This macro specifies the lock file used to synchronize append operations to the
log file for this subsystem. It must be a separate file from the$(<SUBSYS>_LOG)file, since
the$(<SUBSYS>_LOG)file may be rotated and you want to be able to synchronize access
across log file rotations. A lock file is only required for log files which are accessed by more
than one process. Currently, this includes only theSHADOWsubsystem. This macro is defined
relative to the$(LOCK) macro.

JOB_QUEUE_LOG A full path and file name, specifying the job queue log. The default value,
when not defined is$(SPOOL)/job_queue.log . This specification can be useful, if there
is a solid state drive which is big enough to hold the frequently written to job_queue.log ,
but not big enough to hold the whole contents of the spool directory.

FILE_LOCK_VIA_MUTEX This macro setting only works on Win32 – it is ignored on Unix.If set
to beTrue , then log locking is implemented via a kernel mutex instead of via file locking. On
Win32, mutex access is FIFO, while obtaining a file lock is non-deterministic. Thus setting to
True fixes problems on Win32 where processes (usually shadows) could starve waiting for a
lock on a log file. Defaults toTrue on Win32, and is alwaysFalse on Unix.

LOCK_DEBUG_LOG_TO_APPENDA boolean value that defaults toFalse . This variable con-
trols whether a daemon’s debug lock is used when appending tothe log. WhenFalse , the
debug lock is only used when rotating the log file. This is moreefficient, especially when
many processes share the same log file. WhenTrue , the debug lock is used when writing to
the log, as well as when rotating the log file. This setting is ignored under Windows, and the
behavior of Windows platforms is as though this variable wereTrue . Under Unix, the default
value ofFalse is appropriate when logging to file systems that support the POSIX semantics
of O_APPEND. On non-POSIX-compliant file systems, it is possible for thecharacters in log
messages from multiple processes sharing the same log to be interleaved, unless locking is
used. Since Condor does not support sharing of debug logs between processes running on

Condor Version 7.7.6 Manual

3.3. Configuration 178

different machines, many non-POSIX-compliant file systemswill still avoid interleaved mes-
sages without requiring Condor to use a lock. Tests of AFS andNFS have not revealed any
problems when appending to the log without locking.

ENABLE_USERLOG_LOCKING WhenTrue (the default value), a user’s job log (as specified in
a submit description file) will be locked before being written to. If False , Condor will not
lock the file before writing.

CREATE_LOCKS_ON_LOCAL_DISKA boolean value utilized only for Unix operating systems,
that defaults toTrue . This variable is only relevant ifENABLE_USERLOG_LOCKINGis
True . WhenTrue , job user logs and the global job event log are written to a directory
namedcondorLocks , thereby using a local drive to avoid known problems with locking on
NFS. The location of thecondorLocks directory is determined by

1. The value ofTEMP_DIR, if defined.

2. The value ofTMP_DIR, if defined andTEMP_DIRis not defined.

3. The default value of/tmp , if neitherTEMP_DIRnorTMP_DIRis defined.

TOUCH_LOG_INTERVAL The time interval in seconds between when daemons touch their log
files. The change in last modification time for the log file is useful when a daemon restarts
after failure or shut down. The last modification date is printed, and it provides an upper
bound on the length of time that the daemon was not running. Defaults to 60 seconds.

LOGS_USE_TIMESTAMP This macro controls how the current time is formatted at the start of
each line in the daemon log files. WhenTrue , the Unix time is printed (number of seconds
since 00:00:00 UTC, January 1, 1970). WhenFalse (the default value), the time is printed
like so: <Month>/<Day> <Hour>:<Minute>:<Second> in the local timezone.

DEBUG_TIME_FORMAT This string defines how to format the current time printed at the start of
each line in the daemon log files. The value is a format string is passed to the Cstrftime()
function, so see that manual page for platform-specific details. If not defined, the default value
is

"%m/%d %H:%M:%S "

<SUBSYS>_DEBUG All of the Condor daemons can produce different levels of output depending
on how much information is desired. The various levels of verbosity for a given daemon are
determined by this macro. All daemons have the default levelD_ALWAYS, and log messages
for that level will be printed to the daemon’s log, regardless of this macro’s setting. Settings
are a comma- or space-separated list of the following values:

D_ALL This flag turns onall debugging output by enabling all of the debug levels at once.
There is no need to list any other debug levels in addition toD_ALL; doing so would be
redundant. Be warned: this will generate about aHUGE amount of output. To obtain a
higher level of output than the default, consider usingD_FULLDEBUGbefore using this
option.

Condor Version 7.7.6 Manual

3.3. Configuration 179

D_FULLDEBUG This level provides verbose output of a general nature into the log files.
Frequent log messages for very specific debugging purposes would be excluded. In those
cases, the messages would be viewed by having that another flag andD_FULLDEBUG
both listed in the configuration file.

D_DAEMONCORE Provides log file entries specific to DaemonCore, such as timers the dae-
mons have set and the commands that are registered. If bothD_FULLDEBUGand
D_DAEMONCOREare set, expectveryverbose output.

D_PRIV This flag provides log messages about theprivilege stateswitching that the daemons
do. See section 3.6.13 on UIDs in Condor for details.

D_COMMAND With this flag set, any daemon that uses DaemonCore will printout a log mes-
sage whenever a command comes in. The name and integer of the command, whether
the command was sent via UDP or TCP, and where the command was sent from are all
logged. Because the messages about the command used bycondor_kbddto communi-
cate with thecondor_startdwhenever there is activity on the X server, and the command
used for keep-alives are both only printed withD_FULLDEBUGenabled, it is best if this
setting is used for all daemons.

D_LOAD Thecondor_startdkeeps track of the load average on the machine where it is run-
ning. Both the general system load average, and the load average being generated by
Condor’s activity there are determined. With this flag set, the condor_startdwill log
a message with the current state of both of these load averages whenever it computes
them. This flag only affects thecondor_startd.

D_KEYBOARD With this flag set, thecondor_startdwill print out a log message with the
current values for remote and local keyboard idle time. Thisflag affects only thecon-
dor_startd.

D_JOB When this flag is set, thecondor_startdwill send to its log file the contents of any
job ClassAd that thecondor_scheddsends to claim thecondor_startdfor its use. This
flag affects only thecondor_startd.

D_MACHINE When this flag is set, thecondor_startdwill send to its log file the contents of
its resource ClassAd when thecondor_scheddtries to claim thecondor_startdfor its
use. This flag affects only thecondor_startd.

D_SYSCALLS This flag is used to make thecondor_shadowlog remote syscall requests and
return values. This can help track down problems a user is having with a particular job
by providing the system calls the job is performing. If any are failing, the reason for
the failure is given. Thecondor_scheddalso uses this flag for the server portion of the
queue management code. WithD_SYSCALLSdefined inSCHEDD_DEBUGthere will
be verbose logging of all queue management operations thecondor_scheddperforms.

D_MATCH When this flag is set, thecondor_negotiatorlogs a message for every match.

D_NETWORK When this flag is set, all Condor daemons will log a message on every TCP
accept, connect, and close, and on every UDP send and receive. This flag is not yet fully
supported in thecondor_shadow.

D_HOSTNAME When this flag is set, the Condor daemons and/or tools will print verbose mes-
sages explaining how they resolve host names, domain names,and IP addresses. This is
useful for sites that are having trouble getting Condor to work because of problems with
DNS, NIS or other host name resolving systems in use.

Condor Version 7.7.6 Manual

3.3. Configuration 180

D_CKPT When this flag is set, the Condor process checkpoint support code, which is linked
into a STANDARD universe user job, will output some low-level details about the check-
point procedure into the$(SHADOW_LOG).

D_SECURITY This flag will enable debug messages pertaining to the setup of secure net-
work communication, including messages for the negotiation of a socket authentication
mechanism, the management of a session key cache. and messages about the authentica-
tion process itself. See section 3.6.1 for more informationabout secure communication
configuration.

D_PROCFAMILY Condor often times needs to manage an entire family of processes, (that is,
a process and all descendants of that process). This debug flag will turn on debugging
output for the management of families of processes.

D_ACCOUNTANT When this flag is set, thecondor_negotiatorwill output debug messages
relating to the computation of user priorities (see section3.4).

D_PROTOCOL Enable debug messages relating to the protocol for Condor’smatchmaking
and resource claiming framework.

D_PID This flag is different from the other flags, because it is used to change the formatting
of all log messages that are printed, as opposed to specifying what kinds of messages
should be printed. IfD_PID is set, Condor will always print out the process identi-
fier (PID) of the process writing each line to the log file. Thisis especially helpful for
Condor daemons that can fork multiple helper-processes (such as thecondor_scheddor
condor_collector) so the log file will clearly show which thread of execution isgenerat-
ing each log message.

D_FDS This flag is different from the other flags, because it is used to change the formatting
of all log messages that are printed, as opposed to specifying what kinds of messages
should be printed. IfD_FDSis set, Condor will always print out the file descriptor that
the open of the log file was allocated by the operating system.This can be helpful in
debugging Condor’s use of system file descriptors as it will generally track the number
of file descriptors that Condor has open.

ALL_DEBUG Used to make all subsystems share a debug flag. Set the parameter ALL_DEBUG
instead of changing all of the individual parameters. For example, to turn on all debugging in
all subsystems, setALL_DEBUG = D_ALL.

TOOL_DEBUG Uses the same values (debugging levels) as<SUBSYS>_DEBUGto describe the
amount of debugging information sent tostderr for Condor tools.

Log files may optionally be specified per debug level as follows:

<SUBSYS>_<LEVEL>_LOG The name of a log file for messages at a specific debug level for
a specific subsystem.<LEVEL> is defined by any debug level, but without theD_ pre-
fix. See section 3.3.4 for the list of debug levels. If the debug level is included in
$(<SUBSYS>_DEBUG), then all messages of this debug level will be written both tothe log
file defined by<SUBSYS>_LOGand the the log file defined by<SUBSYS>_<LEVEL>_LOG.

Condor Version 7.7.6 Manual

3.3. Configuration 181

As examples,SHADOW_SYSCALLS_LOGspecifies a log file for all remote system call de-
bug messages, andNEGOTIATOR_MATCH_LOGspecifies a log file that only capturescon-
dor_negotiatordebug events occurring with matches.

MAX_<SUBSYS>_<LEVEL>_LOGSee section 3.3.4, the definition ofMAX_<SUBSYS>_LOG.

TRUNC_<SUBSYS>_<LEVEL>_LOG_ON_OPENSimilar toTRUNC_<SUBSYS>_LOG_ON_OPEN
.

The following macros control where and what is written to theevent log, a file that receives job
user log events, but across all users and user’s jobs.

EVENT_LOG The full path and file name of the event log. There is no defaultvalue for this variable,
so no event log will be written, if not defined.

EVENT_LOG_MAX_SIZE Controls the maximum length in bytes to which the event log will be
allowed to grow. The log file will grow to the specified length,then be saved to a file with the
suffix .old. The .old files are overwritten each time the log issaved. A value of 0 specifies
that the file may grow without bounds (and disables rotation). The default is 1 Mbyte. For
backwards compatibility,MAX_EVENT_LOGwill be used ifEVENT_LOG_MAX_SIZEis not
defined. IfEVENT_LOGis not defined, this parameter has no effect.

MAX_EVENT_LOG SeeEVENT_LOG_MAX_SIZE.

EVENT_LOG_MAX_ROTATIONS Controls the maximum number of rotations of the event log that
will be stored. If this value is 1 (the default), the event logwill be rotated to a “.old” file as de-
scribed above. However, if this is greater than 1, then multiple rotation files will be stores, up
to EVENT_LOG_MAX_ROTATIONSof them. These files will be named, instead of the “.old”
suffix, “.1”, “.2”, with the “.1” being the most recent rotation. This is an integer parameter
with a default value of 1. IfEVENT_LOGis not defined, or ifEVENT_LOG_MAX_SIZEhas
a value of 0 (which disables event log rotation), this parameter has no effect.

EVENT_LOG_ROTATION_LOCK Controls the lock file that will be used to ensure that, when
rotating files, the rotation is done by a single process. Thisis a string parameter; it’s default
value is the file path of the event log itself, with a “.lock” appended. IfEVENT_LOGis not
defined, or ifEVENT_LOG_MAX_SIZEhas a value of 0 (which disables event log rotation),
this parameter has no effect.

EVENT_LOG_FSYNC A boolean value that controls whether Condor will perform anfsync()
after writing each event to the event log. WhenTrue , an fsync() operation is performed
after each event. Thisfsync() operation forces the operating system to synchronize the
updates to the event log to the disk, but can negatively affect the performance of the system.
Defaults toFalse .

EVENT_LOG_LOCKING A boolean value that defaults toTrue . WhenTrue , the event log (as
specified byEVENT_LOG) will be locked before being written to. WhenFalse , Condor
does not lock the file before writing.

Condor Version 7.7.6 Manual

3.3. Configuration 182

EVENT_LOG_USE_XML A boolean value that defaults toFalse . WhenTrue , events are logged
in XML format. If EVENT_LOGis not defined, this parameter has no effect.

EVENT_LOG_JOB_AD_INFORMATION_ATTRSA comma separated list of job ClassAd at-
tributes, whose evaluated values form a new event, theJobAdInformationEvent , given
Event Number 028. This new event is placed in the event log in addition to each logged
event. IfEVENT_LOGis not defined, this configuration variable has no effect. This config-
uration variable is the same as the job ClassAd attributeJobAdInformationAttrs (see
page 961), but it applies to the system Event Log rather than the user job log.

3.3.5 DaemonCore Configuration File Entries

Please read section 3.9 for details on DaemonCore. There arecertain configuration file settings that
DaemonCore uses which affect all Condor daemons (except thecheckpoint server, standard universe
shadow, and standard universe starter, none of which use DaemonCore).

HOSTALLOW. . . All macros that begin with eitherHOSTALLOWor HOSTDENYare settings for
Condor’s host-based security. See section 3.6.9 on Settingup IP/host-based security in Condor
for details on these macros and how to configure them.

ENABLE_RUNTIME_CONFIG The condor_config_valtool has an option-rset for dynamically
setting run time configuration values, and which only affectthe in-memory configuration
variables. Because of the potential security implicationsof this feature, by default, Condor
daemons will not honor these requests. To use this functionality, Condor administrators must
specifically enable it by settingENABLE_RUNTIME_CONFIGto True , and specify what
configuration variables can be changed using theSETTABLE_ATTRS. . . family of configu-
ration options. Defaults toFalse .

ENABLE_PERSISTENT_CONFIG Thecondor_config_valtool has a-setoption for dynamically
setting persistent configuration values. These values override options in the normal Condor
configuration files. Because of the potential security implications of this feature, by default,
Condor daemons will not honor these requests. To use this functionality, Condor admin-
istrators must specifically enable it by settingENABLE_PERSISTENT_CONFIGto True ,
creating a directory where the Condor daemons will hold these dynamically-generated persis-
tent configuration files (declared usingPERSISTENT_CONFIG_DIR, described below) and
specify what configuration variables can be changed using theSETTABLE_ATTRS. . . family
of configuration options. Defaults toFalse .

PERSISTENT_CONFIG_DIR Directory where daemons should store dynamically-generatedper-
sistent configuration files (used to supportcondor_config_val-set) This directory shouldonly
be writable by root, or the user the Condor daemons are running as (if non-root). There is no
default, administrators that wish to use this functionality must create this directory and define
this setting. This directory must not be shared by multiple Condor installations, though it can
be shared by all Condor daemons on the same host. Keep in mind that this directory should
not be placed on an NFS mount where “root-squashing” is in effect, or else Condor daemons

Condor Version 7.7.6 Manual

3.3. Configuration 183

running as root will not be able to write to them. A directory (only writable by root) on the
local file system is usually the best location for this directory.

SETTABLE_ATTRS. . . All macros that begin with SETTABLE_ATTRS or
<SUBSYS>.SETTABLE_ATTRSare settings used to restrict the configuration values
that can be changed using thecondor_config_valcommand. Section 3.6.9 on Setting up
IP/Host-Based Security in Condor for details on these macros and how to configure them. In
particular, section 3.6.9 on page 353 contains details specific to these macros.

SHUTDOWN_GRACEFUL_TIMEOUTDetermines how long Condor will allow daemons try their
graceful shutdown methods before they do a hard shutdown. Itis defined in terms of seconds.
The default is 1800 (30 minutes).

<SUBSYS>_ADDRESS_FILE A complete path to a file that is to contain an IP address and port
number for a daemon. Every Condor daemon that uses DaemonCore has a command port
where commands are sent. The IP/port of the daemon is put in that daemon’s ClassAd, so that
other machines in the pool can query thecondor_collector(which listens on a well-known
port) to find the address of a given daemon on a given machine. When tools and daemons
are all executing on the same single machine, communications do not require a query of the
condor_collectordaemon. Instead, they look in a file on the local disk to find theIP/port. This
macro causes daemons to write the IP/port of their command socket to a specified file. In this
way, local tools will continue to operate, even if the machine running thecondor_collector
crashes. Using this file will also generate slightly less network traffic in the pool, since tools
includingcondor_qandcondor_rmdo not need to send any messages over the network to
locate thecondor_schedddaemon. This macro is not necessary for thecondor_collector
daemon, since its command socket is at a well-known port.

The macro is named by substituting<SUBSYS>with the appropriate subsystem string as
defined in section 3.3.1.

<SUBSYS>_DAEMON_AD_FILE A complete path to a file that is to contain the ClassAd for a
daemon. When the daemon sends a ClassAd describing itself tothe condor_collector, it
will also place a copy of the ClassAd in this file. Currently, this setting only works for the
condor_schedd(that isSCHEDD_DAEMON_AD_FILE) and is required for Quill.

<SUBSYS>_ATTRSor <SUBSYS>_EXPRS Allows any DaemonCore daemon to advertise arbi-
trary expressions from the configuration file in its ClassAd.Give the comma-separated list of
entries from the configuration file you want in the given daemon’s ClassAd. Frequently used
to add attributes to machines so that the machines can discriminate between other machines
in a job’srank andrequirements.

The macro is named by substituting<SUBSYS>with the appropriate subsystem string as
defined in section 3.3.1.

<SUBSYS>_EXPRSis a historic setting that functions identically to<SUBSYS>_ATTRS.
Use<SUBSYS>_ATTRS.

NOTE: Thecondor_kbdddoes not send ClassAds now, so this entry does not affect it. The
condor_startd, condor_schedd, condor_master, andcondor_collectordo send ClassAds, so
those would be valid subsystems to set this entry for.

Condor Version 7.7.6 Manual

3.3. Configuration 184

SUBMIT_EXPRSnot part of the<SUBSYS>_EXPRS, it is documented in section 3.3.14

Because of the different syntax of the configuration file and ClassAds, a little extra work is
required to get a given entry into a ClassAd. In particular, ClassAds require quote marks (")
around strings. Numeric values and boolean expressions cango in directly. For example, if
thecondor_startdis to advertise a string macro, a numeric macro, and a booleanexpression,
do something similar to:

STRING = This is a string
NUMBER = 666
BOOL1 = True
BOOL2 = CurrentTime >= $(NUMBER) || $(BOOL1)
MY_STRING = "$(STRING)"
STARTD_ATTRS = MY_STRING, NUMBER, BOOL1, BOOL2

DAEMON_SHUTDOWN Starting with Condor version 6.9.3, whenever a daemon is about to publish
a ClassAd update to thecondor_collector, it will evaluate this expression. If it evaluates to
True , the daemon will gracefully shut itself down, exit with the exit code 99, and will not be
restarted by thecondor_master(as if it sent itself acondor_offcommand). The expression is
evaluated in the context of the ClassAd that is being sent to thecondor_collector, so it can ref-
erence any attributes that can be seen withcondor_status -long [-daemon_type]
(for example,condor_status -long [-master] for thecondor_master). Since each
daemon’s ClassAd will contain different attributes, administrators should define these shut-
down expressions specific to each daemon, for example:

STARTD.DAEMON_SHUTDOWN = when to shutdown the startd
MASTER.DAEMON_SHUTDOWN = when to shutdown the master

Normally, these expressions would not be necessary, so if not defined, they default to FALSE.
One possible use case is for Condor glide-in, to have thecondor_startdshut itself down if it
has not been claimed by a job after a certain period of time.

NOTE: This functionality does not work in conjunction with Condor’s high-availability sup-
port (see section 3.11 on page 391 for more information). If you enable high-availability for
a particular daemon, you should not define this expression.

DAEMON_SHUTDOWN_FAST Identical toDAEMON_SHUTDOWN(defined above), except the dae-
mon will use the fast shutdown mode (as if it sent itself acondor_offcommand using the-fast
option).

USE_CLONE_TO_CREATE_PROCESSESA boolean value that controls how a Condor daemon
creates a new process on Linux platforms. If set to the default value ofTrue , theclone
system call is used. Otherwise, thefork system call is used.clone provides scalability
improvements for daemons using a large amount of memory, forexample, acondor_schedd
with a lot of jobs in the queue. Currently, the use ofclone is available on Linux systems. If
Condor detects that it is running under thevalgrind analysis tools, this setting is ignored and
treated asFalse , to work around incompatibilities.

Condor Version 7.7.6 Manual

3.3. Configuration 185

NOT_RESPONDING_TIMEOUT When a Condor daemon’s parent process is another Condor dae-
mon, the child daemon will periodically send a short messageto its parent stating that it is
alive and well. If the parent does not hear from the child for awhile, the parent assumes that
the child is hung, kills the child, and restarts the child. This parameter controls how long the
parent waits before killing the child. It is defined in terms of seconds and defaults to 3600 (1
hour). The child sends its alive and well messages at an interval of one third of this value.

<SUBSYS>_NOT_RESPONDING_TIMEOUTIdentical to NOT_RESPONDING_TIMEOUT,
but controls the timeout for a specific type of daemon. For example,
SCHEDD_NOT_RESPONDING_TIMEOUTcontrols how long thecondor_schedd’s par-
ent daemon will wait without receiving an alive and well message from thecondor_schedd
before killing it.

NOT_RESPONDING_WANT_COREA boolean value with a default value ofFalse . This pa-
rameter is for debugging purposes on Unix systems, and it controls the behavior of the par-
ent process when the parent process determines that a child process is not responding. If
NOT_RESPONDING_WANT_COREis True , the parent will send a SIGABRT instead of
SIGKILL to the child process. If the child process is configured with the configuration vari-
ableCREATE_CORE_FILESenabled, the child process will then generate a core dump. See
NOT_RESPONDING_TIMEOUTon page 184, andCREATE_CORE_FILESon page 174 for
related details.

LOCK_FILE_UPDATE_INTERVALAn integer value representing seconds, controlling how of-
ten valid lock files should have their on disk timestamps updated. Updating the timestamps
prevents administrative programs, such astmpwatch, from deleting long lived lock files. If set
to a value less than 60, the update time will be 60 seconds. Thedefault value is 28800, which
is 8 hours. This variable only takes effect at the start or restart of a daemon.

MAX_ACCEPTS_PER_CYCLE An integer value that defaults to 4. It is a limit on the numberof
accepts of new, incoming, socket connect requests per DaemonCore event cycle. It has the
most noticeable effect on thecondor_schedd, and would be given a higher integer value for
tuning purposes when there is a high number of jobs starting and exiting per second.

3.3.6 Network-Related Configuration File Entries

More information about networking in Condor can be found in section 3.7 on page 369.

BIND_ALL_INTERFACES For systems with multiple network interfaces, if this configuration
setting isFalse , Condor will only bind network sockets to the IP address specified with
NETWORK_INTERFACE(described below). If set toTrue , the default value, Condor will
listen on all interfaces. However, currently Condor is still only able to advertise a single
IP address, even if it is listening on multiple interfaces. By default, it will advertise the IP
address of the network interface used to contact the collector, since this is the most likely
to be accessible to other processes which query informationfrom the same collector. More
information about using this setting can be found in section3.7.3 on page 375.

Condor Version 7.7.6 Manual

3.3. Configuration 186

CCB_ADDRESS This is the address of acondor_collectorthat will serve as this daemon’s Con-
dor Connection Broker (CCB). Multiple addresses may be listed (separated by commas
and/or spaces) for redundancy. The CCB server must authorize this daemon at DAE-
MON level for this configuration to succeed. It is highly recommended to also configure
PRIVATE_NETWORK_NAMEif you configureCCB_ADDRESSso communications origi-
nating within the same private network do not need to go through CCB. For more information
about CCB, see page??.

CCB_HEARTBEAT_INTERVAL This is the maximum number of seconds of silence on a daemon’s
connection to the CCB server after which it will ping the server to verify that the connection
still works. The default is 20 minutes. This feature serves to both speed up detection of dead
connections and to generate a guaranteed minimum frequencyof activity to attempt to prevent
the connection from being dropped. The special value 0 disables the heartbeat. The heartbeat
is automatically disabled if the CCB server is older than 7.5.0.

USE_SHARED_PORT A boolean value that specifies whether a Condor process should rely on
condor_shared_portfor receiving incoming connections. Under Unix, write access to the
location defined byDAEMON_SOCKET_DIRis required for this to take effect. The default
is False . If set toTrue , SHARED_PORTshould be added toDAEMON_LIST. For more
information about using a shared port, see page 276.

<SUBSYS>_MAX_FILE_DESCRIPTORSThis setting is identical to
MAX_FILE_DESCRIPTORS, but it only applies to a specific condor subsystem. If
the subsystem-specific setting is unspecified,MAX_FILE_DESCRIPTORSis used.

MAX_FILE_DESCRIPTORS Under Unix, this specifies the maximum number of file descriptors
to allow the Condor daemon to use. File descriptors are a system resource used for open
files and for network connections. Condor daemons that make many simultaneous network
connections may require an increased number of file descriptors. For example, see page??
for information on file descriptor requirements of CCB. Changes to this configuration variable
require a restart of Condor in order to take effect. Also notethat only if Condor is running as
root will it be able to increase the limit above the hard limit(on maximum open files) that it
inherits.

NETWORK_INTERFACE An IP address of the form123.123.123.123 or the name of a net-
work device, as in the exampleeth0 . The wild card character (*) may be used within ei-
ther. For example,123.123.* would match a network interface with an IP address of
123.123.123.123 or 123.123.100.100 . The default value is* , which matches all
network interfaces.

The effect of this variable depends on the value ofBIND_ALL_INTERFACES. There are two
cases:

If BIND_ALL_INTERFACESis True (the default),NETWORK_INTERFACEcontrols what
IP address will be advertised as the public address of the daemon. If multiple network in-
terfaces match the value andENABLE_ADDRESS_REWRITINGis True (the default), the
IP address that is chosen to be advertised will be the one thatis used to communicate with
the condor_collector. If ENABLE_ADDRESS_REWRITINGis False , the IP address that
is chosen to be advertised will be the one associated with thefirst device (in system-defined

Condor Version 7.7.6 Manual

3.3. Configuration 187

order) that is in a public address space, or a private addressspace, or a loopback address,
in that order of preference. If it is desired to advertise an IP address that is not associated
with any local network interface, for example, when TCP forwarding is being used, then
TCP_FORWARDING_HOSTshould be used instead ofNETWORK_INTERFACE.

If BIND_ALL_INTERFACESis False , thenNETWORK_INTERFACEspecifies which IP
address Condor should use for all incoming and outgoing communication. If more than one
IP address matches the value, then the IP address that is chosen will be the one associated with
the first device (in system-defined order) that is in a public address space, or a private address
space, or a loopback address, in that order of preference.

More information about configuring Condor on machines with multiple network interfaces
can be found in section 3.7.3 on page 375.

PRIVATE_NETWORK_NAME If two Condor daemons are trying to communicate with each other,
and they both belong to the same private network, this setting will allow them to communicate
directly using the private network interface, instead of having to use CCB or to go through
a public IP address. Each private network should be assigneda unique network name. This
string can have any form, but it must be unique for a particular private network. If another
Condor daemon or tool is configured with the samePRIVATE_NETWORK_NAME, it will at-
tempt to contact this daemon using its private network address. Even for sites using CCB,
this is an important optimization, since it means that two daemons on the same network can
communicate directly, without having to go through the broker. If CCB is enabled, and the
PRIVATE_NETWORK_NAMEis defined, the daemon’s private address will be defined auto-
matically. Otherwise, you can specify a particular privateIP address to use by defining the
PRIVATE_NETWORK_INTERFACEsetting (described below). There is no default for this
setting. After changing this setting and runningcondor_reconfig, it may take up to onecon-
dor_collectorupdate interval before the change becomes visible.

PRIVATE_NETWORK_INTERFACEFor systems with multiple network interfaces, if this con-
figuration setting andPRIVATE_NETWORK_NAMEare both defined, Condor daemons will
advertise some additional attributes in their ClassAds to help other Condor daemons and tools
in the same private network to communicate directly.

PRIVATE_NETWORK_INTERFACEdefines what IP address of the form
123.123.123.123 or name of a network device (as in the exampleeth0) a given
multi-homed machine should use for the private network. Theasterisk (*) may be used as
a wild card character within either the IP address or the device name. If another Condor
daemon or tool is configured with the samePRIVATE_NETWORK_NAME, it will attempt
to contact this daemon using the IP address specified here. The syntax for specifying an IP
address is identical toNETWORK_INTERFACE. Sites using CCB only need to define the
PRIVATE_NETWORK_NAME, and thePRIVATE_NETWORK_INTERFACEwill be defined
automatically. Unless CCB is enabled, there is no default value for this variable. After
changing this variable and runningcondor_reconfig, it may take up to onecondor_collector
update interval before the change becomes visible.

TCP_FORWARDING_HOST This specifies the host or IP address that should be used as thepublic
address of this daemon. If a host name is specified, be aware that it will be resolved to an IP
address by this daemon, not by the clients wishing to connectto it. It is the IP address that

Condor Version 7.7.6 Manual

3.3. Configuration 188

is advertised, not the host name. This setting is useful if Condor on this host may be reached
through a NAT or firewall by connecting to an IP address that forwards connections to this
host. It is assumed that the port number on theTCP_FORWARDING_HOSTthat forwards to
this host is the same port number assigned to Condor on this host. This option could also
be used when ssh port forwarding is being used. In this case, the incoming addresses of
connections to this daemon will appear as though they are coming from the forwarding host
rather than from the real remote host, so any authorization settings that rely on host addresses
should be considered accordingly.

ENABLE_ADDRESS_REWRITINGA boolean value that defaults toTrue . When
NETWORK_INTERFACEmatches only one IP address orTCP_FORWARDING_HOST
is defined orNET_REMAP_ENABLEis True , this setting has no effect and the behavior is as
though it had been set toFalse . WhenTrue , IP addresses published by Condor daemons
are automatically rewritten to match the IP address of the network interface used to make the
publication. For example, if thecondor_scheddadvertises itself to two pools via flocking,
and thecondor_collectorfor one pool is reached by thecondor_scheddthrough a private
network interface, while thecondor_collectorfor the other pool is reached through a different
network interface, the IP address published by thecondor_schedddaemon will match the
address of the respective network interfaces used in the twocases. The intention is to make it
easier for Condor daemons to operate in a multi-homed environment.

HIGHPORT Specifies an upper limit of given port numbers for Condor to use, such that Condor is
restricted to a range of port numbers. If this macro is not explicitly specified, then Condor
will not restrict the port numbers that it uses. Condor will use system-assigned port numbers.
For this macro to work, bothHIGHPORTandLOWPORT(given below) must be defined.

LOWPORT Specifies a lower limit of given port numbers for Condor to use, such that Condor is
restricted to a range of port numbers. If this macro is not explicitly specified, then Condor
will not restrict the port numbers that it uses. Condor will use system-assigned port numbers.
For this macro to work, bothHIGHPORT(given above) andLOWPORTmust be defined.

IN_LOWPORT An integer value that specifies a lower limit of given port numbers for Condor to
use on incoming connections (ports for listening), such that Condor is restricted to a range
of port numbers. This range implies the use of bothIN_LOWPORTand IN_HIGHPORT.
A range of port numbers less than 1024 may be used for daemons running as root. Do not
specifyIN_LOWPORTin combination withIN_HIGHPORTsuch that the range crosses the
port 1024 boundary. Applies only to Unix machine configuration. Use ofIN_LOWPORTand
IN_HIGHPORToverrides any definition ofLOWPORTandHIGHPORT.

IN_HIGHPORT An integer value that specifies an upper limit of given port numbers for Condor
to use on incoming connections (ports for listening), such that Condor is restricted to a range
of port numbers. This range implies the use of bothIN_LOWPORTand IN_HIGHPORT.
A range of port numbers less than 1024 may be used for daemons running as root. Do not
specifyIN_LOWPORTin combination withIN_HIGHPORTsuch that the range crosses the
port 1024 boundary. Applies only to Unix machine configuration. Use ofIN_LOWPORTand
IN_HIGHPORToverrides any definition ofLOWPORTandHIGHPORT.

OUT_LOWPORT An integer value that specifies a lower limit of given port numbers for Condor to
use on outgoing connections, such that Condor is restrictedto a range of port numbers. This

Condor Version 7.7.6 Manual

3.3. Configuration 189

range implies the use of bothOUT_LOWPORTandOUT_HIGHPORT. A range of port numbers
less than 1024 is inappropriate, as not all daemons and toolswill be run as root. Applies only
to Unix machine configuration. Use ofOUT_LOWPORTandOUT_HIGHPORToverrides any
definition ofLOWPORTandHIGHPORT.

OUT_HIGHPORT An integer value that specifies an upper limit of given port numbers for Condor
to use on outgoing connections, such that Condor is restricted to a range of port numbers.
This range implies the use of bothOUT_LOWPORTandOUT_HIGHPORT. A range of port
numbers less than 1024 is inappropriate, as not all daemons and tools will be run as root.
Applies only to Unix machine configuration. Use ofOUT_LOWPORTandOUT_HIGHPORT
overrides any definition ofLOWPORTandHIGHPORT.

UPDATE_COLLECTOR_WITH_TCP If your site needs to use TCP connections to send ClassAd
updates to your collector, set toTrue to enable this feature. Please read section 3.7.4 on “Us-
ing TCP to Send Collector Updates” on page 378 for more details and a discussion of when
this functionality is needed. At this time, this setting only affects the maincondor_collector
for the site, not any sites that acondor_scheddmight flock to. For large pools, it is also
necessary to ensure that the collector has a high enough file descriptor limit (e.g. using
MAX_FILE_DESCRIPTORS. Defaults toFalse .

TCP_UPDATE_COLLECTORS The list of collectors which will be updated with TCP insteadof
UDP. Please read section 3.7.4 on “Using TCP to Send Collector Updates” on page 378 for
more details and a discussion of when a site needs this functionality. If not defined, no collec-
tors use TCP instead of UDP.

<SUBSYS>_TIMEOUT_MULTIPLIERAn integer value that defaults to 1. This value multiplies
configured timeout values for all targeted subsystem communications, thereby increasing the
time until a timeout occurs. This configuration variable is intended for use by developers for
debugging purposes, where communication timeouts interfere.

NONBLOCKING_COLLECTOR_UPDATEA boolean value that defaults toTrue . WhenTrue ,
the establishment of TCP connections to thecondor_collectordaemon for a security-enabled
pool are done in a nonblocking manner.

NEGOTIATOR_USE_NONBLOCKING_STARTD_CONTACTA boolean value that defaults to
True . WhenTrue , the establishment of TCP connections from thecondor_negotiatordae-
mon to thecondor_startddaemon for a security-enabled pool are done in a nonblockingman-
ner.

3.3.7 Shared File System Configuration File Macros

These macros control how Condor interacts with various shared and network file systems. If you are
using AFS as your shared file system, be sure to read section 3.12.1 on Using Condor with AFS. For
information on submitting jobs under shared file systems, see section 2.5.3.

UID_DOMAIN The UID_DOMAINmacro is used to decide under which user to run jobs. If the
$(UID_DOMAIN) on the submitting machine is different than the$(UID_DOMAIN) on the

Condor Version 7.7.6 Manual

3.3. Configuration 190

machine that runs a job, then Condor runs the job as the usernobody . For example, if the
submit machine has a$(UID_DOMAIN) of flippy.cs.wisc.edu, and the machine where the
job will execute has a$(UID_DOMAIN) of cs.wisc.edu, the job will run as usernobody ,
because the two$(UID_DOMAIN) s are not the same. If the$(UID_DOMAIN) is the same
on both the submit and execute machines, then Condor will runthe job as the user that sub-
mitted the job.

A further check attempts to assure that the submitting machine can not lie about its
UID_DOMAIN. Condor compares the submit machine’s claimed value forUID_DOMAINto
its fully qualified name. If the two do not end the same, then the submit machine is presumed
to be lying about itsUID_DOMAIN. In this case, Condor will run the job as usernobody . For
example, a job submission to the Condor pool at the UW Madisonfrom flippy.example.com,
claiming aUID_DOMAINof of cs.wisc.edu, will run the job as the usernobody .

Because of this verification,$(UID_DOMAIN) must be a real domain name. At the
Computer Sciences department at the UW Madison, we set the$(UID_DOMAIN) to be
cs.wisc.edu to indicate that whenever someone submits froma department machine, we will
run the job as the user who submits it.

Also seeSOFT_UID_DOMAINbelow for information about one more check that Condor
performs before running a job as a given user.

A few details:

An administrator could setUID_DOMAINto *. This will match all domains, but it is a gaping
security hole. It is not recommended.

An administrator can also leaveUID_DOMAINundefined. This will force Condor to always
run jobs as usernobody . Running standard universe jobs as usernobody enhances security
and should cause no problems, because the jobs use remote I/Oto access all of their files.
However, if vanilla jobs are run as usernobody , then files that need to be accessed by the job
will need to be marked as world readable/writable so the usernobody can access them.

When Condor sends e-mail about a job, Condor sends the e-mailto
user@$(UID_DOMAIN) . If UID_DOMAIN is undefined, the e-mail is sent to
user@submitmachinename .

TRUST_UID_DOMAIN As an added security precaution when Condor is about to spawna job, it
ensures that theUID_DOMAINof a given submit machine is a substring of that machine’s
fully-qualified host name. However, at some sites, there maybe multiple UID spaces that
do not clearly correspond to Internet domain names. In thesecases, administrators may wish
to use names to describe the UID domains which are not substrings of the host names of
the machines. For this to work, Condor must not do this regular security check. If the
TRUST_UID_DOMAINsetting is defined toTrue , Condor will not perform this test, and
will trust whateverUID_DOMAINis presented by the submit machine when trying to spawn
a job, instead of making sure the submit machine’s host name matches theUID_DOMAIN.
When not defined, the default isFalse , since it is more secure to perform this test.

SOFT_UID_DOMAIN A boolean variable that defaults toFalse when not defined. When Condor
is about to run a job as a particular user (instead of as usernobody), it verifies that the UID
given for the user is in the password file and actually matchesthe given user name. However,

Condor Version 7.7.6 Manual

3.3. Configuration 191

under installations that do not have every user in every machine’s password file, this check
will fail and the execution attempt will be aborted. To causeCondor not to do this check, set
this configuration variable toTrue . Condor will then run the job under the user’s UID.

SLOT<N>_USER The name of a user for Condor to use instead of user nobody, as part of a solu-
tion that plugs a security hole whereby a lurker process can prey on a subsequent job run as
user name nobody.<N> is an integer associated with slots. On Windows,SLOT<N>_USER
will only work if the credential of the specified user is stored on the execute machine using
condor_store_cred. See Section 3.6.13 for more information.

STARTER_ALLOW_RUNAS_OWNERA boolean expression evaluated with the job ad as the target,
that determines whether the job may run under the job owner’saccount (True) or whether it
will run asSLOT<N>_USERor nobody (False). On Unix, this defaults toTrue . On Win-
dows, it defaults toFalse . The job ClassAd may also contain the attributeRunAsOwner
which is logically ANDed with thecondor_starterdaemon’s boolean value. Under Unix, if
the job does not specify it, this attribute defaults toTrue . Under Windows, the attribute de-
faults toFalse . In Unix, if theUidDomain of the machine and job do not match, then there
is no possibility to run the job as the owner anyway, so, in that case, this setting has no effect.
See Section 3.6.13 for more information.

DEDICATED_EXECUTE_ACCOUNT_REGEXPThis is a regular expression (i.e. a string matching
pattern) that matches the account name(s) that are dedicated to running condor jobs on the
execute machine and which will never be used for more than onejob at a time. The default
matches no account name. If you have configuredSLOT<N>_USERto be adifferentaccount
for each Condor slot, and no non-condorprocesses will ever be run by these accounts, then this
pattern should match the names of allSLOT<N>_USERaccounts. Jobs run under a dedicated
execute account are reliably tracked by Condor, whereas other jobs, may spawn processes
that Condor fails to detect. Therefore, a dedicated execution account provides more reliable
tracking of CPU usage by the job and it also guarantees that when the job exits, no “lurker”
processes are left behind. When the job exits, condor will attempt to kill all processes owned
by the dedicated execution account. Example:

SLOT1_USER = cndrusr1
SLOT2_USER = cndrusr2
STARTER_ALLOW_RUNAS_OWNER = False
DEDICATED_EXECUTE_ACCOUNT_REGEXP = cndrusr[0-9]+

You can tell if the starter is in fact treating the account as adedicated account, because it will
print a line such as the following in its log file:

Tracking process family by login "cndrusr1"

EXECUTE_LOGIN_IS_DEDICATEDThis configuration setting is deprecated because it can-
not handle the case where some jobs run as dedicated accountsand some do not. Use
DEDICATED_EXECUTE_ACCOUNT_REGEXPinstead.

A boolean value that defaults toFalse . WhenTrue , Condor knows that all jobs are being
run by dedicated execution accounts (whether they are running as the job owner or as nobody

Condor Version 7.7.6 Manual

3.3. Configuration 192

or asSLOT<N>_USER). Therefore, when the job exits, all processes running under the same
account will be killed.

FILESYSTEM_DOMAIN TheFILESYSTEM_DOMAINmacro is an arbitrary string that is used to
decide if two machines (a submitting machine and an execute machine) share a file system.
Although the macro name contains the word “DOMAIN”, the macro is not required to be a
domain name. It often is a domain name.

Note that this implementation is not ideal: machines may share some file systems but not
others. Condor currently has no way to express this automatically. You can express the need
to use a particular file system by adding additional attributes to your machines and submit
files, similar to the example given in Frequently Asked Questions, section 7 on how to run
jobs only on machines that have certain software packages.

Note that if you do not set$(FILESYSTEM_DOMAIN), Condor defaults to setting the
macro’s value to be the fully qualified host name of the local machine. Since each machine
will have a different$(FILESYSTEM_DOMAIN), they will not be considered to have shared
file systems.

RESERVE_AFS_CACHE If your machine is running AFS and the AFS cache lives on the same
partition as the other Condor directories, and you want Condor to reserve the space that your
AFS cache is configured to use, set this macro toTrue . It defaults toFalse .

USE_NFS This macro influences how Condor jobs running in the standarduniverse access their
files. By default, Condor will redirect the file I/O requests of standard universe jobs from
the executing machine to the submitting machine. So, as a Condor job migrates around the
network, the file system always appears to be identical to thefile system where the job was
submitted. However, consider the case where a user’s data files are sitting on an NFS server.
The machine running the user’s program will send all I/O overthe network to the submitting
machine, which in turn sends all the I/O back over the networkto the NFS file server. Thus,
all of the program’s I/O is being sent over the network twice.

If this configuration variable isTrue , then Condor will attempt to read/write files directly on
the executing machine without redirecting I/O back to the submitting machine, if both the sub-
mitting machine and the machine running the job are both accessing the same NFS servers (if
they are both in the same$(FILESYSTEM_DOMAIN) and in the same$(UID_DOMAIN) ,
as described above). The result is I/O performed by Condor standard universe jobs is only
sent over the network once. While sending all file operationsover the network twice might
sound really bad, unless you are operating over networks where bandwidth as at a very high
premium, practical experience reveals that this scheme offers very little real performance gain.
There are also some (fairly rare) situations where this scheme can break down.

Setting$(USE_NFS) to False is always safe. It may result in slightly more network traffic,
but Condor jobs are most often heavy on CPU and light on I/O. Italso ensures that a remote
standard universe Condor job will always use Condor’s remote system calls mechanism to
reroute I/O and therefore see the exact same file system that the user sees on the machine
where she/he submitted the job.

Some gritty details for folks who want to know: If the you set$(USE_NFS) to True , and
the $(FILESYSTEM_DOMAIN) of both the submitting machine and the remote machine

Condor Version 7.7.6 Manual

3.3. Configuration 193

about to execute the job match, and the$(FILESYSTEM_DOMAIN) claimed by the submit
machine is indeed found to be a subset of what an inverse look up to a DNS (domain name
server) reports as the fully qualified domain name for the submit machine’s IP address (this
security measure safeguards against the submit machine from lying), thenthe job will access
files using a local system call, without redirecting them to the submitting machine (with NFS).
Otherwise, the system call will get routed back to the submitting machine using Condor’s
remote system call mechanism. NOTE: When submitting a vanilla job,condor_submitwill,
by default, append requirements to the Job ClassAd that specify the machine to run the job
must be in the same$(FILESYSTEM_DOMAIN) and the same$(UID_DOMAIN) .

This configuration variable similarly changes the semantics of Chirp file I/O when running in
the vanilla, java or parallel universe. If this variable is set in those universes, Chirp will not
send I/O requests over the network as requested, but performthem directly to the locally
mounted file system. Other than Chirp file access, this variable is unused outside of the
standard universe.

IGNORE_NFS_LOCK_ERRORS When set toTrue , all errors related to file locking errors from
NFS are ignored. Defaults toFalse , not ignoring errors.

USE_AFS If your machines have AFS, this macro determines whether Condor will use remote
system calls for standard universe jobs to send I/O requeststo the submit machine, or if it
should use local file access on the execute machine (which will then use AFS to get to the
submitter’s files). Read the setting above on$(USE_NFS) for a discussion of why you
might want to use AFS access instead of remote system calls.

One important difference between$(USE_NFS) and$(USE_AFS) is the AFS cache. With
$(USE_AFS) set toTrue , the remote Condor job executing on some machine will start
modifying the AFS cache, possibly evicting the machine owner’s files from the cache to make
room for its own. Generally speaking, since we try to minimize the impact of having a Condor
job run on a given machine, we do not recommend using this setting.

While sending all file operations over the network twice might sound really bad, unless you
are operating over networks where bandwidth as at a very highpremium, practical experience
reveals that this scheme offers very little real performance gain. There are also some (fairly
rare) situations where this scheme can break down.

Setting$(USE_AFS) to False is always safe. It may result in slightly more network traffic,
but Condor jobs are usually heavy on CPU and light on I/O.False ensures that a remote
standard universe Condor job will always see the exact same file system that the user on sees
on the machine where he/she submitted the job. Plus, it will ensure that the machine where the
job executes does not have its AFS cache modified as a result ofthe Condor job being there.

However, things may be different at your site, which is why the setting is there.

3.3.8 Checkpoint Server Configuration File Macros

These macros control whether or not Condor uses a checkpointserver. This section describes the
settings that the checkpoint server itself needs defined. See section 3.8 on Installing a Checkpoint
Server for details on installing and running a checkpoint server.

Condor Version 7.7.6 Manual

3.3. Configuration 194

CKPT_SERVER_HOST The host name of a checkpoint server.

STARTER_CHOOSES_CKPT_SERVER If this parameter isTrue or undefined on the submit ma-
chine, the checkpoint server specified by$(CKPT_SERVER_HOST)on the execute ma-
chine is used. If it isFalse on the submit machine, the checkpoint server specified by
$(CKPT_SERVER_HOST)on the submit machine is used.

CKPT_SERVER_DIR The full path of the directory the checkpoint server should use to store
checkpoint files. Depending on the size of the pool and the size of the jobs submitted, this
directory and its subdirectories might need to store many Mbytes of data.

USE_CKPT_SERVER A boolean which determines if a given submit machine is to usea check-
point server if one is available. If a checkpoint server is not available or the variable
USE_CKPT_SERVERis set toFalse , checkpoints will be written to the local$(SPOOL)
directory on the submission machine.

MAX_DISCARDED_RUN_TIME If the condor_shadowdaemon is unable to read a checkpoint file
from the checkpoint server, it keeps trying only if the job has accumulated more than this
many seconds of CPU usage. Otherwise, the job is started fromscratch. Defaults to 3600 (1
hour). This variable is only used if$(USE_CKPT_SERVER)is True .

CKPT_SERVER_CHECK_PARENT_INTERVALThis is the number of seconds between checks
to see whether the parent of the checkpoint server (usually thecondor_master) has died. If
the parent has died, the checkpoint server shuts itself down. The default is 120 seconds. A
setting of 0 disables this check.

CKPT_SERVER_INTERVAL The maximum number of seconds the checkpoint server waits for
activity on network sockets before performing other tasks.The default value is 300 seconds.

CKPT_SERVER_CLASSAD_FILEA string that represents a file in the file system to which Class-
Ads will be written. The ClassAds denote information about stored checkpoint files, such as
owner, shadow IP address, name of the file, and size of the file.This information is also inde-
pendently recorded in theTransferLog . The default setting is undefined, which means a
checkpoint server ClassAd file will not be kept.

CKPT_SERVER_CLEAN_INTERVALThe number of seconds that must pass until the ClassAd
log file as described by theCKPT_SERVER_CLASSAD_FILEvariable gets truncated. The
default is 86400 seconds, which is one day.

CKPT_SERVER_REMOVE_STALE_CKPT_INTERVALThe number of seconds between at-
tempts to discover and remove stale checkpoint files. It defaults to 86400 seconds, which
is one day.

CKPT_SERVER_SOCKET_BUFSIZEThe number of bytes representing the size of the TCP
send/recv buffer on the socket file descriptor related to moving the checkpoint file to and from
the checkpoint server. The default value is 0, which allows the operating system to decide the
size.

CKPT_SERVER_MAX_PROCESSESThe maximum number of child processes that could be
working on behalf of the checkpoint server. This includes store processes and restore pro-
cesses. The default value is 50.

Condor Version 7.7.6 Manual

3.3. Configuration 195

CKPT_SERVER_MAX_STORE_PROCESSESThe maximum number of child pro-
cess strictly devoted to the storage of checkpoints. The default is the value of
CKPT_SERVER_MAX_PROCESSES.

CKPT_SERVER_MAX_RESTORE_PROCESSESThe maximum number of child pro-
cess strictly devoted to the restoring of checkpoints. The default is the value of
CKPT_SERVER_MAX_PROCESSES.

CKPT_SERVER_STALE_CKPT_AGE_CUTOFFThe number of seconds after which if a check-
point file has not been accessed, it is considered stale. The default value is 5184000 seconds,
which is sixty days.

3.3.9 condor_master Configuration File Macros

These macros control thecondor_master.

DAEMON_LIST This macro determines what daemons thecondor_masterwill start and keep its
watchful eyes on. The list is a comma or space separated list of subsystem names (listed in
section 3.3.1). For example,

DAEMON_LIST = MASTER, STARTD, SCHEDD

NOTE: This configuration variable cannot be changed by usingcondor_reconfigor by sending
a SIGHUP. To change this configuration variable, restart thecondor_masterdaemon by using
condor_restart. Only then will the change take effect.

NOTE: On your central manager, your$(DAEMON_LIST) will be different from your reg-
ular pool, since it will include entries for thecondor_collectorandcondor_negotiator.

DC_DAEMON_LIST A list delimited by commas and/or spaces that lists the daemons in
DAEMON_LISTwhich use the Condor DaemonCore library. Thecondor_mastermust dif-
ferentiate between daemons that use DaemonCore and those that do not, so it uses the ap-
propriate inter-process communication mechanisms. This list currently includes all Condor
daemons except the checkpoint server by default.

As of Condor version 7.2.1, a daemon may be appended to the default DC_DAEMON_LIST
value by placing the plus character (+) before the first entry in theDC_DAEMON_LISTdefi-
nition. For example:

DC_DAEMON_LIST = +NEW_DAEMON

<SUBSYS> Once you have defined which subsystems you want thecondor_masterto start, you
must provide it with the full path to each of these binaries. For example:

MASTER = $(SBIN)/condor_master
STARTD = $(SBIN)/condor_startd
SCHEDD = $(SBIN)/condor_schedd

Condor Version 7.7.6 Manual

3.3. Configuration 196

These are most often defined relative to the$(SBIN) macro.

The macro is named by substituting<SUBSYS>with the appropriate subsystem string as
defined in section 3.3.1.

<DaemonName>_ENVIRONMENT <DaemonName> is the name of a daemon listed in
DAEMON_LIST. Defines changes to the environment that the daemon is invoked with. It
should use the same syntax for specifying the environment asthe environment specification
in a submit description file. For example, to redefine theTMPandCONDOR_CONFIGenvi-
ronment variables seen by thecondor_schedd, place the following in the configuration:

SCHEDD_ENVIRONMENT = "TMP=/new/value CONDOR_CONFIG=/special/config"

When thecondor_schedddaemon is started by thecondor_master, it would see the specified
values ofTMPandCONDOR_CONFIG.

<SUBSYS>_ARGS This macro allows the specification of additional command line arguments for
any process spawned by thecondor_master. List the desired arguments using the same syn-
tax as the arguments specification in acondor_submitsubmit file (see page 875), with one
exception: do not escape double-quotes when using the old-style syntax (this is for backward
compatibility). Set the arguments for a specific daemon withthis macro, and the macro will
affect only that daemon. Define one of these for each daemon the condor_masteris control-
ling. For example, set$(STARTD_ARGS)to specify any extra command line arguments to
thecondor_startd.

The macro is named by substituting<SUBSYS>with the appropriate subsystem string as
defined in section 3.3.1.

<SUBSYS>_USERID The account name that should be used to run theSUBSYSprocess spawned
by thecondor_master. When not defined, the process is spawned as the same user thatis
runningcondor_master. When defined, the real user id of the spawned process will be set
to the specified account, so if this account is notroot , the process will not haveroot
privileges. Thecondor_mastermust be running as root in order to start processes as other
users. Example configuration:

COLLECTOR_USERID = condor
NEGOTIATOR_USERID = condor

The above example runs thecondor_collectorandcondor_negotiatoras thecondor user
with no root privileges. If we specified some account other than thecondor user, as set
by the (CONDOR_IDS) configuration variable, then we would need to configure the log files
for these daemons to be in a directory that they can write to. When using GSI security or any
other security method in which the daemon credential is owned by root , it is also necessary
to make a copy of the credential, make it be owned by the account the daemons are using, and
configure the daemons to use that copy.

PREEN In addition to the daemons defined in$(DAEMON_LIST) , thecondor_masteralso starts
up a special process,condor_preento clean out junk files that have been left laying around by
Condor. This macro determines where thecondor_masterfinds thecondor_preenbinary. If
this macro is set to nothing,condor_preenwill not run.

Condor Version 7.7.6 Manual

3.3. Configuration 197

PREEN_ARGS Controls howcondor_preenbehaves by allowing the specification of command-
line arguments. This macro works as$(<SUBSYS>_ARGS)does. The difference is that
you must specify this macro forcondor_preenif you want it to do anything.condor_preen
takes action only because of command line arguments.-m means you want e-mail about
files condor_preenfinds that it thinks it should remove.-r means you wantcondor_preento
actually remove these files.

PREEN_INTERVAL This macro determines how oftencondor_preenshould be started. It is de-
fined in terms of seconds and defaults to 86400 (once a day).

PUBLISH_OBITUARIES When a daemon crashes, thecondor_mastercan send e-mail to the
address specified by$(CONDOR_ADMIN)with an obituary letting the administrator know
that the daemon died, the cause of death (which signal or exitstatus it exited with), and
(optionally) the last few entries from that daemon’s log file. If you want obituaries, set this
macro toTrue .

OBITUARY_LOG_LENGTH This macro controls how many lines of the log file are part of obitu-
aries. This macro has a default value of 20 lines.

START_MASTER If this setting is defined and set toFalse when thecondor_masterstarts up,
the first thing it will do is exit. This appears strange, but perhaps you do not want Condor to
run on certain machines in your pool, yet the boot scripts foryour entire pool are handled by
a centralized This is an entry you would most likely find in a local configuration file, not a
global configuration file.

START_DAEMONS This macro is similar to the$(START_MASTER) macro described above.
However, thecondor_masterdoes not exit; it does not start any of the daemons listed in the
$(DAEMON_LIST) . The daemons may be started at a later time with acondor_oncommand.

MASTER_UPDATE_INTERVAL This macro determines how often thecondor_mastersends a
ClassAd update to thecondor_collector. It is defined in seconds and defaults to 300 (every 5
minutes).

MASTER_CHECK_NEW_EXEC_INTERVALThis macro controls how often thecondor_master
checks the timestamps of the running daemons. If any daemonshave been modified, the
master restarts them. It is defined in seconds and defaults to300 (every 5 minutes).

MASTER_NEW_BINARY_RESTARTDefines a mode of operation for the restart of thecon-
dor_master, when it notices that thecondor_masterbinary has changed. Valid values are
GRACEFUL, PEACEFUL, andNEVER, with a default value ofGRACEFUL. On aGRACEFUL
restart of the master, child processes are told to exit, but if they do not before a timer expires,
then they are killed. On aPEACEFULrestart, child processes are told to exit, after which the
condor_masterwaits until they do so.

MASTER_NEW_BINARY_DELAYOnce thecondor_masterhas discovered a new binary, this
macro controls how long it waits before attempting to execute the new binary. This delay
exists because thecondor_mastermight notice a new binary while it is in the process of being
copied, in which case trying to execute it yields unpredictable results. The entry is defined in
seconds and defaults to 120 (2 minutes).

Condor Version 7.7.6 Manual

3.3. Configuration 198

SHUTDOWN_FAST_TIMEOUT This macro determines the maximum amount of time daemons are
given to perform their fast shutdown procedure before thecondor_masterkills them outright.
It is defined in seconds and defaults to 300 (5 minutes).

MASTER_SHUTDOWN_<Name> A full path and file name of a program that thecondor_master
is to execute via the Unixexecl() call, or the similar Win32_execl() call, instead of the
normal call toexit() . Multiple programs to execute may be defined with multiple entries,
each with a uniqueName. These macros have no affect on acondor_masterunlesscon-
dor_set_shutdownis run. TheNamespecified as an argument to thecondor_set_shutdown
program must match theName portion of one of theseMASTER_SHUTDOWN_<Name>
macros; if not, thecondor_masterwill log an error and ignore the command. If a match
is found, thecondor_masterwill attempt to verify the program, and it will store the pathand
program name. When thecondor_mastershuts down (that is, just before it exits), the program
is then executed as described above. The manual page forcondor_set_shutdownon page 853
contains details on the use of this program.

NOTE: This program will be run with root privileges under Unix or administrator privileges
under Windows. The administrator must ensure that this cannot be used in such a way as to
violate system integrity.

MASTER_BACKOFF_CONSTANTand MASTER_<name>_BACKOFF_CONSTANTWhen a
daemon crashes,condor_masteruses an exponential back off delay before restarting it; see
the discussion at the end of this section for a detailed discussion on how these parameters
work together. These settings define the constant value of the expression used to determine
how long to wait before starting the daemon again (and, effectively becomes the initial
backoff time). It is an integer in units of seconds, and defaults to 9 seconds.

$(MASTER_<name>_BACKOFF_CONSTANT)is the daemon-specific form of
MASTER_BACKOFF_CONSTANT; if this daemon-specific macro is not defined for a
specific daemon, the non-daemon-specific value will used.

MASTER_BACKOFF_FACTORand MASTER_<name>_BACKOFF_FACTORWhen a daemon
crashes,condor_masteruses an exponential back off delay before restarting it; seethe dis-
cussion at the end of this section for a detailed discussion on how these parameters work
together. This setting is the base of the exponent used to determine how long to wait before
starting the daemon again. It defaults to 2 seconds.

$(MASTER_<name>_BACKOFF_FACTOR) is the daemon-specific form of
MASTER_BACKOFF_FACTOR; if this daemon-specific macro is not defined for a spe-
cific daemon, the non-daemon-specific value will used.

MASTER_BACKOFF_CEILINGand MASTER_<name>_BACKOFF_CEILINGWhen a dae-
mon crashes,condor_masteruses an exponential back off delay before restarting it; seethe
discussion at the end of this section for a detailed discussion on how these parameters work
together. This entry determines the maximum amount of time you want the master to wait be-
tween attempts to start a given daemon. (With 2.0 as the$(MASTER_BACKOFF_FACTOR),
1 hour is obtained in 12 restarts). It is defined in terms of seconds and defaults to 3600 (1
hour).

Condor Version 7.7.6 Manual

3.3. Configuration 199

$(MASTER_<name>_BACKOFF_CEILING) is the daemon-specific form of
MASTER_BACKOFF_CEILING; if this daemon-specific macro is not defined for a
specific daemon, the non-daemon-specific value will used.

MASTER_RECOVER_FACTORand MASTER_<name>_RECOVER_FACTORA macro to set
how long a daemon needs to run without crashing before it is consideredrecovered. Once
a daemon has recovered, the number of restarts is reset, so the exponential back off returns to
its initial state. The macro is defined in terms of seconds anddefaults to 300 (5 minutes).

$(MASTER_<name>_RECOVER_FACTOR) is the daemon-specific form of
MASTER_RECOVER_FACTOR; if this daemon-specific macro is not defined for a spe-
cific daemon, the non-daemon-specific value will used.

When a daemon crashes,condor_masterwill restart the daemon after a delay (a back off). The
length of this delay is based on how many times it has been restarted, and gets larger after each
crashes. The equation for calculating this backoff time is given by:

t = c + kn

wheret is the calculated time,c is the constant defined by$(MASTER_BACKOFF_CONSTANT),
k is the “factor” defined by$(MASTER_BACKOFF_FACTOR), andn is the number of restarts
already attempted (0 for the first restart, 1 for the next, etc.).

With default values, after the first crash, the delay would bet = 9 + 2.00, giving 10 seconds
(remember,n = 0). If the daemon keeps crashing, the delay increases.

For example, take the$(MASTER_BACKOFF_FACTOR)(which defaults to 2.0) to the power
the number of times the daemon has restarted, and add$(MASTER_BACKOFF_CONSTANT)
(which defaults to 9). Thus:

1st crash:n = 0, so: t = 9 + 20 = 9 + 1 = 10 seconds

2nd crash:n = 1, so: t = 9 + 21 = 9 + 2 = 11 seconds

3rd crash:n = 2, so:t = 9 + 22 = 9 + 4 = 13 seconds

...

6th crash:n = 5, so: t = 9 + 25 = 9 + 32 = 41 seconds

...

9th crash:n = 8, so: t = 9 + 28 = 9 + 256 = 265 seconds

And, after the 13 crashes, it would be:

13th crash:n = 12, so: t = 9 + 212 = 9 + 4096 = 4105 seconds

This is bigger than the$(MASTER_BACKOFF_CEILING), which defaults to 3600, so the
daemon would really be restarted after only 3600 seconds, not 4105. Thecondor_mastertries
again every hour (since the numbers would get larger and would always be capped by the ceiling).

Condor Version 7.7.6 Manual

3.3. Configuration 200

Eventually, imagine that daemon finally started and did not crash. This might happen if, for example,
an administrator reinstalled an accidentally deleted binary after receiving e-mail about the daemon
crashing. If it stayed alive for$(MASTER_RECOVER_FACTOR)seconds (defaults to 5 minutes),
the count of how many restarts this daemon has performed is reset to 0.

The moral of the example is that the defaults work quite well,and you probably will not want to
change them for any reason.

MASTER_NAME Defines a unique name given for acondor_masterdaemon on a machine. For
a condor_masterrunning asroot , it defaults to the fully qualified host name. Whennot
running asroot , it defaults to the user that instantiates thecondor_master, concatenated
with an at symbol (@), concatenated with the fully qualified host name. If more than one
condor_masteris running on the same host, then theMASTER_NAMEfor eachcondor_master
must be defined to uniquely identify the separate daemons.

A defined MASTER_NAME is presumed to be of the form
identifying-string@full.host.name . If the string does not include an@
sign, Condor appends one, followed by the fully qualified host name of the local machine.
The identifying-string portion may contain any alphanumeric ASCII characters or
punctuation marks, except the@sign. We recommend that the string does not contain the:
(colon) character, since that might cause problems with certain tools. Previous to Condor
7.1.1, when the string included an@sign, Condor replaced whatever followed the@sign with
the fully qualified host name of the local machine. Condor does not modify any portion of
the string, if it contains an@sign. This is useful for remote job submissions under the high
availability of the job queue.

If the MASTER_NAMEsetting is used, and thecondor_masteris configured to spawn
a condor_schedd, the name defined withMASTER_NAMEtakes precedence over the
SCHEDD_NAMEsetting (see section 3.3.11 on page 222). Since Condor makesthe as-
sumption that there is only one instance of thecondor_startdrunning on a machine, the
MASTER_NAMEis not automatically propagated to thecondor_startd. However, in situations
where multiplecondor_startddaemons are running on the same host (for example, when us-
ing condor_glidein), theSTARTD_NAMEshould be set to uniquely identify thecondor_startd
daemons (this is done automatically in the case ofcondor_glidein).

If a Condor daemon (master, schedd or startd) has been given aunique name, all Condor tools
that need to contact that daemon can be told what name to use via the-namecommand-line
option.

MASTER_ATTRS This macro is described in section 3.3.5 as<SUBSYS>_ATTRS.

MASTER_DEBUG This macro is described in section 3.3.4 as<SUBSYS>_DEBUG.

MASTER_ADDRESS_FILE This macro is described in section 3.3.5 as
<SUBSYS>_ADDRESS_FILE.

SECONDARY_COLLECTOR_LIST This macro has been removed as of Condor version 6.9.3. Use
theCOLLECTOR_HOSTconfiguration variable, which may define a list ofcondor_collector
daemons.

Condor Version 7.7.6 Manual

3.3. Configuration 201

ALLOW_ADMIN_COMMANDS If set to NO for a given host, this macro disables administrative
commands, such ascondor_restart, condor_on, andcondor_off, to that host.

MASTER_INSTANCE_LOCK Defines the name of a file for thecondor_masterdaemon to lock
in order to prevent multiplecondor_masters from starting. This is useful when using shared
file systems like NFS which do not technically support locking in the case where the lock
files reside on a local disk. If this macro is not defined, the default file name will be
$(LOCK)/InstanceLock . $(LOCK) can instead be defined to specify the location of
all lock files, not just thecondor_master’s InstanceLock . If $(LOCK) is undefined, then
the master log itself is locked.

ADD_WINDOWS_FIREWALL_EXCEPTIONWhen set toFalse , thecondor_masterwill not au-
tomatically add Condor to the Windows Firewall list of trusted applications. Such trusted
applications can accept incoming connections without interference from the firewall. This
only affects machines running Windows XP SP2 or higher. The default isTrue .

WINDOWS_FIREWALL_FAILURE_RETRYAn integer value (default value is 60) that represents
the number of times thecondor_masterwill retry to add firewall exceptions. When a Win-
dows machine boots up, Condor starts up by default as well. Under certain conditions, the
condor_mastermay have difficulty adding exceptions to the Windows Firewall because of a
delay in other services starting up. Examples of services that may possibly be slow are the
SharedAccess service, the Netman service, or the Workstation service. This configuration
variable allows administrators to set the number of times (once every 10 seconds) that the
condor_masterwill retry to add firewall exceptions. A value of 0 means that Condor will
retry indefinitely.

USE_PROCESS_GROUPS A boolean value that defaults toTrue . WhenFalse , Condor dae-
mons on Unix machines willnot create new sessions or process groups. Condor uses pro-
cesses groups to help it track the descendants of processes it creates. This can cause problems
when Condor is run under another job execution system (e.g. Condor Glidein).

3.3.10 condor_startd Configuration File Macros

NOTE: If you are running Condor on a multi-CPU machine, be sure to also read section 3.12.8 on
page 412 which describes how to set up and configure Condor on SMP machines.

These settings control general operation of thecondor_startd. Examples using these config-
uration macros, as well as further explanation is found in section 3.5 on Configuring The Startd
Policy.

START A boolean expression that, whenTrue , indicates that the machine is willing to start run-
ning a Condor job.STARTis considered when thecondor_negotiatordaemon is considering
evicting the job to replace it with one that will generate a better rank for thecondor_startd
daemon, or a user with a higher priority.

Condor Version 7.7.6 Manual

3.3. Configuration 202

SUSPEND A boolean expression that, whenTrue , causes Condor to suspend running a Condor
job. The machine may still be claimed, but the job makes no further progress, and Condor
does not generate a load on the machine.

PREEMPT A boolean expression that, whenTrue , causes Condor to stop a currently running
job onceMAXJOBRETIREMENTTIMEhas expired. This expression is not evaluated if
WANT_SUSPENDis True .

WANT_HOLD A boolean expression that defaults toFalse . When True and
the value of PREEMPT becomes True and WANT_SUSPENDis False and
MAXJOBRETIREMENTTIMEhas expired, the job is put on hold for the reason (op-
tionally) specified by the variablesWANT_HOLD_REASONand WANT_HOLD_SUBCODE.
As usual, the job owner may specifyperiodic_releaseand/orperiodic_removeexpressions
to react to specific hold states automatically. The attribute HoldReasonCode in the job
ClassAd is set to the value 21 whenWANT_HOLDis responsible for putting the job on hold.

Here is an example policy that puts jobs on hold that use too much virtual memory:

VIRTUAL_MEMORY_AVAILABLE_MB = (VirtualMemory*0.9)
MEMORY_EXCEEDED = ImageSize/1024 > $(VIRTUAL_MEMORY_AVAILABLE_MB)
PREEMPT = ($(PREEMPT)) || ($(MEMORY_EXCEEDED))
WANT_SUSPEND = ($(WANT_SUSPEND)) && ($(MEMORY_EXCEEDED)) =!= TRUE
WANT_HOLD = ($(MEMORY_EXCEEDED))
WANT_HOLD_REASON = \

ifThenElse($(MEMORY_EXCEEDED), \
"Your job used too much virtual memory.", \
undefined)

WANT_HOLD_REASON An expression that defines a string utilized to set the job ClassAd attribute
HoldReason when a job is put on hold due toWANT_HOLD. If not defined or if the expres-
sion evaluates toUndefined , a default hold reason is provided.

WANT_HOLD_SUBCODE An expression that defines an integer value utilized to set the job ClassAd
attributeHoldReasonSubCode when a job is put on hold due toWANT_HOLD. If not
defined or if the expression evaluates toUndefined , the value is set to 0. Note that
HoldReasonCode is always set to 21.

CONTINUE A boolean expression that, whenTrue , causes Condor to continue the execution of a
suspended job.

KILL A boolean expression that, whenTrue , causes Condor to immediately stop the execution of
a vacating job, without delay. The job is hard-killed, so anyattempt by the job to checkpoint
or clean up will be aborted. This expression should normallybe False . When desired,
it may be used to abort the graceful shutdown of a job earlier than the limit imposed by
MachineMaxVacateTime .

PERIODIC_CHECKPOINT A boolean expression that, whenTrue , causes Condor to initiate a
checkpoint of the currently running job. This setting applies to all standard universe jobs and
to vm universe jobs that have setvm_checkpointto True in the submit description file.

Condor Version 7.7.6 Manual

3.3. Configuration 203

RANK A floating point value that Condor uses to compare potential jobs. A larger value for a
specific job ranks that job above others with lower values forRANK.

IS_VALID_CHECKPOINT_PLATFORMA boolean expression that is logically ANDed with the
with the STARTexpression to limit which machines a standard universe job may continue
execution on once they have produced a checkpoint. The default expression is

IS_VALID_CHECKPOINT_PLATFORM =
(

((TARGET.JobUniverse == 1) == FALSE) ||

(
(MY.CheckpointPlatform =!= UNDEFINED) &&
(

(TARGET.LastCheckpointPlatform =?= MY.CheckpointPlatf orm) ||
(TARGET.NumCkpts == 0)

)
)

)

WANT_SUSPEND A boolean expression that, whenTrue , tells Condor to evaluate theSUSPEND
expression to decide whether to suspend a running job. WhenTrue , thePREEMPTexpres-
sion is not evaluated. When not explicitly set, thecondor_startdexits with an error. When
explicitly set, but the evaluated value is anything other thanTrue , the value is utilized as if it
wereFalse .

WANT_VACATE A boolean expression that, whenTrue , defines that a preempted Condor job is
to be vacated, instead of killed. This means the job will be soft-killed and given time to
checkpoint or clean up. The amount of time given depends onMachineMaxVacateTime
andKILL .

ENABLE_VERSIONED_OPSYS A boolean expression that determines whether pre-7.7.2 strings
used for the machine ClassAd attributeOpSys are used or not. Defaults toFalse on Win-
dows platforms, meaning that the newer behavior of settingOpSys = "WINDOWS"and
OpSysVer = 601 (for example), whileOpSysAndVer = "WINNT61" . On platforms
other than Windows, the default value isTrue , meaning that the values forOpSys and
OpSysAndVer are the same, implementing the pre-7.7.2 behavior.

IS_OWNER A boolean expression that defaults to being defined as

IS_OWNER = (START =?= FALSE)

Used to describe the state of the machine with respect to its use by its owner. Job ClassAd
attributes are not used in definingIS_OWNER, as they would beUndefined .

STARTD_HISTORY A file name where thecondor_startddaemon will maintain a job history file
in an analogous way to that of the history file defined by the configuration variableHISTORY.
It will be rotated in the same way, and the same parameters that apply to theHISTORYfile
rotation apply to thecondor_startddaemon history as well.

Condor Version 7.7.6 Manual

3.3. Configuration 204

STARTER This macro holds the full path to thecondor_starterbinary that thecondor_startd
should spawn. It is normally defined relative to$(SBIN) .

KILLING_TIMEOUT The amount of time in seconds that thecondor_startdshould wait after
sending a job-defined signal and before forcibly killing thejob. Applies to all job universes
other than the standard universe. The default value is 30 seconds.

POLLING_INTERVAL When acondor_startdenters the claimed state, this macro determines how
often the state of the machine is polled to check the need to suspend, resume, vacate or kill
the job. It is defined in terms of seconds and defaults to 5.

UPDATE_INTERVAL Determines how often thecondor_startdshould send a ClassAd update to
thecondor_collector. Thecondor_startdalso sends update on any state or activity change, or
if the value of itsSTARTexpression changes. See section 3.5.5 oncondor_startdstates, sec-
tion 3.5.6 oncondor_startdActivities, and section 3.5.2 oncondor_startdSTARTexpression
for details on states, activities, and theSTARTexpression. This macro is defined in terms of
seconds and defaults to 300 (5 minutes).

UPDATE_OFFSET An integer value representing the number of seconds of delaythat thecon-
dor_startd should wait before sending its initial update, and the first update after acon-
dor_reconfigcommand is sent to thecondor_collector. The time of all other updates sent
after this initial update is determined by$(UPDATE_INTERVAL). Thus, the first update
will be sent after$(UPDATE_OFFSET)seconds, and the second update will be sent after
$(UPDATE_OFFSET)+ $(UPDATE_INTERVAL). This is useful when used in conjunc-
tion with the$RANDOM_INTEGER()macro for large pools, to spread out the updates sent
by a large number ofcondor_startddaemons. Defaults to zero. The example configuration

startd.UPDATE_INTERVAL = 300
startd.UPDATE_OFFSET = $RANDOM_INTEGER(0,300)

causes the initial update to occur at a random number of seconds falling between 0 and 300,
with all further updates occurring at fixed 300 second intervals following the initial update.

MachineMaxVacateTime An integer expression representing the number of seconds the ma-
chine is willing to wait for a job that has been soft-killed togracefully shut down. The default
value is 600 seconds (10 minutes). This expression is evaluated when the job starts running.
The job may adjust the wait time by settingJobMaxVacateTime . If the job’s setting is
less than the machine’s, the job’s specification is used. If the job’s setting is larger than the
machine’s, the result depends on whether the job has any excess retirement time. If the job
has more retirement time left than the machine’s maximum vacate time setting, then retire-
ment time will be converted into vacating time, up to the amount of JobMaxVacateTime .
TheKILL expression may be used to abort the graceful shutdown of the job at any time. At
the time when the job is preempted, theWANT_VACATEexpression may be used to skip the
graceful shutdown of the job.

MAXJOBRETIREMENTTIME An integer value representing the number of seconds a preempted
job will be allowed to run before being evicted. The default value of 0 (when the configuration
variable is not present) means that the job gets no retirement time. If the job vacating policy
grants the job X seconds of vacating time, a preempted job will be soft-killed X seconds before
the end of its retirement time, so that hard-killing of the job will not happen until the end of

Condor Version 7.7.6 Manual

3.3. Configuration 205

the retirement time if the job does not finish shutting down before then. Note that in peaceful
shutdown mode of thecondor_startd, retirement time is treated as though infinite. In graceful
shutdown mode, the job will not be preempted until the configured retirement time expires
or SHUTDOWN_GRACEFUL_TIMEOUTexpires. In fast shutdown mode, retirement time is
ignored. SeeMAXJOBRETIREMENTTIMEin section 3.5.8 for further explanation.

CLAIM_WORKLIFE If provided, this expression specifies the number of secondsafter which a
claim will stop accepting additional jobs. By default, oncethe negotiator gives a schedd a
claim to a slot, the schedd will keep running jobs on that slotas long as it has more jobs with
matching requirements, without returning the slot to the unclaimed state and renegotiating for
machines. OnceCLAIM_WORKLIFEexpires, any existing job may continue to run as usual,
but once it finishes or is preempted, the claim is closed. Thismay be useful if you want to
force periodic renegotiation of resources without preemption having to occur. For example, if
you have some low-priority jobs which should never be interrupted with kill signals, you could
prevent them from being killed withMaxJobRetirementTime , but now high-priority jobs
may have to wait in line when they match to a machine that is busy running one of these
uninterruptible jobs. You can prevent the high-priority jobs from ever matching to such a
machine by using a rank expression in the job or in the negotiator’s rank expressions, but then
the low-priority claim will never be interrupted; it can keep running more jobs. The solution
is to useCLAIM_WORKLIFEto force the claim to stop running additional jobs after a certain
amount of time. The default value forCLAIM_WORKLIFEis -1, which is treated as an infinite
claim worklife, so claims may be held indefinitely (as long asthey are not preempted and the
schedd does not relinquish them, of course). A value of 0 has the effect of not allowing more
than one job to run per claim, since it immediately expires after the first job starts running.

MAX_CLAIM_ALIVES_MISSED The condor_scheddsends periodic updates to eachcon-
dor_startdas a keep alive (see the description ofALIVE_INTERVAL on page 219). If
the condor_startddoes not receive any keep alive messages, it assumes that something has
gone wrong with thecondor_scheddand that the resource is not being effectively used. Once
this happens, thecondor_startdconsiders the claim to have timed out, it releases the claim,
and starts advertising itself as available for other jobs. Because these keep alive messages are
sent via UDP, they are sometimes dropped by the network. Therefore, thecondor_startdhas
some tolerance for missed keep alive messages, so that in case a few keep alives are lost, the
condor_startdwill not immediately release the claim. This setting controls how many keep
alive messages can be missed before thecondor_startdconsiders the claim no longer valid.
The default is 6.

STARTD_HAS_BAD_UTMP When thecondor_startdis computing the idle time of all the users of
the machine (both local and remote), it checks theutmp file to find all the currently active
ttys, and only checks access time of the devices associated with active logins. Unfortunately,
on some systems,utmp is unreliable, and thecondor_startdmight miss keyboard activity by
doing this. So, if yourutmp is unreliable, set this macro toTrue and thecondor_startdwill
check the access time on all tty and pty devices.

CONSOLE_DEVICES This macro allows thecondor_startdto monitor console (keyboard and
mouse) activity by checking the access times on special filesin /dev . Activity on these files
shows up asConsoleIdle time in thecondor_startd’s ClassAd. Give a comma-separated

Condor Version 7.7.6 Manual

3.3. Configuration 206

list of the names of devices considered the console, withoutthe /dev/ portion of the path
name. The defaults vary from platform to platform, and are usually correct.

One possible exception to this is on Linux, where we use “mouse” as one of the entries. Most
Linux installations put in a soft link from/dev/mouse that points to the appropriate device
(for example,/dev/psaux for a PS/2 bus mouse, or/dev/tty00 for a serial mouse
connected to com1). However, if your installation does not have this soft link, you will either
need to put it in (you will be glad you did), or change this macro to point to the right device.

Unfortunately, modern versions of Linux do not update the access time of device files for USB
devices. Thus, these files cannot be be used to determine whenthe console is in use. Instead,
use thecondor_kbdddaemon, which gets this information by connecting to the X server.

STARTD_JOB_EXPRS When the machine is claimed by a remote user, thecondor_startdcan
also advertise arbitrary attributes from the job ClassAd inthe machine ClassAd. List the
attribute names to be advertised. NOTE: Since these are already ClassAd expressions, do not
do anything unusual with strings. This setting defaults to “JobUniverse”.

STARTD_ATTRS This macro is described in section 3.3.5 as<SUBSYS>_ATTRS.

STARTD_DEBUG This macro (and other settings related to debug logging in thecondor_startd) is
described in section 3.3.4 as<SUBSYS>_DEBUG.

STARTD_ADDRESS_FILE This macro is described in section 3.3.5 as
<SUBSYS>_ADDRESS_FILE

STARTD_SHOULD_WRITE_CLAIM_ID_FILEThe condor_startdcan be configured to write
out theClaimId for the next available claim on all slots to separate files. This boolean
attribute controls whether thecondor_startdshould write these files. The default value is
True .

STARTD_CLAIM_ID_FILE This macro controls what file names are used if the above
STARTD_SHOULD_WRITE_CLAIM_ID_FILEis true. By default, Condor will write the
ClaimId into a file in the$(LOG) directory called.startd_claim_id.slotX , where
X is the value ofSlotID , the integer that identifies a given slot on the system, or1 on a
single-slot machine. If you define your own value for this setting, you should provide a full
path, and Condor will automatically append the.slotX portion of the file name.

SlotWeight This may be used to give a slot greater weight when calculating usage, computing
fair shares, and enforcing group quotas. For example, claiming a slot withSlotWeight
= 2 is equivalent to claiming twoSlotWeight = 1 slots. The default value isCpus,
the number of CPUs associated with the slot, which is 1 unlessspecially configured. Any
expression referring to attributes of the slot ClassAd and evaluating to a positive floating point
number is valid.

NUM_CPUS An integer value, which can be used to lie to thecondor_startddaemon about how
many CPUs a machine has. When set, it overrides the value determined with Condor’s au-
tomatic computation of the number of CPUs in the machine. Lying in this way can allow
multiple Condor jobs to run on a single-CPU machine, by having that machine treated like an
SMP machine with multiple CPUs, which could have different Condor jobs running on each

Condor Version 7.7.6 Manual

3.3. Configuration 207

one. Or, an SMP machine may advertise more slots than it has CPUs. However, lying in this
manner will hurt the performance of the jobs, since now multiple jobs will run on the same
CPU, and the jobs will compete with each other. The option is only meant for people who
specifically want this behavior and know what they are doing.It is disabled by default.

The default value is equal toDETECTED_CORES minus hyperthreaded cores if
COUNT_HYPERTHREAD_CPUSis false. If that value exceedsMAX_NUM_CPUS, then the
latter is used instead.

Note that this setting cannot be changed with a simple reconfigure, either by sending a
SIGHUP or by using thecondor_reconfigcommand. To change this, restart thecondor_startd
daemon for the change to take effect. The command will be

condor_restart -startd

If lying about a given machine, this fact should probably be advertised in the machine’s
ClassAd by using theSTARTD_ATTRSsetting. This way, jobs submitted in the pool could
specify that they did or did not want to be matched with machines that were only really offer-
ing these fractional CPUs.

MAX_NUM_CPUS An integer value used as a ceiling for the number of CPUs detected by Condor
on a machine. This value is ignored ifNUM_CPUSis set. If set to zero, there is no ceiling. If
not defined, the default value is zero, and thus there is no ceiling.

Note that this setting cannot be changed with a simple reconfigure, either by sending a
SIGHUP or by using thecondor_reconfigcommand. To change this, restart thecondor_startd
daemon for the change to take effect. The command will be

condor_restart -startd

COUNT_HYPERTHREAD_CPUS This macro controls how Condor sees hyper threaded processors.
When set toTrue (the default), it includes virtual CPUs in the default valueof NUM_CPUS.
On dedicated cluster nodes, counting virtual CPUs can sometimes improve total throughput
at the expense of individual job speed. However, counting them on desktop workstations can
interfere with interactive job performance.

MEMORY Normally, Condor will automatically detect the amount of physical memory available
on your machine. DefineMEMORYto tell Condor how much physical memory (in MB)
your machine has, overriding the value Condor computes automatically. The actual amount
of memory detected by Condor is always available in the pre-defined configuration macro
DETECTED_MEMORY.

RESERVED_MEMORY How much memory would you like reserved from Condor? By default,
Condor considers all the physical memory of your machine as available to be used by Condor
jobs. If RESERVED_MEMORYis defined, Condor subtracts it from the amount of memory it
advertises as available.

STARTD_NAME Used to give an alternative value to theNameattribute in thecondor_startd’s
ClassAd. This esoteric configuration macro might be used in the situation where there are

Condor Version 7.7.6 Manual

3.3. Configuration 208

two condor_startddaemons running on one machine, and each reports to the samecon-
dor_collector. Different names will distinguish the two daemons. See the description of
MASTER_NAMEin section 3.3.9 on page 200 for defaults and composition of valid Condor
daemon names.

RUNBENCHMARKS Specifies when to run benchmarks. When the machine is in the Unclaimed
state and this expression evaluates toTrue , benchmarks will be run. If RunBenchmarks
is specified and set to anything other thanFalse , additional benchmarks will be run when
thecondor_startdinitially starts. To disable start up benchmarks, setRunBenchmarks to
False , or comment it out of the configuration file.

DedicatedScheduler A string that identifies the dedicated scheduler this machine is managed
by. Section 3.12.9 on page 423 details the use of a dedicated scheduler.

STARTD_NOCLAIM_SHUTDOWN The number of seconds to run without receiving a claim before
shutting Condor down on this machine. Defaults to unset, which means to never shut down.
This is primarily intended for condor_glidein. Use in othersituations is not recommended.

STARTD_PUBLISH_WINREG A string containing a semicolon-separated list of Windows registry
key names. For each registry key, the contents of the registry key are published in the machine
ClassAd. All attribute names are prefixed withWINREG_. The remainder of the attribute
name is formed in one of two ways. The first way explicitly specifies the name within the list
with the syntax

STARTD_PUBLISH_WINREG = AttrName1 = KeyName1; AttrName2 = KeyName2

The second way of forming the attribute name derives the attribute names from the key
names in the list. The derivation uses the last three path elements in the key name and
changes each illegal character to an underscore character.Illegal characters are essentially
any non-alphanumeric character. In addition, the percent character (%) is replaced by the
stringPercent , and the string/sec is replaced by the string_Per_Sec .

Condor expects that the hive identifier, which is the first element in the full path given by a
key name, will be the valid abbreviation. Here is a list of abbreviations:

HKLMis the abbreviation forHKEY_LOCAL_MACHINE

HKCRis the abbreviation forHKEY_CLASSES_ROOT

HKCUis the abbreviation forHKEY_CURRENT_USER

HKPDis the abbreviation forHKEY_PERFORMANCE_DATA

HKCCis the abbreviation forHKEY_CURRENT_CONFIG

HKUis the abbreviation forHKEY_USERS

The HKPDkey names are unusual, as they are not shown inregedit. Their values are peri-
odically updated at the interval defined byUPDATE_INTERVAL. The others are not updated
until condor_reconfigis issued.

Here is a complete example of the configuration variable definition,

Condor Version 7.7.6 Manual

3.3. Configuration 209

STARTD_PUBLISH_WINREG = HKLM\Software\Perl\BinDir; \
BATFile_RunAs_Command = HKCR\batFile\shell\RunAs\comm and; \
HKPD\Memory\Available MBytes; \
BytesAvail = HKPD\Memory\Available Bytes; \
HKPD\Terminal Services\Total Sessions; \
HKPD\Processor\% Idle Time; \
HKPD\System\Processes

which generates the following portion of a machine ClassAd:

WINREG_Software_Perl_BinDir = "C:\Perl\bin\perl.exe"
WINREG_BATFile_RunAs_Command = "%SystemRoot%\System32 \cmd.exe /C \"%1\" %*"
WINREG_Memory_Available_MBytes = 5331
WINREG_BytesAvail = 5590536192.000000
WINREG_Terminal_Services_Total_Sessions = 2
WINREG_Processor_Percent_Idle_Time = 72.350384
WINREG_System_Processes = 166

MOUNT_UNDER_SCRATCH A comma separated list of directories. For each directory inthe list,
Condor creates a directory in the job’s temporary scratch directory, but make it available at the
given name using bind mounts. This is available on Linux systems which provide bind mounts
and per-process tree mount tables, such as Red Hat Enterprise Linux 5. As an example:

MOUNT_UNDER_SCRATCH = /tmp,/var/tmp

The job will think that it sees the usual/tmp and/var/tmp directories, but they will ac-
tually exist as subdirectories in the job’s temporary scratch directory. This is useful, because
the job’s scratch directory will be cleaned up after the job completes, and because jobs will
not be able to fill up the real/tmp directory.

These macros control if thecondor_startddaemon should perform backfill computations when-
ever resources would otherwise be idle. See section 3.12.10on page 426 on Configuring Condor for
Running Backfill Jobs for details.

ENABLE_BACKFILL A boolean value that, whenTrue , indicates that the machine is willing to
perform backfill computations when it would otherwise be idle. This is not a policy expression
that is evaluated, it is a simpleTrue or False . This setting controls if any of the other
backfill-related expressions should be evaluated. The default is False .

BACKFILL_SYSTEM A string that defines what backfill system to use for spawning and managing
backfill computations. Currently, the only supported valuefor this is"BOINC" , which stands
for the Berkeley Open Infrastructure for Network Computing. See http://boinc.berkeley.edu
for more information about BOINC. There is no default value,administrators must define this.

START_BACKFILL A boolean expression that is evaluated whenever a Condor resource is
in the Unclaimed/Idle state and theENABLE_BACKFILL expression isTrue . If

Condor Version 7.7.6 Manual

http://boinc.berkeley.edu

3.3. Configuration 210

START_BACKFILLevaluates toTrue , the machine will enter the Backfill state and attempt
to spawn a backfill computation. This expression is analogous to theSTART expression
that controls when a Condor resource is available to run normal Condor jobs. The default
value isFalse (which means do not spawn a backfill job even if the machine is idle and
ENABLE_BACKFILLexpression isTrue). For more information about policy expressions
and the Backfill state, see section 3.5 beginning on page 294,especially sections 3.5.5, 3.5.6,
and 3.5.7.

EVICT_BACKFILL A boolean expression that is evaluated whenever a Condor resource is in the
Backfill state which, whenTrue , indicates the machine should immediately kill the currently
running backfill computation and return to the Owner state. This expression is a way for
administrators to define a policy where interactive users ona machine will cause backfill jobs
to be removed. The default value isFalse . For more information about policy expressions
and the Backfill state, see section 3.5 beginning on page 294,especially sections 3.5.5, 3.5.6,
and 3.5.7.

These macros only apply to thecondor_startddaemon when it is running on an SMP machine.
See section 3.12.8 on page 412 on Configuring The Startd for SMP Machines for details.

STARTD_RESOURCE_PREFIX A string which specifies what prefix to give the unique Condor
resources that are advertised on SMP machines. Previously,Condor used the termvirtual
machineto describe these resources, so the default value for this setting was “vm”. However,
to avoid confusion with other kinds of virtual machines (theones created using tools like
VMware or Xen), the oldvirtual machineterminology has been changed, and we now use
the termslot. Therefore, the default value of this prefix is now “slot”. Ifsites want to keep
using “vm”, or prefer something other “slot”, this setting enables sites to define what string
thecondor_startdwill use to name the individual resources on an SMP machine.

SLOTS_CONNECTED_TO_CONSOLEAn integer which indicates how many of the machine slots
thecondor_startdis representing should be "connected" to the console (in other words, notice
when there’s console activity). This defaults to all slots (N in a machine with N CPUs).

SLOTS_CONNECTED_TO_KEYBOARDAn integer which indicates how many of the machine
slots thecondor_startdis representing should be "connected" to the keyboard (for remote
tty activity, as well as console activity). Defaults to 1.

DISCONNECTED_KEYBOARD_IDLE_BOOSTIf there are slots not connected to either the key-
board or the console, the corresponding idle time reported will be the time since thecon-
dor_startdwas spawned, plus the value of this macro. It defaults to 1200seconds (20 min-
utes). We do this because if the slot is configured not to care about keyboard activity, we want
it to be available to Condor jobs as soon as thecondor_startdstarts up, instead of having to
wait for 15 minutes or more (which is the default time a machine must be idle before Condor
will start a job). If you do not want this boost, set the value to 0. If you change your START
expression to require more than 15 minutes before a job starts, but you still want jobs to start
right away on some of your SMP nodes, increase this macro’s value.

Condor Version 7.7.6 Manual

3.3. Configuration 211

STARTD_SLOT_ATTRS The list of ClassAd attribute names that should be shared across all
slots on the same machine. This setting was formerly know asSTARTD_VM_ATTRSor
STARTD_VM_EXPRS(before version 6.9.3). For each attribute in the list, the attribute’s
value is taken from each slot’s machine ClassAd and placed into the machine ClassAd of all
the other slots within the machine. For example, if the configuration file for a 2-slot machine
contains

STARTD_SLOT_ATTRS = State, Activity, EnteredCurrentActi vity

then the machine ClassAd for both slots will contain attributes that will be of the form:

slot1_State = "Claimed"
slot1_Activity = "Busy"
slot1_EnteredCurrentActivity = 1075249233
slot2_State = "Unclaimed"
slot2_Activity = "Idle"
slot2_EnteredCurrentActivity = 1075240035

The following settings control the number of slots reportedfor a given SMP host, and what
attributes each one has. They are only needed if you do not want to have an SMP machine report to
Condor with a separate slot for each CPU, with all shared system resources evenly divided among
them. Please read section 3.12.8 on page 413 for details on how to properly configure these settings
to suit your needs.

NOTE: You can only change the number of each type of slot thecondor_startdis reporting
with a simple reconfig (such as sending a SIGHUP signal, or using thecondor_reconfigcommand).
You cannot change the definition of the different slot types with a reconfig. If you change them, you
must restart thecondor_startdfor the change to take effect (for example, usingcondor_restart
-startd).

NOTE: Prior to version 6.9.3, any settings that included the term“slot” used to use “virtual
machine” or “vm”. If you’re looking for information about one of these older settings, search for
the corresponding attribute names using “slot”, instead.

MAX_SLOT_TYPES The maximum number of different slot types. Note: this is themaximum
number of differenttypes, not of actual slots. Defaults to 10. (You should only need tochange
this setting if you define more than 10 separate slot types, which would be pretty rare.)

SLOT_TYPE_<N> This setting defines a given slot type, by specifying what part of each shared
system resource (like RAM, swap space, etc) this kind of slotgets. This setting hasno effect
unless you also defineNUM_SLOTS_TYPE_<N>. N can be any integer from 1 to the value of
$(MAX_SLOT_TYPES), such asSLOT_TYPE_1. The format of this entry can be somewhat
complex, so please refer to section 3.12.8 on page 413 for details on the different possibilities.

SLOT_TYPE_<N>_PARTITIONABLEA boolean variable that defaults toFalse . WhenTrue ,
this slot permits dynamic provisioning, as specified in section 3.12.8.

Condor Version 7.7.6 Manual

3.3. Configuration 212

CLAIM_PARTITIONABLE_LEFTOVERSA boolean variable that defaults toTrue . WhenTrue
within the configuration for both thecondor_scheddand thecondor_startd, and thecon-
dor_scheddclaims a partitionable slot, thecondor_startdreturns the slot’s ClassAd and a
claim id for leftover resources. In doing so, thecondor_scheddcan claim multiple dynamic
slots without waiting for a negotiation cycle.

NUM_SLOTS_TYPE_<N> This macro controls how many of a given slot type are actuallyreported
to Condor. There is no default.

NUM_SLOTS An integer value representing the number of slots reported when the SMP machine
is being evenly divided, and the slot type settings described above are not being used. The
default is one slot for each CPU. This setting can be used to reserve some CPUs on an SMP
which would not be reported to the Condor pool. This value cannot be used to make Condor
advertise more slots than there are CPUs on the machine. To dothat, useNUM_CPUS.

ALLOW_VM_CRUFT A boolean value that Condor sets and uses internally, currently defaulting
to True . WhenTrue , Condor looks for configuration variables named with the previously
used stringVMafter searching unsuccessfully for variables named with the currently used
string SLOT. WhenFalse , Condor doesnot look for variables named with the previously
used stringVMafter searching unsuccessfully for the stringSLOT.

The following configuration variables support java universe jobs.

JAVA The full path to the Java interpreter (the Java Virtual Machine).

JAVA_CLASSPATH_ARGUMENT The command line argument to the Java interpreter (the Java
Virtual Machine) that specifies the Java Classpath. Classpath is a Java-specific term that
denotes the list of locations (.jar files and/or directories) where the Java interpreter can
look for the Java class files that a Java program requires.

JAVA_CLASSPATH_SEPARATOR The single character used to delimit constructed entries inthe
Classpath for the given operating system and Java Virtual Machine. If not defined, the oper-
ating system is queried for its default Classpath separator.

JAVA_CLASSPATH_DEFAULT A list of path names to.jar files to be added to the Java Class-
path by default. The comma and/or space character delimits list entries.

JAVA_EXTRA_ARGUMENTS A list of additional arguments to be passed to the Java executable.

The following configuration variables control .NET versionadvertisement.

STARTD_PUBLISH_DOTNET A boolean value that controls the advertising of the .NET frame-
work on Windows platforms. WhenTrue , thecondor_startdwill advertise all installed ver-
sions of the .NET framework within theDotNetVersions attribute in thecondor_startd
machine ClassAd. The default value isTrue . Set the value tofalse to turn off .NET version
advertising.

Condor Version 7.7.6 Manual

3.3. Configuration 213

DOT_NET_VERSIONS A string expression that administrators can use to overridethe way that
.NET versions are advertised. If the administrator wishes to advertise .NET installations, but
wishes to do so in a format different than what thecondor_startdpublishes in its ClassAds,
setting a string in this expression will result in thecondor_startdpublishing the string when
STARTD_PUBLISH_DOTNETis True . No value is set by default.

These macros control the power management capabilities of thecondor_startdto optionally put
the machine in to a low power state and wake it up later. See section 3.15 on page 443 on Power
Management for more details.

HIBERNATE_CHECK_INTERVALAn integer number of seconds that determines how often the
condor_startdchecks to see if the machine is ready to enter a low power state. The default
value is 0, which disables the check. If not 0, theHIBERNATEexpression is evaluated within
the context of each slot at the given interval. If used, a value 300 (5 minutes) is recommended.

As a special case, the interval is ignored when the machine has just returned from a low power
state (excluding shutdown (5)). In order to avoid machines from volleying between a running
state and a low power state, an hour of uptime is enforced after a machine has been woken.
After the hour has passed, regular checks resume.

HIBERNATE A string expression that represents lower power state. Whenthis state name evaluates
to a valid non-“NONE” state (see below), causes Condor to putthe machine into the specified
low power state. The following names are supported (and are not case sensitive):

"NONE", "0": No-op: do not enter a low power state

"S1", "1", "STANDBY", "SLEEP": On Windows, this is Sleep (standby)

"S2", "2": On Windows, this is Sleep (standby)

"S3", "3", "RAM", "MEM", "SUSPEND": On Windows, this is Sleep (standby)

"S4", "4", "DISK", "HIBERNATE": Hibernate

"S5", "5", "SHUTDOWN", "OFF": Shutdown (soft-off)

The HIBERNATEexpression is written in terms of the S-states as defined in the Advanced
Configuration and Power Interface (ACPI) specification. TheS-states take the form Sn, where
n is an integer in the range0 to 5, inclusive. The number that results from evaluating the
expression determines which S-state to enter. Then from Sn notation was adopted because at
this junction in time it appears to be the standard naming scheme for power states on several
popular Operating Systems, including various flavors of Windows and Linux distributions.
The other strings ("RAM", "DISK", etc.) are provided for ease of configuration.

Since this expression is evaluated in the context of each slot on the machine, any one slot
has veto power over the other slots. If the evaluation ofHIBERNATEin one slot evaluates
to "NONE" or "0", then the machine will not be placed into a lowpower state. On the other
hand, if all slots evaluate to a non-zero value, but differ invalue, then the largest value is used
as the representative power state.

Strings that do not match any in the table above are treated as"NONE".

Condor Version 7.7.6 Manual

3.3. Configuration 214

UNHIBERNATE A boolean expression that specifies when an offline machine should be wo-
ken up. The default value isMachineLastMatchTime =!= UNDEFINED . This ex-
pression does not do anything, unless there is an instance ofcondor_roosterrunning, or
another program that evaluates theUnhibernate expression of offline machine Class-
Ads. In addition, the collecting of offline machine ClassAdsmust be enabled for this
expression to work. The variableOFFLINE_LOG , as detailed on page 215 explains
this. The special attributeMachineLastMatchTime is updated in the ClassAds of of-
fline machines when a job would have been matched to the machine if it had been on-
line. For multi-slot machines, the offline ClassAd for slot1will also contain the attributes
slot<X>_MachineLastMatchTime , whereX is replaced by the slot id of the other slots
that would have been matched while offline. This allows the slot1UNHIBERNATEexpression
to refer to all of the slots on the machine, in case that is necessary. By default,condor_rooster
will wake up a machine if any slot on the machine has itsUNHIBERNATEexpression evaluate
to True .

HIBERNATION_PLUGIN A string which specifies the path and executable name of the hiber-
nation plug-in that thecondor_startdshould use in the detection of low power states and
switching to the low power states. The default value is$(LIBEXEC)/power_state . A
default executable in that location which meets these specifications is shipped with Condor.

The condor_startd initially invokes this plug-in with both the value defined for
HIBERNATION_PLUGIN_ARGSand the argumentad, and expects the plug-in to output
a ClassAd to its standard output stream. Thecondor_startdwill use this ClassAd to de-
termine what low power setting to use on further invocationsof the plug-in. To that end,
the ClassAd must contain the attributeHibernationSupportedStates , a comma sep-
arated list of low power modes that are available. The recognized mode strings are the
same as those in the table for the configuration variableHIBERNATE. The optional attribute
HibernationMethod specifies a string which describes the mechanism used by the plug-
in. The default Linux plug-in shipped with Condor will produce one of the stringsNONE,
/sys , /proc , or pm-utils . The optional attributeHibernationRawMask is an inte-
ger which represents the bit mask of the modes detected.

Subsequentcondor_startd invocations of the plug-in have command line arguments
defined by HIBERNATION_PLUGIN_ARGSplus the argumentset<power-mode>,
where <power-mode> is one of the supported states as given in the attribute
HibernationSupportedStates .

HIBERNATION_PLUGIN_ARGS Command line arguments appended to the command that in-
vokes the plug-in. The additional argumentad is appended when thecondor_startdinitially
invokes the plug-in.

HIBERNATION_OVERRIDE_WOLA boolean value that defaults toFalse . When True , it
causes thecondor_startddaemon’s detection of the whether or not the network interface
handles WOL packets to be ignored. WhenFalse , hibernation is disabled if the network
interface does not use WOL packets to wake from hibernation.Therefore, whenTrue hiber-
nation can be enabled despite the fact that WOL packets are not used to wake machines.

LINUX_HIBERNATION_METHODA string that can be used to override the default search used by
Condor on Linux platforms to detect the hibernation method to use. This is used by the default

Condor Version 7.7.6 Manual

3.3. Configuration 215

hibernation plug-in executable that is shipped with Condor. The default behavior orders its
search with:

1. Detect and use thepm-utilscommand line tools. The corresponding string is defined
with "pm-utils" .

2. Detect and use the directory in the virtual file system/sys/power . The corresponding
string is defined with"/sys" .

3. Detect and use the directory in the virtual file system/proc/ACPI . The corresponding
string is defined with"/proc" .

To override this ordered search behavior, and force the use of one particular method, set
LINUX_HIBERNATION_METHODto one of the defined strings.

OFFLINE_LOG The full path and file name of a file that stores machine ClassAds for every
hibernating machine. This forms a persistent storage of these ClassAds, in case thecon-
dor_collectordaemon crashes.

To avoid condor_preenremoving this log, place it in a directory other than the directory
defined by$(SPOOL) . Alternatively, if this log file is to go in the directory defined by
$(SPOOL) , add the file to the list given byVALID_SPOOL_FILES.

OFFLINE_EXPIRE_ADS_AFTERAn integer number of seconds specifying the lifetime of the
persistent machine ClassAd representing a hibernating machine. Defaults to the largest 32-bit
integer.

The following macros control the optional computation of resource availability statistics in the
condor_startd.

STARTD_COMPUTE_AVAIL_STATSA boolean value that determines if thecondor_startdcom-
putes resource availability statistics. The default isFalse .

If STARTD_COMPUTE_AVAIL_STATSis True , thecondor_startdwill define the follow-
ing ClassAd attributes for resources:

AvailTime The proportion of the time (between 0.0 and 1.0) that this resource has been in
a state other than Owner.

LastAvailIntervalThe duration in seconds of the last period between Owner states.

The following attributes will also be included if the resource is not in the Owner state:

AvailSince The time at which the resource last left the Owner state. Measured in the
number of seconds since the epoch (00:00:00 UTC, Jan 1, 1970).

AvailTimeEstimateBased on past history, an estimate of how long the current period
between Owner states will last.

STARTD_AVAIL_CONFIDENCE A floating point number representing the confidence level of the
condor_startddaemon’sAvailTime estimate. By default, the estimate is based on the 80th
percentile of past values, so the value is initially set to 0.8.

Condor Version 7.7.6 Manual

3.3. Configuration 216

STARTD_MAX_AVAIL_PERIOD_SAMPLESAn integer that limits the number of samples of past
available intervals stored by thecondor_startdto limit memory and disk consumption. Each
sample requires 4 bytes of memory and approximately 10 bytesof disk space.

3.3.11 condor_schedd Configuration File Entries

These macros control thecondor_schedd.

SHADOW This macro determines the full path of thecondor_shadowbinary that thecondor_schedd
spawns. It is normally defined in terms of$(SBIN) .

START_LOCAL_UNIVERSE A boolean value that defaults toTotalLocalJobsRunning
< 200 . The condor_schedduses this macro to determine whether to start alocal uni-
verse job. At intervals determined bySCHEDD_INTERVAL, the condor_schedddaemon
evaluates this macro for each idlelocal universe job that it has. For each job, if the
START_LOCAL_UNIVERSEmacro isTrue , then the job’sRequirements expression
is evaluated. If both conditions are met, then the job is allowed to begin execution.

The following example only allows 10local universe jobs to execute concurrently. The at-
tributeTotalLocalJobsRunning is supplied bycondor_schedd’s ClassAd:

START_LOCAL_UNIVERSE = TotalLocalJobsRunning < 10

STARTER_LOCAL The complete path and executable name of thecondor_starterto run for local
universe jobs. This variable’s value is defined in the initial configuration provided with Condor
as

STARTER_LOCAL = $(SBIN)/condor_starter

This variable would only be modified or hand added into the configuration for a pool to be
upgraded from one running a version of Condor that existed before thelocal universe to one
that includes thelocal universe, but without utilizing the newer, provided configuration files.

LOCAL_UNIV_EXECUTE A string value specifying the execute location for local universe jobs.
Each running local universe job will receive a uniquely named subdirectory within this direc-
tory. If not specified, it defaults to$(SPOOL)/local_univ_execute .

START_SCHEDULER_UNIVERSEA boolean value that defaults to
TotalSchedulerJobsRunning < 200 . The condor_schedduses this macro
to determine whether to start ascheduler universe job. At intervals determined by
SCHEDD_INTERVAL, the condor_schedddaemon evaluates this macro for each idle
scheduleruniverse job that it has. For each job, if theSTART_SCHEDULER_UNIVERSE
macro isTrue , then the job’sRequirements expression is evaluated. If both conditions
are met, then the job is allowed to begin execution.

The following example only allows 10scheduleruniverse jobs to execute concurrently. The
attributeTotalSchedulerJobsRunning is supplied bycondor_schedd’s ClassAd:

Condor Version 7.7.6 Manual

3.3. Configuration 217

START_SCHEDULER_UNIVERSE = TotalSchedulerJobsRunning < 10

MAX_JOBS_RUNNING An integer representing a limit on the number of processes spawned by a
givencondor_schedddaemon, for all job universes except the grid universe. The number of
processes limit includescondor_shadowprocesses, scheduler universe processes, including
condor_dagman, and local universecondor_starterprocesses. Limiting the number of run-
ning scheduler and local universe jobs below the upper limitset byMAX_JOBS_RUNNINGis
best done usingSTART_LOCAL_UNIVERSEandSTART_SCHEDULER_UNIVERSE. The
actual number of allowedcondor_shadowdaemons may be reduced, if the amount of mem-
ory defined byRESERVED_SWAPlimits the number ofcondor_shadowdaemons. A value
for MAX_JOBS_RUNNINGthat is less than or equal to 0 prevents any new job from start-
ing. Changing this setting to be below the current number of jobs that are running will cause
running jobs to be aborted until the number running is withinthe limit.

Like all integer configuration variables,MAX_JOBS_RUNNINGmay be a ClassAd expression
that evaluates to an integer, and which refers to constants either directly or via macro substi-
tution. The default value is an expression that depends on the total amount of memory and the
operating system. The default expression requires 1MByte of RAM per running job on the
submit machine. In some environments and configurations, this is overly generous and can be
cut by as much as 50%. On Windows platforms, the number of running jobs is still capped at
200. A 64-bit version of Windows is recommended in order to raise the value above the de-
fault. Under Unix, the maximum default is now 10,000. To scale higher, we recommend that
the system ephemeral port range is extended such that there are at least 2.1 ports per running
job.

Here are example configurations:

Example 1:
MAX_JOBS_RUNNING = 10000

Example 2:
This is more complicated, but it produces the same limit as the default.
First define some expressions to use in our calculation.
Assume we can use up to 80% of memory and estimate shadow pri vate data
size of 800k.
MAX_SHADOWS_MEM = ceiling($(DETECTED_MEMORY)*0.8*1024/800)
Assume we can use ~21,000 ephemeral ports (avg ~2.1 per sha dow).
Under Linux, the range is set in /proc/sys/net/ipv4/ip_l ocal_port_range.
MAX_SHADOWS_PORTS = 10000
Under windows, things are much less scalable, currently.
Note that this can probably be safely increased a bit under 64-bit windows.
MAX_SHADOWS_OPSYS = ifThenElse(regexp("WIN.*","$(OPSY S)"),200,100000)
Now build up the expression for MAX_JOBS_RUNNING. This is complicated
due to lack of a min() function.
MAX_JOBS_RUNNING = $(MAX_SHADOWS_MEM)
MAX_JOBS_RUNNING = \

ifThenElse($(MAX_SHADOWS_PORTS) < $(MAX_JOBS_RUNNING), \
$(MAX_SHADOWS_PORTS), \
$(MAX_JOBS_RUNNING))

MAX_JOBS_RUNNING = \
ifThenElse($(MAX_SHADOWS_OPSYS) < $(MAX_JOBS_RUNNING), \

Condor Version 7.7.6 Manual

3.3. Configuration 218

$(MAX_SHADOWS_OPSYS), \
$(MAX_JOBS_RUNNING))

MAX_JOBS_SUBMITTED This integer value limits the number of jobs permitted in acon-
dor_schedddaemon’s queue. Submission of a new cluster of jobs fails, ifthe total number of
jobs would exceed this limit. The default value for this variable is the largest positive integer
value.

MAX_SHADOW_EXCEPTIONS This macro controls the maximum number of times thatcon-
dor_shadowprocesses can have a fatal error (exception) before thecondor_scheddwill re-
linquish the match associated with the dying shadow. Defaults to 5.

MAX_PENDING_STARTD_CONTACTSAn integer value that limits the number of simultaneous
connection attempts by thecondor_scheddwhen it is requesting claims from one or more
condor_startddaemons. The intention is to protect thecondor_scheddfrom being overloaded
by authentication operations. The default value is 0. The special value 0 indicates no limit.

MAX_CONCURRENT_DOWNLOADS This specifies the maximum number of simultaneous transfers
of output files from execute machines to the submit machine. The limit applies to all jobs
submitted from the samecondor_schedd. The default is 10. A setting of 0 means unlimited
transfers. This limit currently does not apply to grid universe jobs or standard universe jobs,
and it also does not apply to streaming output files. When the limit is reached, additional
transfers will queue up and wait before proceeding.

MAX_CONCURRENT_UPLOADS This specifies the maximum number of simultaneous transfers
of input files from the submit machine to execute machines. The limit applies to all jobs
submitted from the samecondor_schedd. The default is 10. A setting of 0 means unlimited
transfers. This limit currently does not apply to grid universe jobs or standard universe jobs.
When the limit is reached, additional transfers will queue up and wait before proceeding.

SCHEDD_QUERY_WORKERS This specifies the maximum number of concurrent sub-processes
that thecondor_scheddwill spawn to handle queries. The setting is ignored in Windows.
In Unix, the default is 3. If the limit is reached, the next query will be handled in thecon-
dor_schedd’s main process.

SCHEDD_INTERVAL This macro determines the maximum interval for both how often thecon-
dor_scheddsends a ClassAd update to thecondor_collectorand how often thecondor_schedd
daemon evaluates jobs. It is defined in terms of seconds and defaults to 300 (every 5 minutes).

WINDOWED_STAT_WIDTH The number of seconds that forms a time window within which per-
formance statistics of thecondor_schedddaemon are calculated. Defaults to 300 seconds.

SCHEDD_INTERVAL_TIMESLICEThe bookkeeping done by thecondor_scheddtakes more
time when there are large numbers of jobs in the job queue. However, when it is not too
expensive to do this bookkeeping, it is best to keep the collector up to date with the latest
state of the job queue. Therefore, this macro is used to adjust the bookkeeping interval so that
it is done more frequently when the cost of doing so is relatively small, and less frequently
when the cost is high. The default is 0.05, which means the schedd will adapt its bookkeep-
ing interval to consume no more than 5% of the total time available to the schedd. The lower

Condor Version 7.7.6 Manual

3.3. Configuration 219

bound is configured bySCHEDD_MIN_INTERVAL(default 5 seconds), and the upper bound
is configured bySCHEDD_INTERVAL(default 300 seconds).

JOB_START_COUNT This macro works together with theJOB_START_DELAYmacro to throt-
tle job starts. The default and minimum values for this integer configuration variable are both
1.

JOB_START_DELAY This integer-valued macro works together with theJOB_START_COUNT
macro to throttle job starts. Thecondor_schedddaemon starts$(JOB_START_COUNT)

jobs at a time, then delays for$(JOB_START_DELAY) seconds before starting the
next set of jobs. This delay prevents a sudden, large load on resources required by
the jobs during their start up phase. The resulting job startrate averages as fast as
($(JOB_START_COUNT)/$(JOB_START_DELAY)) jobs/second. This setting is defined
in terms of seconds and defaults to 0, which means jobs will bestarted as fast as possi-
ble. If you wish to throttle the rate of specific types of jobs,you can use the job attribute
NextJobStartDelay .

MAX_NEXT_JOB_START_DELAYAn integer number of seconds representing the maximum al-
lowed value of the job ClassAd attributeNextJobStartDelay . It defaults to 600, which
is 10 minutes.

JOB_STOP_COUNT An integer value representing the number of jobs operated onat one time
by thecondor_schedddaemon, when throttling the rate at which jobs are stopped via con-
dor_rm, condor_hold, or condor_vacate_job. The default and minimum values are both 1.
This variable is ignored for grid and scheduler universe jobs.

JOB_STOP_DELAY An integer value representing the number of seconds delay utilized by
the condor_schedddaemon, when throttling the rate at which jobs are stopped via
condor_rm, condor_hold, or condor_vacate_job. The condor_schedddaemon stops
$(JOB_STOP_COUNT)jobs at a time, then delays for$(JOB_STOP_DELAY) seconds
before stopping the next set of jobs. This delay prevents a sudden, large load on resources
required by the jobs when they are terminating. The resulting job stop rate averages as fast
asJOB_STOP_COUNT/JOB_STOP_DELAYjobs per second. This configuration variable
is also used during the graceful shutdown of thecondor_schedddaemon. During graceful
shutdown, this macro determines the wait time in between requesting eachcondor_shadow
daemon to gracefully shut down. The default value is 0, whichmeans jobs will be stopped as
fast as possible. This variable is ignored for grid and scheduler universe jobs.

JOB_IS_FINISHED_INTERVAL Thecondor_scheddmaintains a list of jobs that are ready to
permanently leave the job queue, e.g. they have completed orbeen removed. This integer-
valued macro specifies a delay in seconds to place between thetaking jobs permanently out
of the queue. The default value is 0, which tells thecondor_scheddto not impose any delay.

ALIVE_INTERVAL An initial value for an integer number of seconds defining howoften the
condor_scheddsends a UDP keep alive message to anycondor_startdit has claimed.
When thecondor_scheddclaims acondor_startd, thecondor_scheddtells thecondor_startd
how often it is going to send these messages. The utilized interval for sending keep
alive messages is the smallest of the two valuesALIVE_INTERVAL and the expression

Condor Version 7.7.6 Manual

3.3. Configuration 220

JobLeaseDuration/3 , formed with the job ClassAd attributeJobLeaseDuration .
The value of the interval is further constrained by the floor value of 10 seconds. If thecon-
dor_startddoes not receive any of these keep alive messages during a certain period of time
(defined viaMAX_CLAIM_ALIVES_MISSED, described on page 205) thecondor_startd
releases the claim, and thecondor_scheddno longer pays for the resource (in terms of user
priority in the system). The macro is defined in terms of seconds and defaults to 300, which
is 5 minutes.

STARTD_SENDS_ALIVES A boolean value that defaults toTrue , causing keep alive messages
to be sent from thecondor_startdto the condor_scheddby TCP during a claim. When
False , the condor_schedddaemon sends keep alive signals to the thecondor_startd, re-
versing the direction. If bothcondor_startdandcondor_schedddaemons are Condor version
7.5.4 or more recent, this variable is only used by thecondor_schedddaemon. For earlier
Condor versions, the variable must be set to the same value, and it must be set for both dae-
mons.

REQUEST_CLAIM_TIMEOUT This macro sets the time (in seconds) that thecondor_scheddwill
wait for a claim to be granted by thecondor_startd. The default is 30 minutes. This is only
likely to matter if thecondor_startdhas an existing claim and it takes a long time for the
existing claim to be preempted due toMaxJobRetirementTime . Once a request times
out, thecondor_scheddwill simply begin the process of finding a machine for the job all over
again.

Normally, it is not a good idea to set this to be very small (e.g. a few minutes). Doing so can
lead to failure to preempt, because the preempting job will spend a significant fraction of its
time waiting to be re-matched. During that time, it would miss out on any opportunity to run
if the job it is trying to preempt gets out of the way.

SHADOW_SIZE_ESTIMATE The estimated private virtual memory size of eachcondor_shadow
process in Kbytes. This value is only used ifRESERVED_SWAPis non-zero. The default
value is 800.

SHADOW_RENICE_INCREMENTWhen thecondor_scheddspawns a newcondor_shadow, it can
do so with anice-level. A nice-level is a Unix mechanism that allows users to assigntheir own
processes a lower priority so that the processes run with less priority than other tasks on the
machine. The value can be any integer between 0 and 19, with a value of 19 being the lowest
priority. It defaults to 0.

SCHED_UNIV_RENICE_INCREMENTAnalogous to JOB_RENICE_INCREMENT and
SHADOW_RENICE_INCREMENT, scheduler universe jobs can be given a nice-level.
The value can be any integer between 0 and 19, with a value of 19being the lowest priority.
It defaults to 0.

QUEUE_CLEAN_INTERVAL Thecondor_scheddmaintains the job queue on a given machine. It
does so in a persistent way such that if thecondor_scheddcrashes, it can recover a valid state
of the job queue. The mechanism it uses is a transaction-based log file (thejob_queue.log
file, not theSchedLog file). This file contains an initial state of the job queue, anda series of
transactions that were performed on the queue (such as new jobs submitted, jobs completing,
and checkpointing). Periodically, thecondor_scheddwill go through this log, truncate all the

Condor Version 7.7.6 Manual

3.3. Configuration 221

transactions and create a new file with containing only the new initial state of the log. This is
a somewhat expensive operation, but it speeds up when thecondor_scheddrestarts since there
are fewer transactions it has to play to figure out what state the job queue is really in. This
macro determines how often thecondor_scheddshould rework this queue to cleaning it up. It
is defined in terms of seconds and defaults to 86400 (once a day).

WALL_CLOCK_CKPT_INTERVAL The job queue contains a counter for each job’s “wall clock”
run time, i.e., how long each job has executed so far. This counter is displayed bycondor_q.
The counter is updated when the job is evicted or when the job completes. When thecon-
dor_scheddcrashes, the run time for jobs that are currently running will not be added to
the counter (and so, the run time counter may become smaller than the CPU time counter).
Thecondor_scheddsaves run time “checkpoints” periodically for running jobsso if thecon-
dor_scheddcrashes, only run time since the last checkpoint is lost. This macro controls how
often thecondor_scheddsaves run time checkpoints. It is defined in terms of seconds and
defaults to 3600 (one hour). A value of 0 will disable wall clock checkpoints.

QUEUE_ALL_USERS_TRUSTED Defaults to False. If set to True, then unauthenticated users are
allowed to write to the queue, and also we always trust whatever theOwner value is set to be
by the client in the job ad. This was added so users can continue to use the SOAP web-services
interface over HTTP (w/o authenticating) to submit jobs in asecure, controlled environment
– for instance, in a portal setting.

QUEUE_SUPER_USERS A comma and/or space separated list of user names on a given machine
that are givensuper-user accessto the job queue, meaning that they can modify or delete the
job ClassAds of other users. When not on this list, users can only modify or delete their own
ClassAds from the job queue. Whatever user name correspondswith the UID that Condor is
running as – usually usercondor – will automatically be included in this list, because that
is needed for Condor’s proper functioning. See section 3.6.13 on UIDs in Condor for more
details on this. By default, the Unix userroot and the Windows useradministrator are
given the ability to remove other user’s jobs, in addition tousercondor .

SYSTEM_JOB_MACHINE_ATTRS This macro specifies a space and/or comma separated list of
machine attributes that should be recorded in the job ClassAd. The default attributes are
Cpus and SlotWeight . When there are multiple run attempts, history of machine at-
tributes from previous run attempts may be kept. The number of run attempts to store is spec-
ified by the configuration variableSYSTEM_JOB_MACHINE_ATTRS_HISTORY_LENGTH
. A machine attribute namedX will be inserted into the job ClassAd as an attribute named
MachineAttrX0 . The previous value of this attribute will be namedMachineAttrX1 ,
the previous to that will be namedMachineAttrX2 , and so on, up to the specified history
length. A history of length 1 means that onlyMachineAttrX0 will be recorded. Additional
attributes to record may be specified on a per-job basis by using thejob_machine_attrssub-
mit file command. The value recorded in the job ClassAd is the evaluation of the machine
attribute in the context of the job ClassAd when thecondor_schedddaemon initiates the start
up of the job. If the evaluation results in anUndefined or Error result, the value recorded
in the job ClassAd will beUndefined or Error respectively.

SYSTEM_JOB_MACHINE_ATTRS_HISTORY_LENGTHThe integer number of run attempts
to store in the job ClassAd when recording the values of machine attributes

Condor Version 7.7.6 Manual

3.3. Configuration 222

listed in SYSTEM_JOB_MACHINE_ATTRS. The default is 1. The history length
may also be extended on a per-job basis by using the submit filecommand
job_machine_attrs_history_length. The larger of the system and per-job history lengths
will be used. A history length of 0 disables recording of machine attributes.

SCHEDD_LOCK This macro specifies what lock file should be used for access totheSchedLog
file. It must be a separate file from theSchedLog , since theSchedLog may be rotated
and synchronization across log file rotations is desired. This macro is defined relative to the
$(LOCK) macro.

SCHEDD_NAME Used to give an alternative value to theNameattribute in thecondor_schedd’s
ClassAd.

See the description ofMASTER_NAMEin section 3.3.9 on page 200 for defaults and composi-
tion of valid Condor daemon names. Also, note that if theMASTER_NAMEsetting is defined
for thecondor_masterthat spawned a givencondor_schedd, that name will take precedence
over whatever is defined inSCHEDD_NAME.

SCHEDD_ATTRS This macro is described in section 3.3.5 as<SUBSYS>_ATTRS.

SCHEDD_DEBUG This macro (and other settings related to debug logging in the condor_schedd)
is described in section 3.3.4 as<SUBSYS>_DEBUG.

SCHEDD_ADDRESS_FILE This macro is described in section 3.3.5 as
<SUBSYS>_ADDRESS_FILE.

SCHEDD_EXECUTE A directory to use as a temporary sandbox for local universe jobs. Defaults
to $(SPOOL)/execute .

FLOCK_NEGOTIATOR_HOSTS Defines a comma and/or space separated list ofcon-
dor_negotiatorhost names for pools in which thecondor_scheddshould attempt to run
jobs. If not set, thecondor_scheddwill query the condor_collectordaemons for the ad-
dresses of thecondor_negotiatordaemons. If set, then thecondor_negotiatordaemons must
be specified in order, corresponding to the list set byFLOCK_COLLECTOR_HOSTS. In the
typical case, where each pool has thecondor_collectorandcondor_negotiatorrunning on
the same machine,$(FLOCK_NEGOTIATOR_HOSTS)should have the same definition as
$(FLOCK_COLLECTOR_HOSTS). This configuration value is also typically used as a macro
for adding thecondor_negotiatorto the relevant authorization lists.

FLOCK_COLLECTOR_HOSTS This macro defines a list of collector host names (not including
the local$(COLLECTOR_HOST)machine) for pools in which thecondor_scheddshould
attempt to run jobs. Hosts in the list should be in order of preference. Thecondor_scheddwill
only send a request to a central manager in the list if the local pool and pools earlier in the
list are not satisfying all the job requests.$(HOSTALLOW_NEGOTIATOR_SCHEDD)(see
section 3.3.5) must also be configured to allow negotiators from all of the pools to contact
thecondor_scheddat theNEGOTIATORauthorization level. Similarly, the central managers
of the remote pools must be configured to allow thiscondor_scheddto join the pool (this
requiresADVERTISE_SCHEDDauthorization level, which defaults toWRITE).

Condor Version 7.7.6 Manual

3.3. Configuration 223

NEGOTIATE_ALL_JOBS_IN_CLUSTERIf this macro is set to False (the default), when thecon-
dor_scheddfails to start an idle job, it will not try to start any other idle jobs in the same cluster
during that negotiation cycle. This makes negotiation muchmore efficient for large job clus-
ters. However, in some cases other jobs in the cluster can be started even though an earlier
job can’t. For example, the jobs’ requirements may differ, because of different disk space,
memory, or operating system requirements. Or, machines maybe willing to run only some
jobs in the cluster, because their requirements reference the jobs’ virtual memory size or other
attribute. Setting this macro to True will force thecondor_scheddto try to start all idle jobs
in each negotiation cycle. This will make negotiation cycles last longer, but it will ensure that
all jobs that can be started will be started.

PERIODIC_EXPR_INTERVAL This macro determines the minimum period, in seconds, between
evaluation of periodic job control expressions, such as periodic_hold, periodic_release, and
periodic_remove, given by the user in a Condor submit file. Bydefault, this value is 60
seconds. A value of 0 prevents thecondor_scheddfrom performing the periodic evaluations.

MAX_PERIODIC_EXPR_INTERVALThis macro determines the maximum period, in sec-
onds, between evaluation of periodic job control expressions, such as periodic_hold, peri-
odic_release, and periodic_remove, given by the user in a Condor submit file. By default, this
value is 1200 seconds. If Condor is behind on processing events, the actual period between
evaluations may be higher than specified.

PERIODIC_EXPR_TIMESLICE This macro is used to adapt the frequency with which thecon-
dor_scheddevaluates periodic job control expressions. When the job queue is very large, the
cost of evaluating all of the ClassAds is high, so in order forthecondor_scheddto continue
to perform well, it makes sense to evaluate these expressions less frequently. The default
time slice is 0.01, so thecondor_scheddwill set the interval between evaluations so that it
spends only 1% of its time in this activity. The lower bound for the interval is configured
by PERIODIC_EXPR_INTERVAL (default 60 seconds) and the upper bound is configured
with MAX_PERIODIC_EXPR_INTERVAL(default 1200 seconds).

SYSTEM_PERIODIC_HOLD This expression behaves identically to the job expression
periodic_hold , but it is evaluated by thecondor_schedddaemon individually for each
job in the queue. It defaults toFalse . WhenTrue , it causes the job to stop running and
go on hold. Here is an example that puts jobs on hold if they have been restarted too many
times, have an unreasonably large virtual memoryImageSize , or have unreasonably large
disk usage for an invented environment.

SYSTEM_PERIODIC_HOLD = \
(JobStatus == 1 || JobStatus == 2) && \
(JobRunCount > 10 || ImageSize > 3000000 || DiskUsage > 10000 000)

SYSTEM_PERIODIC_HOLD_REASONThis string expression is evaluated when the job is placed
on hold due toSYSTEM_PERIODIC_HOLDevaluating toTrue . If it evaluates to a non-
empty string, this value is used to set the job attributeHoldReason . Otherwise, a default
description is used.

Condor Version 7.7.6 Manual

3.3. Configuration 224

SYSTEM_PERIODIC_HOLD_SUBCODEThis integer expression is evaluated when the job is
placed on hold due toSYSTEM_PERIODIC_HOLDevaluating toTrue . If it evaluates to
a valid integer, this value is used to set the job attributeHoldReasonSubCode . Otherwise,
a default of 0 is used. The attributeHoldReasonCode is set to 26, which indicates that the
job went on hold due to a system job policy expression.

SYSTEM_PERIODIC_RELEASE This expression behaves identically to the job expression
periodic_release , but it is evaluated by thecondor_schedddaemon individually for
each job in the queue. It defaults toFalse . WhenTrue , it causes a held job to return to the
idle state. Here is an example that releases jobs from hold ifthey have tried to run less than
20 times, have most recently been on hold for over 20 minutes,and have gone on hold due to
“Connection timed out” when trying to execute the job, because the file system containing the
job’s executable is temporarily unavailable.

SYSTEM_PERIODIC_RELEASE = \
(JobRunCount < 20 && CurrentTime - EnteredCurrentStatus > 1 200) && (\

(HoldReasonCode == 6 && HoldReasonSubCode == 110) \
)

SYSTEM_PERIODIC_REMOVE This expression behaves identically to the job expression
periodic_remove , but it is evaluated for every job in the queue. As it is in the con-
figuration file, it is easy for an administrator to set a removepolicy that applies to all jobs. It
defaults toFalse . WhenTrue , it causes the job to be removed from the queue. Here is an
example that removes jobs which have been on hold for 30 days:

SYSTEM_PERIODIC_REMOVE = \
(JobStatus == 5 && CurrentTime - EnteredCurrentStatus > 360 0*24*30)

SCHEDD_ASSUME_NEGOTIATOR_GONEThis macro determines the period, in seconds, that the
condor_scheddwill wait for the condor_negotiatorto initiate a negotiation cycle before the
schedd will simply try to claim any localcondor_startd. This allows for a machine that is
acting as both a submit and execute node to run jobs locally ifit cannot communicate with the
central manager. The default value, if not specified, is 1200(20 minutes).

SCHEDD_ROUND_ATTR_<xxxx> This is used to round off attributes in the job ClassAd so that
similar jobs may be grouped together for negotiation purposes. There are two cases. One
is that a percentage such as 25% is specified. In this case, thevalue of the attribute named
<xxxx>\ in the job ClassAd will be rounded up to the next multiple of the specified percent-
age of the values order of magnitude. For example, a setting of 25% will cause a value near
100 to be rounded up to the next multiple of 25 and a value near 1000 will be rounded up to
the next multiple of 250. The other case is that an integer, such as 4, is specified instead of
a percentage. In this case, the job attribute is rounded up tothe specified number of decimal
places. Replace<xxxx> with the name of the attribute to round, and set this macro equal to
the number of decimal places to round up. For example, to round the value of job ClassAd
attributefoo up to the nearest 100, set

SCHEDD_ROUND_ATTR_foo = 2

Condor Version 7.7.6 Manual

3.3. Configuration 225

When the schedd rounds up an attribute value, it will save theraw (un-rounded) actual value
in an attribute with the same name appended with “_RAW". So inthe above example, the
raw value will be stored in attributefoo_RAW in the job ClassAd. The following are set by
default:

SCHEDD_ROUND_ATTR_ImageSize = 25%
SCHEDD_ROUND_ATTR_ResidentSetSize = 25%
SCHEDD_ROUND_ATTR_ProportionalSetSizeKb = 25%
SCHEDD_ROUND_ATTR_ImageSize = 25%
SCHEDD_ROUND_ATTR_ExecutableSize = 25%
SCHEDD_ROUND_ATTR_DiskUsage = 25%
SCHEDD_ROUND_ATTR_NumCkpts = 4

Thus, an ImageSize near 100MB will be rounded up to the next multiple of 25MB. If your
batch slots have less memory or disk than the rounded values,it may be necessary to reduce
the amount of rounding, because the job requirements will not be met.

SCHEDD_BACKUP_SPOOL This macro is used to enable thecondor_scheddto make a backup of
the job queue as it starts. If set to “True”, thecondor_scheddwill create host specific a backup
of the current spool file to the spool directory. This backup file will be overwritten each time
thecondor_scheddstarts.SCHEDD_BACKUP_SPOOLdefaults to “False”.

SCHEDD_PREEMPTION_REQUIREMENTSThis boolean expression is utilized only for machines
allocated by a dedicated scheduler. WhenTrue , a machine becomes a candidate for job
preemption. This configuration variable has no default; when not defined, preemption will
never be considered.

SCHEDD_PREEMPTION_RANK This floating point value is utilized only for machines allocated
by a dedicated scheduler. It is evaluated in context of a job ClassAd, and it represents a
machine’s preference for running a job. This configuration variable has no default; when not
defined, preemption will never be considered.

ParallelSchedulingGroup For parallel jobs which must be assigned within a group of ma-
chines (and not cross group boundaries), this configurationvariable identifies members of a
group. Each machine within a group sets this configuration variable with a string that identi-
fies the group.

PER_JOB_HISTORY_DIR If set to a directory writable by the Condor user, when a job leaves
thecondor_schedd’s queue, a copy of its ClassAd will be written in that directory. The files
are named “history.” with the job’s cluster and process number appended. For example, job
35.2 will result in a file named “history.35.2”. Condor does not rotate or delete the files, so
without an external entity to clean the directory it can growvery large. This option defaults to
being unset. When not set, no such files are written.

DEDICATED_SCHEDULER_USE_FIFOWhen this parameter is set to true (the default), parallel
universe jobs will be scheduled in a first-in, first-out manner. When set to false, parallel jobs
are scheduled using a best-fit algorithm. Using the best-fit algorithm is not recommended, as
it can cause starvation.

Condor Version 7.7.6 Manual

3.3. Configuration 226

SCHEDD_SEND_VACATE_VIA_TCPA boolean value that defaults toFalse . WhenTrue , the
condor_schedddaemon sends vacate signals via TCP, instead of the default UDP.

SCHEDD_CLUSTER_INITIAL_VALUEAn integer that specifies the initial cluster number value
to use within a job id when a job is first submitted. If the job cluster number reaches the value
set bySCHEDD_CLUSTER_MAXIMUM_VALUEand wraps, it will be re-set to the value given
by this variable. The default value is 1.

SCHEDD_CLUSTER_INCREMENT_VALUEA positive integer that defaults to 1, representing a
stride used for the assignment of cluster numbers within a job id. When a job is submitted,
the job will be assigned a job id. The cluster number of the jobid will be equal to the previous
cluster number used plus the value of this variable.

SCHEDD_CLUSTER_MAXIMUM_VALUEAn integer that specifies an upper bound on assigned
job cluster id values. For valueM , the maximum job cluster id assigned to any job will
be M − 1. When the maximum id is reached, cluster ids will continue assignment using
SCHEDD_CLUSTER_INITIAL_VALUE. The default value of this variable is zero, which
represents the behavior of having no maximum cluster id value.

Note that Condor does not check for nor take responsibility for duplicate cluster ids for queued
jobs. If SCHEDD_CLUSTER_MAXIMUM_VALUEis set to a non-zero value, the system ad-
ministrator is responsible for ensuring that older jobs do not stay in the queue long enough
for cluster ids of new jobs to wrap around and reuse the same id. With a low enough value,
it is possible for jobs to be erroneously assigned duplicatecluster ids, which will result in a
corrupt job queue.

GRIDMANAGER_SELECTION_EXPRBy default, thecondor_schedddaemon will start a new
condor_gridmanagerprocess for each discrete user that submits a grid universe job, that is,
for each discrete value of job attributeOwner across all grid universe job ClassAds. For ad-
ditional isolation and/or scalability of grid job management, additionalcondor_gridmanager
processes can be spawned to share the load; to do so, set this variable to be a ClassAd ex-
pression. The result of the evaluation of this expression inthe context of a grid universe
job ClassAd will be treated as a hash value. All jobs that hashto the same value via this
expression will go to the samecondor_gridmanager. For instance, to spawn a separatecon-
dor_gridmanagerprocess to manage each unique remote site, the following expression works:

GRIDMANAGER_SELECTION_EXPR = GridResource

CKPT_SERVER_CLIENT_TIMEOUTAn integer which specifies how long in seconds thecon-
dor_scheddis willing to wait for a response from a checkpoint server before declaring the
checkpoint server down. The value of 0 makes the schedd blockfor the operating system
configured time (which could be a very long time) before theconnect() returns on its own
with a connection timeout. The default value is 20.

CKPT_SERVER_CLIENT_TIMEOUT_RETRYAn integer which specifies how long in seconds
thecondor_scheddwill ignore a checkpoint server that is deemed to be down. After this time
elapses, thecondor_scheddwill try again in talking to the checkpoint server. The default is
1200.

Condor Version 7.7.6 Manual

3.3. Configuration 227

SCHEDD_JOB_QUEUE_LOG_FLUSH_DELAYAn integer which specifies an upper bound in sec-
onds on how long it takes for changes to the job ClassAd to be visible to the Condor Job
Router and to Quill. The default is 5 seconds.

ROTATE_HISTORY_DAILY A boolean value that defaults toFalse . When True , the his-
tory file will be rotated daily, in addition to the rotations that occur due to the definition
of MAX_HISTORY_LOGthat rotate due to size.

ROTATE_HISTORY_MONTHLY A boolean value that defaults toFalse . WhenTrue , the history
file will be rotated monthly, in addition to the rotations that occur due to the definition of
MAX_HISTORY_LOGthat rotate due to size.

STATISTICS_TO_PUBLISH A comma and/or space separated list that identifies which daemons
are to publish Statistics attributes in their ClassAds, as well as a level of verbosity to identify
which attributes to include and which to omit from the ClassAd. The syntax defines the two
aspects by separating them with a colon; the first aspect defines which daemon is to publish
the statistics, and the second aspect defines the verbosity.This first aspect may beSCHEDDor
SCHEDULERto publish Statistics attributes in the ClassAd of thecondor_schedd. Or, it may
beDCor DAEMONCOREto publish DaemonCore statistics. After the colon may be thevalue
0, 1, 2, or 3. A value of0 turns off the publishing of any Statistics attributes. A value of1
is the default level, where some Statistics attributes are published and others are omitted. A
value of2 is the verbose level, where all Statistics attributes are published. A value of3 is
the super verbose level, which is currently unused, but intended to be all Statistics attributes
published at the verbose level plus extra information. As anexample, to cause a verbose
setting of the publication of Statistics attributes for thecondor_schedd:

STATISTICS_TO_PUBLISH = SCHEDD:2

STATISTICS_WINDOW_SECONDSThe amount of time given in seconds defining the interval of
time over whichcondor_schedddaemon Statistics attributes are quantized. Defaults to 1200
seconds, which is 20 minutes.

3.3.12 condor_shadow Configuration File Entries

These settings affect thecondor_shadow.

SHADOW_LOCK This macro specifies the lock file to be used for access to theShadowLog file.
It must be a separate file from theShadowLog , since theShadowLog may be rotated and
you want to synchronize access across log file rotations. This macro is defined relative to the
$(LOCK) macro.

SHADOW_DEBUG This macro (and other settings related to debug logging in the shadow) is de-
scribed in section 3.3.4 as<SUBSYS>_DEBUG.

SHADOW_QUEUE_UPDATE_INTERVALThe amount of time (in seconds) between ClassAd up-
dates that thecondor_shadowdaemon sends to thecondor_schedddaemon. Defaults to 900
(15 minutes).

Condor Version 7.7.6 Manual

3.3. Configuration 228

SHADOW_LAZY_QUEUE_UPDATE This boolean macro specifies if thecondor_shadowshould
immediately update the job queue for certain attributes (atthis time, it only effects the
NumJobStarts and NumJobReconnects counters) or if it should wait and only up-
date the job queue on the next periodic update. There is a trade-off between performance and
the semantics of these attributes, which is why the behavioris controlled by a configuration
macro. If thecondor_shadowdo not use a lazy update, and immediately ensures the changes
to the job attributes are written to the job queue on disk, thesemantics for the attributes are
very solid (there’s only a tiny chance that the counters willbe out of sync with reality), but this
introduces a potentially large performance and scalability problem for a busycondor_schedd.
If the condor_shadowuses a lazy update, there’s no additional cost to thecondor_schedd, but
it means thatcondor_qand Quill won’t immediately see the changes to the job attributes, and
if the condor_shadowhappens to crash or be killed during that time, the attributes are never
incremented. Given that the most obvious usage of these counter attributes is for the periodic
user policy expressions (which are evaluated directly by the condor_shadowusing its own
copy of the job’s classified ad, which is immediately updatedin either case), and since the
additional cost for aggressive updates to a busycondor_scheddcould potentially cause major
problems, the default isTrue to do lazy, periodic updates.

SHADOW_WORKLIFE The integer number of seconds after which thecondor_shadowwill exit
when the current job finishes, instead of fetching a new job tomanage. Having thecon-
dor_shadowcontinue managing jobs helps reduce overhead and can allow thecondor_schedd
to achieve higher job completion rates. The default is 3600,one hour. The value 0 causes
condor_shadowto exit after running a single job.

COMPRESS_PERIODIC_CKPT A boolean value that whenTrue , directs thecondor_shadowto
instruct applications to compress periodic checkpoints when possible. The default isFalse .

COMPRESS_VACATE_CKPT A boolean value that whenTrue , directs thecondor_shadowto
instruct applications to compress vacate checkpoints whenpossible. The default isFalse .

PERIODIC_MEMORY_SYNC This boolean value specifies whether thecondor_shadowshould in-
struct applications to commit dirty memory pages to swap space during a periodic checkpoint.
The default isFalse . This potentially reduces the number of dirty memory pages at vacate
time, thereby reducing swapping activity on the remote machine.

SLOW_CKPT_SPEED This macro specifies the speed at which vacate checkpoints should be writ-
ten, in kilobytes per second. If zero (the default), vacate checkpoints are written as fast as
possible. Writing vacate checkpoints slowly can avoid overwhelming the remote machine
with swapping activity.

SHADOW_JOB_CLEANUP_RETRY_DELAYThis integer specifies the number of seconds to wait
between tries to commit the final update to the job ClassAd in thecondor_schedd’s job queue.
The default is 30.

SHADOW_MAX_JOB_CLEANUP_RETRIESThis integer specifies the number of times to try com-
mitting the final update to the job ClassAd in thecondor_schedd’s job queue. The default is
5.

Condor Version 7.7.6 Manual

3.3. Configuration 229

SHADOW_CHECKPROXY_INTERVALThe number of seconds between tests to see
if the job proxy has been updated or should be refreshed. The default is
600 seconds (10 minutes). This variable’s value should be small in compar-
ison to the refresh interval required to keep delegated credentials from expir-
ing (configured via DELEGATE_JOB_GSI_CREDENTIALS_REFRESH and
DELEGATE_JOB_GSI_CREDENTIALS_LIFETIME). If this variable’s value is too
small, proxy updates could happen very frequently, potentially creating a lot of load on the
submit machine.

SHADOW_RUN_UNKNOWN_USER_JOBSA boolean that defaults toFalse . WhenTrue , it al-
lows thecondor_shadowdaemon to run jobs as usernobody when remotely submitted and
from users not in the local password file.

3.3.13 condor_starter Configuration File Entries

These settings affect thecondor_starter.

EXEC_TRANSFER_ATTEMPTS Sometimes due to a router misconfiguration, kernel bug, or other
network problem, the transfer of the initial checkpoint from the submit machine to the execute
machine will fail midway through. This parameter allows a retry of the transfer a certain
number of times that must be equal to or greater than 1. If thisparameter is not specified, or
specified incorrectly, then it will default to three. If the transfer of the initial executable fails
every attempt, then the job goes back into the idle state until the next renegotiation cycle.

NOTE: : This parameter does not exist in the NT starter.

JOB_RENICE_INCREMENT When thecondor_starterspawns a Condor job, it can do so with a
nice-level. A nice-level is a Unix mechanism that allows users to assigntheir own processes a
lower priority, such that these processes do not interfere with interactive use of the machine.
For machines with lots of real memory and swap space, such that the only scarce resource is
CPU time, use this macro in conjunction with a policy that allows Condor to always start jobs
on the machines. Condor jobs would always run, but interactive response on the machines
would never suffer. A user most likely will not notice Condoris running jobs. See section 3.5
on Startd Policy Configuration for more details on setting upa policy for starting and stopping
jobs on a given machine.

The ClassAd expression is evaluated in the context of the jobad to an integer value, which
is set by thecondor_starterdaemon for each job just before the job runs. The range of
allowable values are integers in the range of 0 to 19 (inclusive), with a value of 19 being the
lowest priority. If the integer value is outside this range,then on a Unix machine, a value
greater than 19 is auto-decreased to 19; a value less than 0 istreated as 0. For values outside
this range, a Windows machine ignores the value and uses the default instead. The default
value is 10, which maps to the idle priority class on a Windowsmachine.

STARTER_LOCAL_LOGGING This macro determines whether the starter should do local logging
to its own log file, or send debug information back to thecondor_shadowwhere it will end up
in the ShadowLog. It defaults toTrue .

Condor Version 7.7.6 Manual

3.3. Configuration 230

STARTER_DEBUG This setting (and other settings related to debug logging inthe starter) is de-
scribed above in section 3.3.4 as$(<SUBSYS>_DEBUG).

STARTER_UPDATE_INTERVAL An integer value representing the number of seconds between
ClassAd updates that thecondor_starterdaemon sends to thecondor_shadowand con-
dor_startddaemons. Defaults to 300 (5 minutes).

STARTER_UPDATE_INTERVAL_TIMESLICEA floating point value, specifying the highest
fraction of time that thecondor_starterdaemon should spend collecting monitoring infor-
mation about the job, such as disk usage. The default value is0.1. If monitoring, such as
checking disk usage takes a long time, thecondor_starterwill monitor less frequently than
specified bySTARTER_UPDATE_INTERVAL.

USER_JOB_WRAPPER The full path to an executable or script. This macro allows anadministra-
tor to specify a wrapper script to handle the execution of alluser jobs. If specified, Condor
never directly executes a job, but instead invokes the program specified by this macro. The
command-line arguments passed to this program will includethe full-path to the actual user
job which should be executed, followed by all the command-line parameters to pass to the
user job. This wrapper program must ultimately replace its image with the user job; in other
words, it mustexec() the user job, notfork() it.

For Bourne type shells (sh, bash, ksh), the last line should be:

exec "$@"

For the C type shells (csh, tcsh), the last line should be:

exec $*:q

These precise syntaxes are needed to correctly handle program arguments which contain
whitespace.

For Windows machines, the wrapper will either be a batch script (with a file extension of
.bat or .cmd) or an executable (with a file extension of.exe or .com).

If the wrapper encounters an error, and is unable to run the user job, it is important that the
wrapper indicate this to the Condor system so that Condor does not assign the exit code of
the wrapper to the user. To do this, the wrapper should write auseful error message to the
file named in the environment variable_CONDOR_WRAPPER_ERROR_FILE, and exit with
a non-zero value. If this file is created by the wrapper, Condor assumes that the wrapper has
failed, and will mark the job as idle in the queue, and try to re-run it. The starter will also
copy the contents of this file to the starter log, so the administrator can debug the problem.

When a wrapper is in use, the executable of a job submission may be kept relative and resolved
by the user’s path by setting:

+PreserveRelativeExecutable = True

in the job submission file. If this is set, then the executabledoes not need to be fully qualified,
for example

Condor Version 7.7.6 Manual

3.3. Configuration 231

Let this executable be resolved by user's path in the wrappe r
cmd = sleep

As opposed to

A typical fully-qualified executable path
cmd = /bin/sleep

USE_VISIBLE_DESKTOP This setting is only meaningful on Windows machines. If True, Con-
dor will allow the job to create windows on the desktop of the execute machine and interact
with the job. This is particularly useful for debugging why an application will not run under
Condor. If False, Condor uses the default behavior of creating a new, non-visible desktop to
run the job on. See section 6.2 for details on how Condor interacts with the desktop.

STARTER_JOB_ENVIRONMENT This macro sets the default environment inherited by jobs. The
syntax is the same as the syntax for environment settings in the job submit file (see page 877).
If the same environment variable is assigned by this macro and by the user in the submit file,
the user’s setting takes precedence.

JOB_INHERITS_STARTER_ENVIRONMENTA boolean value that defaults toFalse . When
True , it causes jobs to inherit all environment variables from thecondor_starter. This is use-
ful for glidein jobs that need to access environment variables from the batch system running
the glidein daemons. When the user job and/orSTARTER_JOB_ENVIRONMENTdefine an
environment variable that is in thecondor_starter’s environment, the setting from thecon-
dor_starter’s environment is overridden. This variable does not apply to standard universe
jobs.

NAMED_CHROOT A comma and/or space separated list of full paths to one or more directories,
under which thecondor_startermay run a chroot-ed job. This allows Condor to invoke
chroot() before launching a job, if the job requests such by defining the job ClassAd at-
tributeRequestedChroot with a directory that matches one in this list. There is no default
value for this variable.

STARTER_UPLOAD_TIMEOUT An integer value that specifies the network communication time-
out to use when transferring files back to the submit machine.The default value is set by the
condor_shadowdaemon to 300. Increase this value if the disk on the submit machine cannot
keep up with large bursts of activity, such as many jobs all completing at the same time.

ENFORCE_CPU_AFFINITY A boolean value that defaults toFalse . WhenFalse , the affinity
of jobs and their descendants to a CPU is not enforced. WhenTrue , Condor jobs and their
descendants maintain their affinity to a CPU. WhenTrue , more fine grained affinities may
be specified withSLOT<N>_CPU_AFFINITY.

SLOT<N>_CPU_AFFINITY A comma separated list of cores to which a Condor job running on a
specific slot given by the value of<N> show affinity. Note that slots are numbered beginning
with the value 1, while CPU cores are numbered beginning withthe value 0. This affinity list
only takes effect ifENFORCE_CPU_AFFINITY = True.

Condor Version 7.7.6 Manual

3.3. Configuration 232

ENABLE_URL_TRANSFERS A boolean value that whenTrue causes thecondor_starterfor a
job to invoke all plug-ins defined byFILETRANSFER_PLUGINSto determine their capa-
bilities for handling protocols to be used in file transfer specified with a URL. WhenFalse ,
a URL transfer specified in a job’s submit description file will cause an error issued bycon-
dor_submit. The default value isTrue .

FILETRANSFER_PLUGINS A comma separated list of full and absolute path and executable
names for plug-ins that will accomplish the task of doing filetransfer when a job requests
the transfer of an input file by specifying a URL. See section 3.12.2 for a description of the
functionality required of a plug-in.

ENABLE_CHIRP A boolean value that defaults toTrue . An administrator would set the value to
False to disable Chirp remote file access from execute machines.

USE_PSS A boolean value, that whenTrue causes thecondor_starterto measure the PSS (Pro-
portional Set Size) of each Condor job. The default value isTrue . When running many short
lived jobs, performance problems in thecondor_procdhave been observed, and a setting of
False may relieve these problems.

MEMORY_USAGE_METRIC A ClassAd expression that produces an initial value for the job
ClassAd attributeMemoryUsage in jobs that arenotstandard universe andnotvm universe.

MEMORY_USAGE_METRIC_VM A ClassAd expression that produces an initial value for the job
ClassAd attributeMemoryUsage in vm universe jobs.

3.3.14 condor_submit Configuration File Entries

DEFAULT_UNIVERSE The universe under which a job is executed may be specified in the submit
description file. If it is not specified in the submit description file, then this variable specifies
the universe (when defined). If the universe is not specified in the submit description file, and
if this variable is not defined, then the default universe fora job will be the vanilla universe.

JOB_DEFAULT_REQUESTMEMORYThe amount of memory in Mbytes to acquire for a job, if the
job does not specify how much it needs using therequest_memorysubmit command. If this
variable is not defined, then the default is defined by the expression

ifThenElse(MemoryUsage =!= UNDEFINED,MemoryUsage,1)

If you wantcondor_submitto automatically append an expression to theRequirements ex-
pression orRank expression of jobs at your site use the following macros:

APPEND_REQ_VANILLA Expression to be appended to vanilla job requirements.

APPEND_REQ_STANDARD Expression to be appended to standard job requirements.

APPEND_REQUIREMENTS Expression to be appended to any type of universe jobs. How-
ever, if APPEND_REQ_VANILLAor APPEND_REQ_STANDARDis defined, then ignore the
APPEND_REQUIREMENTSfor those universes.

Condor Version 7.7.6 Manual

3.3. Configuration 233

APPEND_RANK Expression to be appended to job rank.APPEND_RANK_STANDARDor
APPEND_RANK_VANILLAwill override this setting if defined.

APPEND_RANK_STANDARD Expression to be appended to standard job rank.

APPEND_RANK_VANILLA Expression to append to vanilla job rank.

NOTE: The APPEND_RANK_STANDARDand APPEND_RANK_VANILLA macros were
calledAPPEND_PREF_STANDARDandAPPEND_PREF_VANILLAin previous versions of Con-
dor.

In addition, you may provide defaultRank expressions if your users do not specify their own
with:

DEFAULT_RANK Default rank expression for any job that does not specify itsown rank expression
in the submit description file. There is no default value, such that when undefined, the value
used will be 0.0.

DEFAULT_RANK_VANILLA Default rank for vanilla universe jobs. There is no default value,
such that when undefined, the value used will be 0.0. When bothDEFAULT_RANKand
DEFAULT_RANK_VANILLAare defined, the value forDEFAULT_RANK_VANILLAis used
for vanilla universe jobs.

DEFAULT_RANK_STANDARD Default rank for standard universe jobs. There is no defaultvalue,
such that when undefined, the value used will be 0.0. When bothDEFAULT_RANKand
DEFAULT_RANK_STANDARDare defined, the value forDEFAULT_RANK_STANDARDis
used for standard universe jobs.

DEFAULT_IO_BUFFER_SIZE Condor keeps a buffer of recently-used data for each file an ap-
plication opens. This macro specifies the default maximum number of bytes to be buffered for
each open file at the executing machine. Thecondor_statusbuffer_size command will
override this default. If this macro is undefined, a default size of 512 KB will be used.

DEFAULT_IO_BUFFER_BLOCK_SIZEWhen buffering is enabled, Condor will attempt to con-
solidate small read and write operations into large blocks.This macro specifies the default
block size Condor will use. Thecondor_statusbuffer_block_size command will over-
ride this default. If this macro is undefined, a default size of 32 KB will be used.

SUBMIT_SKIP_FILECHECKS If True , condor_submitbehaves as if the-disable command-
line option is used. This tellscondor_submitto disable file permission checks when submit-
ting a job for read permissions on all input files, such as those defined by commandsinput
andtransfer_input_files, as well as write permission to output files, such as a log file defined
by log and output files defined withoutput or transfer_output_files. This can significantly
decrease the amount of time required to submit a large group of jobs. The default value is
False .

WARN_ON_UNUSED_SUBMIT_FILE_MACROSA boolean variable that defaults toTrue . When
True , condor_submitperforms checks on the job’s submit description file contents for com-
mands that define a macro, but do not use the macro within the file. A warning is issued, but

Condor Version 7.7.6 Manual

3.3. Configuration 234

job submission continues. A definition of a new macro occurs when the lhs of a command
is not a known submit command. This check may help spot spelling errors of known submit
commands.

SUBMIT_SEND_RESCHEDULE A boolean expression that when False, preventscondor_submit
from automatically sending acondor_reschedulecommand as it completes. Thecon-
dor_reschedulecommand causes thecondor_schedddaemon to start searching for machines
with which to match the submitted jobs. When True, this step always occurs. In the case that
the machine where the job(s) are submitted is managing a hugenumber of jobs (thousands or
tens of thousands), this step would hurt performance in sucha way that it became an obstacle
to scalability. The default value is True.

SUBMIT_EXPRS A comma-separated list of ClassAd attributes to be insertedinto all the job
ClassAds thatcondor_submitcreates. This is equivalent to the"+" syntax in a submit de-
scription file. Attributes defined in the submit descriptionfile with "+" will override attributes
defined in the configuration file withSUBMIT_EXPRS. Note that adding an attribute to a job’s
ClassAd willnot function as a method for specifying default values of submitdescription file
commands forgotten in a job’s submit description file. The command in the submit descrip-
tion file results in actions bycondor_submit, while the use ofSUBMIT_EXPRSadds a job
ClassAd attribute at a later point in time.

LOG_ON_NFS_IS_ERROR A boolean value that controls whethercondor_submitprohibits job
submit files with user log files on NFS. IfLOG_ON_NFS_IS_ERRORis set toTrue , such
submit files will be rejected. IfLOG_ON_NFS_IS_ERRORis set toFalse , the job will be
submitted. If not defined,LOG_ON_NFS_IS_ERRORdefaults toFalse .

SUBMIT_MAX_PROCS_IN_CLUSTERAn integer value that limits the maximum number of jobs
that would be assigned within a single cluster. Job submissions that would exceed the defined
value fail, issuing an error message, and with no jobs submitted. The default value is 0, which
does not limit the number of jobs assigned a single cluster number.

3.3.15 condor_preen Configuration File Entries

These macros affectcondor_preen.

PREEN_ADMIN This macro sets the e-mail address wherecondor_preenwill send e-mail (if it is
configured to send email at all; see the entry forPREEN). Defaults to$(CONDOR_ADMIN).

VALID_SPOOL_FILES This macro contains a (comma or space separated) list of filesthatcon-
dor_preenconsiders valid files to find in the$(SPOOL) directory. There is no default
value. condor_preenwill add to the list files and directories that are normally present in
the$(SPOOL) directory.

INVALID_LOG_FILES This macro contains a (comma or space separated) list of filesthatcon-
dor_preenconsiders invalid files to find in the$(LOG) directory. There is no default value.

Condor Version 7.7.6 Manual

3.3. Configuration 235

3.3.16 condor_collector Configuration File Entries

These macros affect thecondor_collector.

CLASSAD_LIFETIME This macro determines the default maximum age for ClassAds collected
by thecondor_collector. ClassAd older than the maximum age are discarded by thecon-
dor_collectoras stale.

If present, the ClassAd attribute “ClassAdLifetime” specifies the ad’s lifetime in seconds.
If “ClassAdLifetime” is not present in the ad, thecondor_collectorwill use the value of
$(CLASSAD_LIFETIME) . The macro is defined in terms of seconds, and defaults to 900
(15 minutes).

MASTER_CHECK_INTERVAL This macro defines how often the collector should check for ma-
chines that have ClassAds from some daemons, but not from thecondor_master(orphaned
daemons) and send e-mail about it. It is defined in seconds and defaults to 10800 (3 hours).

COLLECTOR_REQUIREMENTS A boolean expression that filters out unwanted ClassAd updates.
The expression is evaluated for ClassAd updates that have passed through enabled security
authorization checks. The default behavior when this expression is not defined is to allow all
ClassAd updates to take place. IfFalse , a ClassAd update will be rejected.

Stronger security mechanisms are the better way to authorize or deny updates to thecon-
dor_collector. This configuration variable exists to help those that use host-based security,
and do not trust all processes that run on the hosts in the pool. This configuration variable may
be used to throw out ClassAds that should not be allowed. For example, forcondor_startd
daemons that run on a fixed port, configure this expression to ensure that only machine Class-
Ads advertising the expected fixed port are accepted. As a convenience, before evaluating the
expression, some basic sanity checks are performed on the ClassAd to ensure that all of the
ClassAd attributes used by Condor to contain IP:port information are consistent. To validate
this information, the attribute to check isTARGET.MyAddress .

CLIENT_TIMEOUT Network timeout that thecondor_collectoruses when talking to any daemons
or tools that are sending it a ClassAd update. It is defined in seconds and defaults to 30.

QUERY_TIMEOUT Network timeout when talking to anyone doing a query. It is defined in seconds
and defaults to 60.

CONDOR_DEVELOPERS By default, Condor will send e-mail once per week to this address with
the output of thecondor_statuscommand, which lists how many machines are in the pool
and how many are running jobs. The default value of condor-admin@cs.wisc.edu will send
this report to the Condor Team developers at the University of Wisconsin-Madison. The
Condor Team uses these weekly status messages in order to have some idea as to how many
Condor pools exist in the world. We appreciate getting the reports, as this is one way we can
convince funding agencies that Condor is being used in the real world. If you do not wish this
information to be sent to the Condor Team, explicitly set thevalue toNONEto disable this
feature, or replace the address with a desired location. If undefined (commented out) in the
configuration file, Condor follows its default behavior.

Condor Version 7.7.6 Manual

mailto:condor-admin@cs.wisc.edu

3.3. Configuration 236

COLLECTOR_NAME This macro is used to specify a short description of your pool. It should be
about 20 characters long. For example, the name of the UW-Madison Computer Science Con-
dor Pool is"UW-Madison CS" . While this macro might seem similar toMASTER_NAME
or SCHEDD_NAME, it is unrelated. Those settings are used to uniquely identify (and locate)
a specific set of Condor daemons, if there are more than one running on the same machine.
TheCOLLECTOR_NAMEsetting is just used as a human-readable string to describe the pool,
which is included in the updates set to theCONDOR_DEVELOPERS_COLLECTOR(see be-
low).

CONDOR_DEVELOPERS_COLLECTORBy default, every pool sends periodic updates to a central
condor_collectorat UW-Madison with basic information about the status of thepool. Updates
include only the number of total machines, the number of jobssubmitted, the number of ma-
chines running jobs, the host name of the central manager, and the$(COLLECTOR_NAME).
These updates help the Condor Team see how Condor is being used around the world. By de-
fault, they will be sent tocondor.cs.wisc.edu . To discontinue sending updates, explic-
itly set this macro toNONE. If undefined or commented out in the configuration file, Condor
follows its default behavior.

COLLECTOR_UPDATE_INTERVALThis variable is defined in seconds and defaults to 900 (ev-
ery 15 minutes). It controls the frequency of the periodic updates sent to a centralcon-
dor_collectorat UW-Madison as defined byCONDOR_DEVELOPERS_COLLECTOR.

COLLECTOR_SOCKET_BUFSIZE This specifies the buffer size, in bytes, reserved forcon-
dor_collectornetwork UDP sockets. The default is 10240000, or a ten megabyte buffer.
This is a healthy size, even for a large pool. The larger this value, the less likely thecon-
dor_collectorwill have stale information about the pool due to dropping update packets. If
your pool is small or your central manager has very little RAM, considering setting this pa-
rameter to a lower value (perhaps 256000 or 128000).

NOTE: For some Linux distributions, it may be necessary to raise the OS’s system-
wide limit for network buffer sizes. The parameter that controls this limit is
/proc/sys/net/core/rmem_max. You can see the values that thecondor_collectoractually uses
by enabling D_FULLDEBUG for the collector and looking at thelog line that looks like this:

Reset OS socket buffer size to 2048k (UDP), 255k (TCP).

For changes to this parameter to take effect,condor_collectormust be restarted.

COLLECTOR_TCP_SOCKET_BUFSIZEThis specifies the TCP buffer size, in bytes, reserved for
condor_collectornetwork sockets. The default is 131072, or a 128 kilobyte buffer. This is a
healthy size, even for a large pool. The larger this value, the less likely thecondor_collector
will have stale information about the pool due to dropping update packets. If your pool is
small or your central manager has very little RAM, considering setting this parameter to a
lower value (perhaps 65536 or 32768).

NOTE: See the note forCOLLECTOR_SOCKET_BUFSIZE.

KEEP_POOL_HISTORY This boolean macro is used to decide if the collector will write out sta-
tistical information about the pool to history files. The default isFalse . The location, size,
and frequency of history logging is controlled by the other macros.

Condor Version 7.7.6 Manual

3.3. Configuration 237

POOL_HISTORY_DIR This macro sets the name of the directory where the history files reside (if
history logging is enabled). The default is theSPOOLdirectory.

POOL_HISTORY_MAX_STORAGE This macro sets the maximum combined size of the history
files. When the size of the history files is close to this limit,the oldest information will be
discarded. Thus, the larger this parameter’s value is, the larger the time range for which history
will be available. The default value is 10000000 (10 Mbytes).

POOL_HISTORY_SAMPLING_INTERVALThis macro sets the interval, in seconds, between
samples for history logging purposes. When a sample is taken, the collector goes through
the information it holds, and summarizes it. The information is written to the history file once
for each 4 samples. The default (and recommended) value is 60seconds. Setting this macro’s
value too low will increase the load on the collector, while setting it to high will produce less
precise statistical information.

COLLECTOR_DAEMON_STATS A boolean value that controls whether or not thecon-
dor_collector daemon keeps update statistics on incoming updates. The default value
is True . If enabled, thecondor_collectorwill insert several attributes into the Class-
Ads that it stores and sends. ClassAds without theUpdateSequenceNumber and
DaemonStartTime attributes will not be counted, and will not have attributesinserted
(all modern Condor daemons which publish ClassAds publish these attributes).

The attributes inserted areUpdatesTotal , UpdatesSequenced , andUpdatesLost .
UpdatesTotal is the total number of updates (of this ClassAd type) thecondor_collector
has received from this host.UpdatesSequenced is the number of updates that thecon-
dor_collectorcould have as lost. In particular, for the first update from a daemon, it is im-
possible to tell if any previous ones have been lost or not.UpdatesLost is the number of
updates that thecondor_collectorhas detected as being lost. See page 996 for more informa-
tion on the added attributes.

COLLECTOR_STATS_SWEEP This value specifies the number of seconds between sweeps of the
condor_collector’s per-daemon update statistics. Records for daemons whichhave not re-
ported in this amount of time are purged in order to save memory. The default is two days. It
is unlikely that you would ever need to adjust this.

COLLECTOR_DAEMON_HISTORY_SIZEThis variable controls the size of the published update
history that thecondor_collectorinserts into the ClassAds it stores and sends. The default
value is 128, which means that history is stored and published for the latest 128 updates. This
variable’s value is ignored, ifCOLLECTOR_DAEMON_STATSis not enabled.

If the value is a non-zero one, thecondor_collectorwill insert attributeUpdatesHistory
into the ClassAd (similar toUpdatesTotal). AttrUpdatesHistory is a hexadecimal string
which represents a bitmap of the lastCOLLECTOR_DAEMON_HISTORY_SIZEupdates.
The most significant bit (MSB) of the bitmap represents the most recent update, and the least
significant bit (LSB) represents the least recent. A value ofzero means that the update was
not lost, and a value of 1 indicates that the update was detected as lost.

For example, if the last update was not lost, the previous waslost, and the previous two not,
the bitmap would be 0100, and the matching hex digit would be"4" . Note that the MSB
can never be marked as lost because its loss can only be detected by a non-lost update (a gap

Condor Version 7.7.6 Manual

3.3. Configuration 238

is found in the sequence numbers). Thus,UpdatesHistory = "0x40" would be the
history for the last 8 updates. If the next updates are all successful, the values published, after
each update, would be: 0x20, 0x10, 0x08, 0x04, 0x02, 0x01, 0x00.

See page 996 for more information on the added attribute.

COLLECTOR_CLASS_HISTORY_SIZEThis variable controls the size of the published update
history that thecondor_collectorinserts into thecondor_collectorClassAds it produces. The
default value is zero.

If this variable has a non-zero value, thecondor_collector will insert
UpdatesClassHistory into the condor_collector ClassAd (similar to
UpdatesHistory). These are added per class of ClassAd, however. The classesre-
fer to the type of ClassAds. Additionally, there is a Total class created, which represents the
history of all ClassAds that thiscondor_collectorreceives.

Note that thecondor_collectoralways publishes Lost, Total and Sequenced counts for all
ClassAd classes. This is similar to the statistics gatheredif COLLECTOR_DAEMON_STATS
is enabled.

COLLECTOR_QUERY_WORKERS This variable sets the maximum number of worker processes
that the condor_collectorcan have. When receiving a query request, the Unixcon-
dor_collectorwill fork() a new process to handle the query, freeing the main process to
handle other requests. When the number of outstanding worker processes reaches this maxi-
mum, the request is handled by the main process. This variable is ignored on Windows, and
its default value is zero. The default configuration, however, has a value of 2.

COLLECTOR_DEBUG This macro (and other macros related to debug logging in thecon-
dor_collectoris described in section 3.3.4 as<SUBSYS>_DEBUG.

CONDOR_VIEW_CLASSAD_TYPESProvides the ClassAd types that will be forwarded to the
CONDOR_VIEW_HOST. The ClassAd types can be found withcondor_status-any. The de-
fault forwarding behavior of thecondor_collectoris equivalent to

CONDOR_VIEW_CLASSAD_TYPES=Machine,Submitter

There is no default value for this variable.

3.3.17 condor_negotiator Configuration File Entries

These macros affect thecondor_negotiator.

NEGOTIATOR_INTERVAL Sets how often thecondor_negotiatorstarts a negotiation cycle. It is
defined in seconds and defaults to 60 (1 minute).

NEGOTIATOR_CYCLE_DELAY An integer value that represents the minimum number of sec-
onds that must pass before a new negotiation cycle may start.The default value is 20.
NEGOTIATOR_CYCLE_DELAYis intended only for use by Condor experts.

Condor Version 7.7.6 Manual

3.3. Configuration 239

NEGOTIATOR_TIMEOUT Sets the timeout that the negotiator uses on its network connections to
thecondor_scheddandcondor_startds. It is defined in seconds and defaults to 30.

NEGOTIATION_CYCLE_STATS_LENGTHSpecifies how many recent negotiation cycles should
be included in the history that is published in thecondor_negotiator’s ad. The default is 3
and the maximum allowed value is 100. Setting this value to 0 disables publication of ne-
gotiation cycle statistics. The statistics about recent cycles are stored in several attributes
per cycle. Each of these attribute names will have a number appended to it to indicate
how long ago the cycle happened, for example:LastNegotiationCycleDuration0 ,
LastNegotiationCycleDuration1 , LastNegotiationCycleDuration2 ,
The attribute numbered 0 applies to the most recent negotiation cycle. The attribute numbered
1 applies to the next most recent negotiation cycle, and so on. See page 989 for a list of
attributes that are published.

PRIORITY_HALFLIFE This macro defines the half-life of the user priorities. See section 2.7.2
on User Priorities for details. It is defined in seconds and defaults to 86400 (1 day).

DEFAULT_PRIO_FACTOR This macro sets the priority factor for local users. See section 2.7.2
on User Priorities for details. Defaults to 1.

NICE_USER_PRIO_FACTOR This macro sets the priority factor for nice users. See section 2.7.2
on User Priorities for details. Defaults to 10000000.

REMOTE_PRIO_FACTOR This macro defines the priority factor for remote users (users who who
do not belong to the accountant’s local domain - see below). See section 2.7.2 on User Priori-
ties for details. Defaults to 10000.

ACCOUNTANT_LOCAL_DOMAIN This macro is used to decide if a user is local or remote. A
user is considered to be in the local domain if the UID_DOMAINmatches the value of this
macro. Usually, this macro is set to the local UID_DOMAIN. Ifit is not defined, all users are
considered local.

MAX_ACCOUNTANT_DATABASE_SIZEThis macro defines the maximum size (in bytes) that the
accountant database log file can reach before it is truncated(which re-writes the file in a
more compact format). If, after truncating, the file is larger than one half the maximum size
specified with this macro, the maximum size will be automatically expanded. The default is 1
megabyte (1000000).

NEGOTIATOR_DISCOUNT_SUSPENDED_RESOURCESThis macro tells the negotiator to not
count resources that are suspended when calculating the number of resources a user is using.
Defaults to false, that is, a user is still charged for a resource even when that resource has
suspended the job.

NEGOTIATOR_SOCKET_CACHE_SIZEThis macro defines the maximum number of sockets
that thecondor_negotiatorkeeps in its open socket cache. Caching open sockets makes the
negotiation protocol more efficient by eliminating the needfor socket connection establish-
ment for each negotiation cycle. The default is currently 16. To be effective, this parameter
should be set to a value greater than the number ofcondor_schedds submitting jobs to the
negotiator at any time. If you lower this number, you must runcondor_restartand not just
condor_reconfigfor the change to take effect.

Condor Version 7.7.6 Manual

3.3. Configuration 240

NEGOTIATOR_INFORM_STARTDBoolean setting that controls if thecondor_negotiatorshould
inform the condor_startdwhen it has been matched with a job. The default isTrue .
When this is set toFalse , the condor_startdwill never enter the Matched state, and will
go directly from Unclaimed to Claimed. Because this notification is done via UDP, if a
pool is configured so that the execute hosts do not create UDP command sockets (see the
WANT_UDP_COMMAND_SOCKETsetting described in section 3.3.3 on page 175 for details),
thecondor_negotiatorshould be configured not to attempt to contact thesecondor_startdsby
configuring this setting toFalse .

NEGOTIATOR_PRE_JOB_RANK Resources that match a request are first sorted by this expres-
sion. If there are any ties in the rank of the top choice, the top resources are sorted by the
user-supplied rank in the job ClassAd, then byNEGOTIATOR_POST_JOB_RANK, then by
PREEMPTION_RANK(if the match would cause preemption and there are still any ties in the
top choice). MYrefers to attributes of the machine ClassAd andTARGETrefers to the job
ClassAd. The purpose of the pre job rank is to allow the pool administrator to override any
other rankings, in order to optimize overall throughput. For example, it is commonly used to
minimize preemption, even if the job rank prefers a machine that is busy. If undefined, this
expression has no effect on the ranking of matches. The standard configuration file shipped
with Condor specifies an expression to steer jobs away from busy resources:

NEGOTIATOR_PRE_JOB_RANK = RemoteOwner =?= UNDEFINED

NEGOTIATOR_POST_JOB_RANKResources that match a request are first sorted by
NEGOTIATOR_PRE_JOB_RANK. If there are any ties in the rank of the top choice,
the top resources are sorted by the user-supplied rank in thejob ClassAd, then by
NEGOTIATOR_POST_JOB_RANK, then byPREEMPTION_RANK(if the match would cause
preemption and there are still any ties in the top choice).MY. refers to attributes of the ma-
chine ClassAd andTARGET. refers to the job ClassAd. The purpose of the post job rank is
to allow the pool administrator to choose between machines that the job ranks equally. The
default value is undefined, which causes this rank to have no effect on the ranking of matches.
The following example expression steers jobs toward fastermachines and tends to fill a cluster
of multi-processors by spreading across all machines before filling up individual machines. In
this example, the expression is chosen to have no effect whenpreemption would take place,
allowing control to pass on toPREEMPTION_RANK.

UWCS_NEGOTIATOR_POST_JOB_RANK = \
(RemoteOwner =?= UNDEFINED) * (KFlops - SlotID)

PREEMPTION_REQUIREMENTSWhen considering user priorities, the negotiator will not pre-
empt a job running on a given machine unless thePREEMPTION_REQUIREMENTSex-
pression evaluates toTrue and the owner of the idle job has a better priority than the
owner of the running job. ThePREEMPTION_REQUIREMENTSexpression is evaluated
within the context of the candidate machine ClassAd and the candidate idle job ClassAd;
thus theMY scope prefix refers to the machine ClassAd, and theTARGETscope pre-
fix refers to the ClassAd of the idle (candidate) job. There isno direct access to the

Condor Version 7.7.6 Manual

3.3. Configuration 241

currently running job, but attributes of the currently running job that need to be ac-
cessed inPREEMPTION_REQUIREMENTScan be placed in the machine ClassAd using
STARTD_JOB_EXPRS. If not explicitly set in the Condor configuration file, the default
value for this expression isTrue . PREEMPTION_REQUIREMENTSshould include the term
(SubmitterGroup =?= RemoteGroup) if a preemption policy that respectsgroup
quotasis desired. Note that this setting does not influence other potential causes of preemp-
tion, such as startdRANK, orPREEMPTexpressions. See section 3.5.9 for a general discussion
of limiting preemption.

PREEMPTION_REQUIREMENTS_STABLEA boolean value that defaults toTrue , implying that
all attributes utilized to define thePREEMPTION_REQUIREMENTSvariable will not change
within a negotiation period time interval. If utilized attributes will change during the negotia-
tion period time interval, then set this variable toFalse .

PREEMPTION_RANK Resources that match a request are first sorted by
NEGOTIATOR_PRE_JOB_RANK. If there are any ties in the rank of the top choice,
the top resources are sorted by the user-supplied rank in thejob ClassAd, then by
NEGOTIATOR_POST_JOB_RANK, then by PREEMPTION_RANK(if the match would
cause preemption and there are still any ties in the top choice). MYrefers to attributes of the
machine ClassAd andTARGETrefers to the job ClassAd. This expression is used to rank
machines that the job and the other negotiation expressionsrank the same. For example, if
the job has no preference, it is usually preferable to preempt a job with a smallImageSize
instead of a job with a largeImageSize . The default is to rank all preemptable matches the
same. However, the negotiator will always prefer to match the job with an idle machine over
a preemptable machine, if none of the other ranks express a preference between them.

PREEMPTION_RANK_STABLE A boolean value that defaults toTrue , implying that all at-
tributes utilized to define thePREEMPTION_RANKvariable will not change within a ne-
gotiation period time interval. If utilized attributes will change during the negotiation period
time interval, then set this variable toFalse .

NEGOTIATOR_SLOT_CONSTRAINTAn expression which constrains which machine ClassAds
are fetched from thecondor_collectorby thecondor_negotiatorduring a negotiation cycle.

NEGOTIATOR_SLOT_POOLSIZE_CONSTRAINTor GROUP_DYNAMIC_MACH_CONSTRAINT
This optional expression specifies which machine ClassAds should be counted when com-
puting the size of the pool. It applies both for group quota allocation and when there are
no groups. The default is to count all machine ClassAds. Whenextra slots exist for special
purposes, as, for example, suspension slots or file transferslots, this expression can be used
to inform thecondor_negotiatorthat only normal slots should be counted when computing
how big each group’s share of the pool should be.

The name NEGOTIATOR_SLOT_POOLSIZE_CONSTRAINT replaces
GROUP_DYNAMIC_MACH_CONSTRAINTas of Condor version 7.7.3. Using the older
name causes a warning to be logged, although the behavior is unchanged.

NEGOTIATOR_DEBUG This macro (and other settings related to debug logging in the negotiator)
is described in section 3.3.4 as<SUBSYS>_DEBUG.

Condor Version 7.7.6 Manual

3.3. Configuration 242

NEGOTIATOR_MAX_TIME_PER_SUBMITTERThe maximum number of seconds thecon-
dor_negotiatorwill spend with a submitter during one negotiation cycle. Once this time
limit has been reached, thecondor_negotiatorwill still finish its current pie spin, but it will
skip over the submitter if subsequent pie spins are needed todish out all of the available ma-
chines. It defaults to one year. SeeNEGOTIATOR_MAX_TIME_PER_PIESPINfor more
information.

NEGOTIATOR_MAX_TIME_PER_PIESPINThe maximum number of seconds thecon-
dor_negotiatorwill spend with a submitter in one pie spin. A negotiation cycle is composed
of at least one pie spin, possibly more, depending on whetherthere are still machines left
over after computing fair shares and negotiating with each submitter. By limiting the maxi-
mum length of a pie spin or the maximum time per submitter per negotiation cycle, thecon-
dor_negotiatoris protected against spending a long time talking to one submitter, for example
someone with a very slowcondor_schedddaemon. But, this can result in unfair allocation of
machines or some machines not being allocated at all. See section 3.4.6 on page 289 for a
description of a pie slice.

NEGOTIATOR_MATCH_EXPRS A comma-separated list of macro names that are inserted as
ClassAd attributes into matched job ClassAds. The attribute name in the ClassAd will be
given the prefixNegotiatorMatchExpr , if the macro name does not already begin with
that. Example:

NegotiatorName = "My Negotiator"
NEGOTIATOR_MATCH_EXPRS = NegotiatorName

As a result of the above configuration, jobs that are matched by this condor_negotiatorwill
contain the following attribute when they are sent to thecondor_startd:

NegotiatorMatchExprNegotiatorName = "My Negotiator"

The expressions inserted by thecondor_negotiatormay be useful incondor_startdpolicy
expressions, when thecondor_startdbelongs to multiple Condor pools.

NEGOTIATOR_MATCHLIST_CACHINGA boolean value that defaults toTrue . WhenTrue , it
enables an optimization in thecondor_negotiatorthat works with auto clustering. In deter-
mining the sorted list of machines that a job might use, the job goes to the first machine off
the top of the list. IfNEGOTIATOR_MATCHLIST_CACHINGis True , and if the next job is
part of the same auto cluster, meaning that it is a very similar job, thecondor_negotiatorwill
reuse the previous list of machines, instead of recreating the list from scratch.

If matching grid resources, and the desire is for a given resource to potentially match mul-
tiple times percondor_negotiatorpass,NEGOTIATOR_MATCHLIST_CACHINGshould be
False . See section 5.3.11 on page 549 in the subsection on Advertising Grid Resources to
Condor for an example.

NEGOTIATOR_CONSIDER_PREEMPTIONFor expert users only. A boolean value (defaults to
True), that whenFalse , can cause thecondor_negotiatorto run faster and also have bet-
ter spinning pie accuracy.Only set this toFalse if PREEMPTION_REQUIREMENTS is
False, and if all condor_startd rank expressions areFalse.

Condor Version 7.7.6 Manual

3.3. Configuration 243

STARTD_AD_REEVAL_EXPR A boolean value evaluated in the context of each machine ClassAd
within a negotiation cycle that determines whether the ClassAd from thecondor_collectoris
to replace the stashed ClassAd utilized during the previousnegotiation cycle. WhenTrue ,
the ClassAd from thecondor_collectordoes replace the stashed one. When not defined, the
default value is to replace the stashed ClassAd if the stashed ClassAd’s sequence number is
older than its potential replacement.

NEGOTIATOR_UPDATE_AFTER_CYCLEA boolean value that defaults toFalse . WhenTrue ,
it will force the condor_negotiatordaemon to publish an update to thecondor_collectorat
the end of every negotiation cycle. This is useful if monitoring statistics for the previous
negotiation cycle.

NEGOTIATOR_READ_CONFIG_BEFORE_CYCLEA boolean value that defaults toFalse .
WhenTrue , the condor_negotiatorwill re-read the configuration prior to beginning each
negotiation cycle. Note that this operation will update configured behaviors such as concur-
rency limits, but not data structures constructed during a full reconfiguration, such as the group
quota hierarchy. A full reconfiguration, for example as accomplished withcondor_reconfig,
remains the best way to guarantee that allcondor_negotiatorconfiguration is completely up-
dated.

The following configuration macros affect negotiation for group users.

GROUP_NAMES A comma-separated list of the recognized group names, case insensitive. If un-
defined (the default), group support is disabled. Group names must not conflict with any user
names. That is, if there is aphysics group, there may not be aphysics user. Any group
that is defined here must also have a quota, or the group will beignored. Example:

GROUP_NAMES = group_physics, group_chemistry

GROUP_QUOTA_<groupname> A floating point value to represent a static quota specifyingan
integral number of machines for the hierarchical group identified by <groupname> . It is
meaningless to specify a non integer value, since only integral numbers of machines can be
allocated. Example:

GROUP_QUOTA_group_physics = 20
GROUP_QUOTA_group_chemistry = 10

When both static and dynamic quotas are defined for a specific group, the static quota is used
and the dynamic quota is ignored.

GROUP_QUOTA_DYNAMIC_<groupname>A floating point value in the range 0.0 to 1.0, in-
clusive, representing a fraction of a pool’s machines (slots) set as a dynamic quota for the
hierarchical group identified by<groupname> . For example, the following specifies that a
quota of 25% of the total machines are reserved for members ofthe group_biology group.

Condor Version 7.7.6 Manual

3.3. Configuration 244

GROUP_QUOTA_DYNAMIC_group_biology = 0.25

The group name must be specified in theGROUP_NAMESlist.

This section has not yet been completed

GROUP_PRIO_FACTOR_<groupname>A floating point value greater than or equal to 1.0 to
specify the default user priority factor for<groupname> . The group name must also be
specified in theGROUP_NAMESlist. GROUP_PRIO_FACTOR_<groupname>is evaluated
when the negotiator first negotiates for the user as a member of the group. All members of
the group inherit the default priority factor when no other value is present. For example, the
following setting specifies that all members of the group namedgroup_physics inherit a
default user priority factor of 2.0:

GROUP_PRIO_FACTOR_group_physics = 2.0

GROUP_AUTOREGROUP A boolean value (defaults toFalse) that whenTrue , causes users who
submitted to a specific group to also negotiate a second time with the <none> group, to
be considered with the independent job submitters. This allows group submitted jobs to
be matched with idle machines even if the group is over its quota. The user name that
is used for accounting and prioritization purposes is stillthe group user as specified by
AccountingGroup in the job ClassAd.

GROUP_AUTOREGROUP_<groupname>This is the same asGROUP_AUTOREGROUP, but it is
settable on a per-group basis. If no value is specified for a given group, the default behavior
is determined byGROUP_AUTOREGROUP, which in turn defaults toFalse .

GROUP_ACCEPT_SURPLUS A boolean value that, whenTrue , specifies that groups should be
allowed to use more than their configured quota when there is not enough demand from other
groups to use all of the available machines. The default value isFalse .

GROUP_ACCEPT_SURPLUS_<groupname>A boolean value applied as a group-
specific version of GROUP_ACCEPT_SURPLUS. When not specified, the value of
GROUP_ACCEPT_SURPLUSapplies to the named group.

GROUP_QUOTA_ROUND_ROBIN_RATEThe maximum sum of weighted slots that should
be handed out to an individual submitter in each iteration within a negotiation cy-
cle. If slot weights are not being used by thecondor_negotiator, as specified by
NEGOTIATOR_USE_SLOT_WEIGHTS = False, then this value is just the (unweighted)
number of slots. The default value is a very big number, effectively infinite. Setting the value
to a number smaller than the size of the pool can help avoid starvation. An example of the
starvation problem is when there are a subset of machines in apool with large memory, and
there are multiple job submitters who desire all of these machines. Normally, Condor will
decide how much of the full pool each person should get, and then attempt to hand out that
number of resources to each person. Since the big memory machines are only a subset of pool,

Condor Version 7.7.6 Manual

3.3. Configuration 245

it may happen that they are all given to the first person contacted, and the remainder requiring
large memory machines get nothing. SettingGROUP_QUOTA_ROUND_ROBIN_RATEto a
value that is small compared to the size of subsets of machines will reduce starvation at the
cost of possibly slowing down the rate at which resources areallocated.

GROUP_QUOTA_MAX_ALLOCATION_ROUNDSAn integer that specifies the maximum number
of times within one negotiation cycle thecondor_negotiatorwill calculate how many slots
each group deserves and attempt to allocate them. The default value is 3. The reason it
may take more than one round is that some groups may not have jobs that match some of
the available machines, so some of the slots that were withheld for those groups may not get
allocated in any given round.

NEGOTIATOR_USE_SLOT_WEIGHTSA boolean value with a default ofTrue . WhenTrue ,
thecondor_negotiatorpays attention to the machine ClassAd attributeSlotWeight . When
False , each slot effectively has a weight of 1.

3.3.18 condor_procd Configuration File Macros

USE_PROCD This boolean parameter is used to determine whether thecondor_procdwill be used
for managing process families. If thecondor_procdis not used, each daemon will run the
process family tracking logic on its own. Use of thecondor_procdresults in improved scal-
ability because only one instance of this logic is required.The condor_procdis required
when using privilege separation (see Section 3.6.14) or group ID-based process tracking (see
Section 3.12.11). In either of these cases, theUSE_PROCDsetting will be ignored and acon-
dor_procdwill always be used. By default, thecondor_masterwill not use acondor_procd
but all other daemons that need process family tracking will. A daemon that uses thecon-
dor_procdwill start acondor_procdfor use by itself and all of its child daemons.

PROCD_MAX_SNAPSHOT_INTERVALThis setting determines the maximum time that thecon-
dor_procdwill wait between probes of the system for information aboutthe process families
it is tracking.

PROCD_LOG Specifies a log file for thecondor_procdto use. Note that by design, thecon-
dor_procddoes not include most of the other logic that is shared amongst the various Con-
dor daemons. This is because thecondor_procdis a component of the PrivSep Kernel (see
Section 3.6.14 for more information regarding privilege separation). This means that thecon-
dor_procddoes not include the normal Condor logging subsystem, and thus multiple debug
levels are not supported.PROCD_LOGdefaults to$(LOG)/ProcLog . Note that enabling
D_PROCFAMILYin the debug level for any other daemon will cause it to log allinteractions
with thecondor_procd.

MAX_PROCD_LOG Controls the maximum length in bytes to which thecondor_procdlog will be
allowed to grow. The log file will grow to the specified length,then be saved to a file with the
suffix .old . The.old file is overwritten each time the log is saved, thus the maximum space
devoted to logging will be twice the maximum length of this log file. A value of 0 specifies
that the file may grow without bounds. The default is 10 Mbyte.

Condor Version 7.7.6 Manual

3.3. Configuration 246

PROCD_ADDRESS This specifies the address that thecondor_procdwill use to receive requests
from other Condor daemons. On Unix, this should point to a filesystem location that can be
used for a named pipe. On Windows, named pipes are also used but they do not exist in the
file system. The default setting therefore depends on the platform: $(LOCK)/procd_pipe
on Unix and\\.\pipe\procd_pipe on Windows.

USE_GID_PROCESS_TRACKINGA boolean value that defaults toFalse . WhenTrue , a job’s
initial process is assigned a dedicated GID which is furtherused by thecondor_procdto reli-
ably track all processes associated with a job. WhenTrue , values forMIN_TRACKING_GID
andMAX_TRACKING_GIDmust also be set, or Condor will abort, logging an error message.
See section 3.12.11 on page 434 for a detailed description.

MIN_TRACKING_GID An integer value, that together withMAX_TRACKING_GIDspecify a
range of GIDs to be assigned on a per slot basis for use by thecondor_procdin tracking
processes associated with a job. See section 3.12.11 on page434 for a detailed description.

MAX_TRACKING_GID An integer value, that together withMIN_TRACKING_GIDspecify a
range of GIDs to be assigned on a per slot basis for use by thecondor_procdin tracking
processes associated with a job. See section 3.12.11 on page434 for a detailed description.

BASE_CGROUP The path to the directory used as the virtual file system for the implementation of
Linux kernel cgroups. This variable has no default value, and if not defined, cgroup tracking
will not be used. See section 3.12.12 on page 435 for a description of cgroup-based process
tracking.

3.3.19 condor_credd Configuration File Macros

These macros affect thecondor_credd.

CREDD_HOST The host name of the machine running thecondor_credddaemon.

CREDD_CACHE_LOCALLY A boolean value that defaults toFalse . WhenTrue , the first suc-
cessful password fetch operation to thecondor_credddaemon causes the password to be
stashed in a local, secure password store. Subsequent uses of that password do not require
communication with thecondor_credddaemon.

SKIP_WINDOWS_LOGON_NETWORKA boolean value that defaults toFalse . When True ,
Windows authentication skips trying authentication with theLOGON_NETWORKmethod first,
and attempts authentication withLOGON_INTERACTIVEmethod. This can be useful if
many authentication failures are noticed, potentially leading to users getting locked out.

3.3.20 condor_gridmanager Configuration File Entries

These macros affect thecondor_gridmanager.

Condor Version 7.7.6 Manual

3.3. Configuration 247

GRIDMANAGER_LOG Defines the path and file name for the log of thecondor_gridmanager. The
owner of the file is thecondor user.

GRIDMANAGER_CHECKPROXY_INTERVALThe number of seconds between checks for an up-
dated X509 proxy credential. The default is 10 minutes (600 seconds).

GRIDMANAGER_PROXY_REFRESH_TIMEFor GRAM jobs, thecondor_gridmanagerwill not
forward a refreshed proxy until the lifetime left for the proxy on the remote machine falls
below this value. The value is in seconds and the default is 21600 (6 hours).

GRIDMANAGER_MINIMUM_PROXY_TIMEThe minimum number of seconds before expiration
of the X509 proxy credential for the gridmanager to continueoperation. If seconds until
expiration is less than this number, the gridmanager will shutdown and wait for a refreshed
proxy credential. The default is 3 minutes (180 seconds).

HOLD_JOB_IF_CREDENTIAL_EXPIRESTrue or False. Defaults to True. If
True, and for grid universe jobs only, Condor-G will place a job on hold
GRIDMANAGER_MINIMUM_PROXY_TIMEseconds before the proxy expires. If False, the
job will stay in the last known state, and Condor-G will periodically check to see if the job’s
proxy has been refreshed, at which point management of the job will resume.

GRIDMANAGER_CONTACT_SCHEDD_DELAYThe minimum number of seconds between con-
nections to thecondor_schedd. The default is 5 seconds.

GRIDMANAGER_JOB_PROBE_INTERVALThe number of seconds between active probes of the
status of a submitted job. The default is 5 minutes (300 seconds).

CONDOR_JOB_POLL_INTERVALAfter a condor grid type job is submitted, how often (in sec-
onds) thecondor_gridmanagershould probe the remotecondor_scheddto check the jobs
status. This defaults to 300 seconds (5 minutes). Setting this to a lower number will decrease
latency (Condor will discover that a job has finished more quickly), but will increase network
traffic.

GRIDMANAGER_RESOURCE_PROBE_INTERVALWhen a resource appears to be down, how of-
ten (in seconds) thecondor_gridmanagershould ping it to test if it is up again.

GRIDMANAGER_RESOURCE_PROBE_DELAYThe number of seconds between pings of a remote
resource that is currently down. The default is 5 minutes (300 seconds).

GRIDMANAGER_EMPTY_RESOURCE_DELAYThe number of seconds that thecon-
dor_gridmanagerretains information about a grid resource, once thecondor_gridmanager
has no active jobs on that resource. An active job is a grid universe job that is in the queue,
but is not in the HELD state. Defaults to 300 seconds.

GRIDMANAGER_MAX_SUBMITTED_JOBS_PER_RESOURCEAn integer value that limits the
number of jobs that acondor_gridmanagerdaemon will submit to a resource. It is useful
for controlling the number ofjobmanagerprocesses running on the front-end node of a clus-
ter. This number may be exceeded, if it is reduced through theuse ofcondor_reconfigwhile
the condor_gridmanageris running, or if thecondor_gridmanagerreceives new jobs from
thecondor_scheddthat were already submitted (that is, theirGridJobId is not undefined).

Condor Version 7.7.6 Manual

3.3. Configuration 248

In these cases, submitted jobs will not be killed, but no new jobs can be submitted until the
number of submitted jobs falls below the current limit. Defaults to 1000.

GRIDMANAGER_MAX_JOBMANAGERS_PER_RESOURCEFor grid jobs of typegt2, limits the
number of globus-job-manager processes that thecondor_gridmanagerlets run at a time on
the remote head node. Allowing too many globus-job-managers to run causes severe load
on the headnote, possibly making it non-functional. This number may be exceeded if it is
reduced through the use ofcondor_reconfigwhile thecondor_gridmanageris running or if
some globus-job-managers take a few extra seconds to exit. The value 0 means there is no
limit. The default value is 10.

GAHP The full path to the binary of the GAHP server. This configuration variable is no longer
used. UseGT2_GAHPat section 3.3.20 instead.

GAHP_ARGS Arguments to be passed to the GAHP server. This configurationvariable is no longer
used.

GRIDMANAGER_GAHP_CALL_TIMEOUTThe number of seconds after which a pending GAHP
command should time out. The default is 5 minutes (300 seconds).

GRIDMANAGER_MAX_PENDING_REQUESTSThe maximum number of GAHP commands that
can be pending at any time. The default is 50.

GRIDMANAGER_CONNECT_FAILURE_RETRY_COUNTThe number of times to retry a com-
mand that failed due to a timeout or a failed connection. The default is 3.

GRIDMANAGER_GLOBUS_COMMIT_TIMEOUTThe duration, in seconds, of the two phase com-
mit timeout to Globus for gt2 jobs only. This maps directly tothetwo_phase setting in the
Globus RSL.

GLOBUS_GATEKEEPER_TIMEOUTThe number of seconds after which if a gt2 grid universe job
fails to ping the gatekeeper, the job will be put on hold. Defaults to 5 days (in seconds).

GRAM_VERSION_DETECTION A boolean value that defaults toTrue . WhenTrue , thecon-
dor_gridmanagertreats grid typesgt2 andgt5 identically, and queries each server to deter-
mine which protocol it is using. WhenFalse , thecondor_gridmanagertrusts the grid type
provided in job attributeGridResource , and treats the server accordingly. Beware that
identifying agt2 server asgt5 can result in overloading the server, if a large number of jobs
are submitted.

C_GAHP_LOG The complete path and file name of the Condor GAHP server’s log. There
is no default value. The expected location as defined in the example configuration is
/temp/CGAHPLog.$(USERNAME) .

MAX_C_GAHP_LOG The maximum size of theC_GAHP_LOG.

C_GAHP_WORKER_THREAD_LOG The complete path and file name of the Condor GAHP worker
process’ log. There is no default value. The expected location as defined in the example
configuration is/temp/CGAHPWorkerLog.$(USERNAME) .

Condor Version 7.7.6 Manual

3.3. Configuration 249

C_GAHP_CONTACT_SCHEDD_DELAYThe number of seconds that thecondor_C-gahpdaemon
waits between consecutive connections to the remotecondor_scheddin order to send batched
sets of commands to be executed on that remotecondor_schedddaemon. The default value is
5.

GLITE_LOCATION The complete path to the directory containing the Glite software. There
is no default value. The expected location as given in the example configuration is
$(LIB)/glite . The necessary Glite software is included with Condor, and is required
for pbs and lsf jobs.

CONDOR_GAHP The complete path and file name of the Condor GAHP executable.There
is no default value. The expected location as given in the example configuration is
$(SBIN)/condor_c-gahp .

EC2_GAHP The complete path and file name of the EC2 GAHP executable. There is no default
value. The expected location as given in the example configuration is$(SBIN)/ec2_gahp .

GT2_GAHP The complete path and file name of the GT2 GAHP executable. There is
no default value. The expected location as given in the example configuration is
$(SBIN)/gahp_server .

PBS_GAHP The complete path and file name of the PBS GAHP executable. There is
no default value. The expected location as given in the example configuration is
$(GLITE_LOCATION)/bin/batch_gahp .

LSF_GAHP The complete path and file name of the LSF GAHP executable. There is
no default value. The expected location as given in the example configuration is
$(GLITE_LOCATION)/bin/batch_gahp .

UNICORE_GAHP The complete path and file name of the wrapper script that invokes the Unicore
GAHP executable. There is no default value. The expected location as given in the example
configuration is$(SBIN)/unicore_gahp .

NORDUGRID_GAHP The complete path and file name of the wrapper script that invokes the Nor-
duGrid GAHP executable. There is no default value. The expected location as given in the
example configuration is$(SBIN)/nordugrid_gahp .

CREAM_GAHP The complete path and file name of the CREAM GAHP executable. There
is no default value. The expected location as given in the example configuration is
$(SBIN)/cream_gahp .

DELTACLOUD_GAHP The complete path and file name of the Deltacloud GAHP executable.
There is no default value. The expected location as given in the example configuration is
$(SBIN)/deltacloud_gahp .

SGE_GAHP The complete path and file name of the SGE GAHP executable. There is
no default value. The expected location as given in the example configuration is
$(GLITE_LOCATION)/bin/batch_gahp .

Condor Version 7.7.6 Manual

3.3. Configuration 250

3.3.21 condor_job_router Configuration File Entries

These macros affect thecondor_job_routerdaemon.

JOB_ROUTER_DEFAULTS Defined by a single ClassAd in New ClassAd syntax, used to pro-
vide default values for all routes in thecondor_job_routerdaemon’s routing table. Where an
attribute is set outside of these defaults, that attribute value takes precedence.

JOB_ROUTER_ENTRIES Specification of the job routing table. It is a list of ClassAds, in New
ClassAd syntax, where each individual ClassAd is surrounded by square brackets, and the
ClassAds are separated from each other by spaces. Each ClassAd describes one entry in the
routing table, and each describes a site that jobs may be routed to.

A condor_reconfigcommand causes thecondor_job_routerdaemon to rebuild the routing
table. Routes are distinguished by a routing table entry’s ClassAd attributeName. Therefore,
a Namechange in an existing route has the potential to cause the inaccurate reporting of
routes.

Instead of setting job routes using this configuration variable, they may be read from an ex-
ternal source using theJOB_ROUTER_ENTRIES_FILEor be dynamically generated by an
external program via theJOB_ROUTER_ENTRIES_CMDconfiguration variable.

JOB_ROUTER_ENTRIES_FILE A path and file name of a file that contains the ClassAds, in
New ClassAd syntax, describing the routing table. The specified file is periodically reread
to check for new information. This occurs every$(JOB_ROUTER_ENTRIES_REFRESH)
seconds.

JOB_ROUTER_ENTRIES_CMD Specifies the command line of an external program to run. The
output of the program defines or updates the routing table, and the output must be given in
New ClassAd syntax. The specified command is periodically rerun to regenerate or update the
routing table. This occurs every$(JOB_ROUTER_ENTRIES_REFRESH)seconds. Specify
the full path and file name of the executable within this command line, as no assumptions
may be made about the current working directory upon commandinvocation. To enter spaces
in any command-line arguments or in the command name itself,surround the right hand side
of this definition with double quotes, and use single quotes around individual arguments that
contain spaces. This is the same as when dealing with spaces within job arguments in a
Condor submit description file.

JOB_ROUTER_ENTRIES_REFRESHThe number of seconds between updates to the routing ta-
ble described byJOB_ROUTER_ENTRIES_FILEor JOB_ROUTER_ENTRIES_CMD. The
default value is 0, meaning no periodic updates occur. With the default value of 0, the rout-
ing table can be modified when acondor_reconfigcommand is invoked or when thecon-
dor_job_routerdaemon restarts.

JOB_ROUTER_LOCK This specifies the name of a lock file that is used to ensure thatmultiple
instances of condor_job_router never run with the sameJOB_ROUTER_NAME. Multiple in-
stances running with the same name could lead to mismanagement of routed jobs. The default
value is$(LOCK)/$(JOB_ROUTER_NAME)Lock .

Condor Version 7.7.6 Manual

3.3. Configuration 251

JOB_ROUTER_SOURCE_JOB_CONSTRAINTSpecifies a globalRequirements expression
that must be true for all newly routed jobs, in addition to anyRequirements specified
within a routing table entry. In addition to the configurableconstraints, thecondor_job_router
also has some hard-coded constraints. It avoids recursively routing jobs by requiring that the
job’s attributeRoutedBy does not matchJOB_ROUTER_NAME. When not running as root,
it also avoids routing jobs belonging to other users.

JOB_ROUTER_MAX_JOBS An integer value representing the maximum number of jobs that may
be routed, summed over all routes. The default value is -1, which means an unlimited number
of jobs may be routed.

MAX_JOB_MIRROR_UPDATE_LAGAn integer value that administrators will rarely consider
changing, representing the maximum number of seconds thecondor_job_routerdaemon
waits, before it decides that routed copies have gone awry, due to the failure of events to
appear in thecondor_schedd’s job queue log file. The default value is 600. As thecon-
dor_job_routerdaemon uses thecondor_schedd’s job queue log file entries for synchroniza-
tion of routed copies, when an expected log file event fails toappear after this wait period, the
condor_job_routerdaemon acts presuming the expected event will never occur.

JOB_ROUTER_POLLING_PERIODAn integer value representing the number of seconds be-
tween cycles in thecondor_job_routerdaemon’s task loop. The default is 10 seconds. A
small value makes thecondor_job_routerdaemon quick to see new candidate jobs for rout-
ing. A large value makes thecondor_job_routerdaemon generate less overhead at the cost of
being slower to see new candidates for routing. For very large job queues where a few min-
utes of routing latency is no problem, increasing this valueto a few hundred seconds would
be reasonable.

JOB_ROUTER_NAME A unique identifier utilized to name multiple instances of the con-
dor_job_routerdaemon on the same machine. Each instance must have a different name,
or all but the first to start up will refuse to run. The default is "jobrouter".

Changing this value when routed jobs already exist is not currently gracefully handled. How-
ever, it can be done if one also usescondor_qeditto change the value ofManagedManager
andRoutedBy from the old name to the new name. The following commands may be help-
ful:

condor_qedit -constraint 'RoutedToJobId =!= undefined && \
ManagedManager == "insert_old_name"' \
ManagedManager '"insert_new_name"'

condor_qedit -constraint 'RoutedBy == "insert_old_name" ' \
RoutedBy '"insert_new_name"'

JOB_ROUTER_RELEASE_ON_HOLDA boolean value that defaults toTrue . It controls how the
condor_job_routerhandles the routed copy when it goes on hold. WhenTrue , the con-
dor_job_routerleaves the original job ClassAd in the same state as when claimed. When
False , thecondor_job_routerdoes not attempt to reset the original job ClassAd to a pre-
claimed state upon yielding control of the job.

Condor Version 7.7.6 Manual

3.3. Configuration 252

3.3.22 condor_lease_manager Configuration File Entries

These macros affect thecondor_lease_manager.

Thecondor_lease_managerexpects to use the syntax

<subsystem name>.<parameter name>

in configuration. This allows multiple instances of thecondor_lease_managerto be easily config-
ured using the syntax

<subsystem name>.<local name>.<parameter name>

LeaseManager.GETADS_INTERVALAn integer value, given in seconds, that controls the fre-
quency with which thecondor_lease_managerpulls relevant resource ClassAds from thecon-
dor_collector. The default value is 60 seconds, with a minimum value of 2 seconds.

LeaseManager.UPDATE_INTERVALAn integer value, given in seconds, that controls the fre-
quency with which thecondor_lease_managersends its ClassAds to thecondor_collector.
The default value is 60 seconds, with a minimum value of 5 seconds.

LeaseManager.PRUNE_INTERVALAn integer value, given in seconds, that controls the fre-
quency with which thecondor_lease_manager prunesits leases. This involves checking all
leases to see if they have expired. The default value is 60 seconds, with no minimum value.

LeaseManager.DEBUG_ADS A boolean value that defaults toFalse . WhenTrue , it en-
ables extra debugging information about the resource ClassAds that it retrieves from thecon-
dor_collectorand about the search ClassAds that it sends to thecondor_collector.

LeaseManager.MAX_LEASE_DURATIONAn integer value representing seconds which deter-
mines the maximum duration of a lease. This can be used to provide a hard limit on lease
durations. Normally, thecondor_lease_managerhonors theMaxLeaseDuration attribute
from the resource ClassAd. If this configuration variable isdefined, it limits the effective
maximum duration for all resources to this value. The default value is 1800 seconds.

Note that leases can be renewed, and thus can be extended beyond this limit. To provide a limit
on the total duration of a lease, useLeaseManager.MAX_TOTAL_LEASE_DURATION.

LeaseManager.MAX_TOTAL_LEASE_DURATIONAn integer value representing seconds
used to limit thetotal duration of leases, over all its renewals. The default valueis 3600
seconds.

LeaseManager.DEFAULT_MAX_LEASE_DURATIONThe condor_lease_manageruses the
MaxLeaseDuration attribute from the resource ClassAd to limit the lease duration. If
this attribute is not present in a resource ClassAd, then this configuration variable is used
instead. This integer value is given in units of seconds, with a default value of 60 seconds.

Condor Version 7.7.6 Manual

3.3. Configuration 253

LeaseManager.CLASSAD_LOG This variable defines a full path and file name to the location
where thecondor_lease_managerkeeps persistent state information. This variable has no
default value.

LeaseManager.QUERY_ADTYPEThis parameter controls the type of the query in the ClassAd
sent to thecondor_collector, which will control the types of ClassAds returned by thecon-
dor_collector. This parameter must be a valid ClassAd type name, with a default value of
"Any" .

LeaseManager.QUERY_CONSTRAINTSA ClassAd expression that controls the constraint in
the query sent to thecondor_collector. It is used to further constrain the types of ClassAds
from thecondor_collector. There is no default value, resulting in no constraints being placed
on query.

3.3.23 Grid Monitor Configuration File Entries

These macros affect the Grid Monitor.

ENABLE_GRID_MONITOR A boolean value that whenTrue enables the Grid Monitor. The Grid
Monitor is used to reduce load on Globus gatekeepers. This parameter only affects grid jobs
of type gt2. The variableGRID_MONITORmust also be correctly configured. Defaults to
True . See section 5.3.2 on page 541 for more information.

GRID_MONITOR The complete path name of thegrid_monitor.shtool used to reduce the load on
Globus gatekeepers. This parameter only affects grid jobs of type gt2. This parameter is not
referenced unlessENABLE_GRID_MONITORis set toTrue (the default value).

GRID_MONITOR_HEARTBEAT_TIMEOUTThe integer number of seconds that may pass without
hearing from a working Grid Monitor before it is assumed to bedead. Defaults to 300 (5
minutes). Increasing this number will improve the ability of the Grid Monitor to survive in
the face of transient problems, but will also increase the time before Condor notices a problem.

GRID_MONITOR_RETRY_DURATIONWhen Condor-G attempts to start the Grid Monitor at a
particular site, it will wait this many seconds to start hearing from the Grid Monitor. Defaults
to 900 (15 minutes). If this duration passes without success, the Grid Monitor will be disabled
for the site in question for the period of time set byGRID_MONITOR_DISABLE_TIME.

GRID_MONITOR_NO_STATUS_TIMEOUTJobs can disappear from the Grid Monitor’s status
reports for short periods of time under normal circumstances, but a prolonged absence is
often a sign of problems on the remote machine. This variablesets the amount of time (in
seconds) that a job can be absent before thecondor_gridmanagerreacts by restarting the
GRAM jobmanager. The default is 900, which is 15 minutes.

GRID_MONITOR_DISABLE_TIMEWhen an error occurs with a Grid Monitor job, this parame-
ter controls how long thecondor_gridmanagerwill wait before attempting to start a new Grid
Monitor job. The value is in seconds and the default is 3600 (1hour).

Condor Version 7.7.6 Manual

3.3. Configuration 254

3.3.24 Configuration File Entries Relating to Grid Usage andGlidein

These macros affect the Condor’s usage of grid resources andglidein.

GLIDEIN_SERVER_URLS A comma or space-separated list of URLs that contain the binaries
that must be copied bycondor_glidein. There are no default values, but working URLs that
copy from the UW site are provided in the distributed sample configuration files.

GLEXEC_JOB A boolean value that defaults toFalse . WhenTrue , it enables the use ofglexec
on the machine.

GLEXEC The full path and file name of theglexecexecutable.

3.3.25 Configuration File Entries for DAGMan

These macros affect the operation of DAGMan and DAGMan jobs within Condor.

Note: Many, if not all, of these configuration variables will be most appropriately set on a per
DAG basis, rather than in the global Condor configuration files. Per DAG configuration is explained
in section 2.10.7.

DAGMAN_USER_LOG_SCAN_INTERVALAn integer value representing the number of seconds
thatcondor_dagmanwaits between checking job log files for status updates. Setting this value
lower than the default increases the CPU timecondor_dagmanspends checking files, perhaps
fruitlessly, but increases responsiveness to nodes completing or failing. The legal range of
values is 1 to INT_MAX. If not defined, it defaults to 5 seconds.

DAGMAN_DEBUG_CACHE_ENABLEA boolean value that determines if log line caching for the
dagman.out file should be enabled in thecondor_dagmanprocess to increase performance
(potentially by orders of magnitude) when writing thedagman.out file to an NFS server.
Currently, this cache is only utilized in Recovery Mode. If not defined, it defaults toFalse .

DAGMAN_DEBUG_CACHE_SIZE An integer value representing the number of bytes of log lines
to be stored in the log line cache. When the cache surpasses this number, the entries are written
out in one call to the logging subsystem. A value of zero is notrecommended since each log
line would surpass the cache size and be emitted in addition to bracketing log lines explaining
that the flushing was happening. The legal range of values is 0to INT_MAX. If defined with
a value less than 0, the value 0 will be used. If not defined, it defaults to 5 Megabytes.

DAGMAN_MAX_SUBMITS_PER_INTERVALAn integer that controls how many individual jobs
condor_dagmanwill submit in a row before servicing other requests (such asa condor_rm).
The legal range of values is 1 to 1000. If defined with a value less than 1, the value 1 will be
used. If defined with a value greater than 1000, the value 1000will be used. If not defined, it
defaults to 5.

Condor Version 7.7.6 Manual

3.3. Configuration 255

DAGMAN_MAX_SUBMIT_ATTEMPTSAn integer that controls how many times in a rowcon-
dor_dagmanwill attempt to executecondor_submitfor a given job before giving up. Note
that consecutive attempts use an exponential backoff, starting with 1 second. The legal range
of values is 1 to 16. If defined with a value less than 1, the value 1 will be used. If defined
with a value greater than 16, the value 16 will be used. Note that a value of 16 would result in
condor_dagmantrying for approximately 36 hours before giving up. If not defined, it defaults
to 6 (approximately two minutes before giving up).

DAGMAN_SUBMIT_DELAY An integer that controls the number of seconds thatcondor_dagman
will sleep before submitting consecutive jobs. It can be increased to help reduce the load on
thecondor_schedddaemon. The legal range of values is any non negative integer. If defined
with a value less than 0, the value 0 will be used.

DAGMAN_STARTUP_CYCLE_DETECTA boolean value that defaults toFalse . WhenTrue ,
causescondor_dagmanto check for cycles in the DAG before submitting DAG node jobs, in
addition to its run time cycle detection.

DAGMAN_RETRY_SUBMIT_FIRSTA boolean value that controls whether a failed submit is re-
tried first (before any other submits) or last (after all other ready jobs are submitted). If this
value is set toTrue , when a job submit fails, the job is placed at the head of the queue of
ready jobs, so that it will be submitted again before any other jobs are submitted. This had
been the behavior ofcondor_dagman. If this value is set toFalse , when a job submit fails,
the job is placed at the tail of the queue of ready jobs. If not defined, it defaults toTrue .

DAGMAN_RETRY_NODE_FIRST A boolean value that controls whether a failed node with retries
is retried first (before any other ready nodes) or last (afterall other ready nodes). If this value
is set toTrue , when a node with retries fails after the submit succeeded, the node is placed
at the head of the queue of ready nodes, so that it will be triedagain before any other jobs are
submitted. If this value is set toFalse , when a node with retries fails, the node is placed at
the tail of the queue of ready nodes. This had been the behavior of condor_dagman. If not
defined, it defaults toFalse .

DAGMAN_MAX_JOBS_IDLE An integer value that controls the maximum number of idle node
jobs allowed within the DAG beforecondor_dagmantemporarily stops submitting jobs.
Once idle jobs start to run,condor_dagmanwill resume submitting jobs. If both the com-
mand line option and the configuration parameter are specified, the command line op-
tion overrides the configuration variable. Unfortunately,DAGMAN_MAX_JOBS_IDLEcur-
rently counts each individual process within a cluster as a job, which is inconsistent with
DAGMAN_MAX_JOBS_SUBMITTED. The default is that there is no limit on the maximum
number of idle jobs.

DAGMAN_MAX_JOBS_SUBMITTEDAn integer value that controls the maximum number of node
jobs within the DAG that will be submitted to Condor at one time. Note that this variable
has the same functionality as the-maxjobscommand line option tocondor_submit_dag. If
both the command line option and the configuration parameterare specified, the command
line option overrides the configuration variable. A single invocation ofcondor_submitcounts
as one job, even if the submit file produces a multi-job cluster. The default is that there is no
limit on the maximum number of jobs run at one time.

Condor Version 7.7.6 Manual

3.3. Configuration 256

DAGMAN_MUNGE_NODE_NAMES A boolean value that controls whethercondor_dagmanauto-
matically renames nodes when running multiple DAGs. The renaming is done to avoid possi-
ble name conflicts. If this value is set toTrue , all node names have the DAG number followed
by the period character (.) prepended to them. For example, the first DAG specified on the
condor_submit_dagcommand line is considered DAG number 0, the second is DAG number
1, etc. So if DAG number 2 has a node named B, that node will internally be renamed to 2.B.
If not defined,DAGMAN_MUNGE_NODE_NAMESdefaults toTrue .

DAGMAN_IGNORE_DUPLICATE_JOB_EXECUTIONThis configuration variable is no longer
used. The improved functionality of theDAGMAN_ALLOW_EVENTSmacro eliminates the
need for this variable.

For completeness, here is the definition for historical purposes: A boolean value that con-
trols whethercondor_dagmanaborts or continues with a DAG in the rare case that Condor
erroneously executes the job within a DAG node more than once. A bug in Condor very occa-
sionally causes a job to run twice. Running a job twice is contrary to the semantics of a DAG.
The configuration macroDAGMAN_IGNORE_DUPLICATE_JOB_EXECUTIONdetermines
whethercondor_dagmanconsiders this a fatal error or not. The default value isFalse ; con-
dor_dagmanconsiders running the job more than once a fatal error, logs this fact, and aborts
the DAG. When set toTrue , condor_dagmanstill logs this fact, but continues with the DAG.

This configuration macro is to remain at its default value except in the case where a site
encounters the Condor bug in which DAG job nodes are executedtwice, and where it is certain
that having a DAG job node run twice will not corrupt the DAG. The logged messages within
*.dagman.out files in the case of that a node job runs twice contain the string "EVENT
ERROR."

DAGMAN_ALLOW_EVENTS An integer that controls which bad events are consid-
ered fatal errors bycondor_dagman. This macro replaces and expands upon
the functionality of the DAGMAN_IGNORE_DUPLICATE_JOB_EXECUTION
macro. If DAGMAN_ALLOW_EVENTSis set, it overrides the setting of
DAGMAN_IGNORE_DUPLICATE_JOB_EXECUTION.

TheDAGMAN_ALLOW_EVENTSvalue is a logical bitwise OR of the following values:

0 = allow no bad events

1 = allow all bad events,except the event "job re-run after terminated
event"

2 = allow terminated/aborted event combination

4 = allow a"job re-run after terminated event" bug

8 = allow garbage or orphan events

16 = allow an execute or terminate event before job’s submit event

32 = allow two terminated events per job, as sometimes seen with grid jobs

64 = allow duplicated events in general

The default value is 114, which allows terminated/aborted event combination, allows an exe-
cute and/or terminated event before job’s submit event, allows double terminated events, and
allows general duplicate events.

Condor Version 7.7.6 Manual

3.3. Configuration 257

As examples, a value of 6 instructscondor_dagmanto allow both the terminated/aborted event
combination and the"job re-run after terminated event" bug. A value of 0
means that any bad event will be considered a fatal error.

A value of 5 will never abort the DAG because of a bad event. Butthis value should almost
never be used, because the"job re-run after terminated event" bug breaks
the semantics of the DAG.

DAGMAN_DEBUG This variable is described in section 3.3.4 as<SUBSYS>_DEBUG.

MAX_DAGMAN_LOG This variable is described in section 3.3.4 asMAX_<SUBSYS>_LOG.

DAGMAN_CONDOR_SUBMIT_EXE The executable thatcondor_dagmanwill use to submit Con-
dor jobs. If not defined,condor_dagmanlooks forcondor_submitin the path.

DAGMAN_STORK_SUBMIT_EXE The executable thatcondor_dagmanwill use to submit Stork
jobs. If not defined,condor_dagmanlooks forstork_submitin the path.

DAGMAN_CONDOR_RM_EXE The executable thatcondor_dagmanwill use to remove Condor
jobs. If not defined,condor_dagmanlooks forcondor_rmin the path.

DAGMAN_STORK_RM_EXE The executable thatcondor_dagmanwill use to remove Stork jobs. If
not defined,condor_dagmanlooks forstork_rmin the path.

DAGMAN_PROHIBIT_MULTI_JOBSA boolean value that controls whethercondor_dagman
prohibits node job submit description files that queue multiple job procs other than parallel
universe. If a DAG references such a submit file, the DAG will abort during the initialization
process. If not defined,DAGMAN_PROHIBIT_MULTI_JOBSdefaults toFalse .

DAGMAN_LOG_ON_NFS_IS_ERRORA boolean value that controls whethercondor_dagman
prohibits node job submit description files with user log files on NFS. If a DAG refer-
ences such a submit description file andDAGMAN_LOG_ON_NFS_IS_ERRORis True , the
DAG will abort during the initialization process. IfDAGMAN_LOG_ON_NFS_IS_ERROR
is False , a warning will be issued, but the DAG will still be submitted. It is stronglyrec-
ommended thatDAGMAN_LOG_ON_NFS_IS_ERRORremain set to the default value, be-
cause running a DAG with node job log files on NFS will often cause errors. If not defined,
DAGMAN_LOG_ON_NFS_IS_ERRORdefaults toTrue .

DAGMAN_ABORT_DUPLICATES A boolean value that controls whether to attempt to abort du-
plicate instances ofcondor_dagmanrunning the same DAG on the same machine. When
condor_dagmanstarts up, if no DAG lock file exists,condor_dagmancreates the lock file
and writes its PID into it. If the lock file does exist, andDAGMAN_ABORT_DUPLICATESis
set toTrue , condor_dagmanchecks whether a process with the given PID exists, and if so,
it assumes that there is already another instance ofcondor_dagmanrunning the same DAG.
Note that this test is not foolproof: it is possible that, ifcondor_dagmancrashes, the same PID
gets reused by another process beforecondor_dagmangets rerun on that DAG. This should
be quite rare, however. If not defined,DAGMAN_ABORT_DUPLICATESdefaults toTrue .

DAGMAN_SUBMIT_DEPTH_FIRSTA boolean value that controls whether to submit ready DAG
node jobs in (more-or-less) depth first order, as opposed to breadth-first order. Setting

Condor Version 7.7.6 Manual

3.3. Configuration 258

DAGMAN_SUBMIT_DEPTH_FIRSTto True doesnot override dependencies defined in
the DAG. Rather, it causes newly ready nodes to be added to thehead, rather than the
tail, of the ready node list. If there are no PRE scripts in theDAG, this will cause
the ready nodes to be submitted depth-first. If there are PRE scripts, the order will
not be strictly depth-first, but it will tend to favor depth rather than breadth in execut-
ing the DAG. If DAGMAN_SUBMIT_DEPTH_FIRSTis set toTrue , consider also setting
DAGMAN_RETRY_SUBMIT_FIRSTandDAGMAN_RETRY_NODE_FIRSTto True . If not
defined,DAGMAN_SUBMIT_DEPTH_FIRSTdefaults toFalse .

DAGMAN_ON_EXIT_REMOVE Defines theOnExitRemove ClassAd expression placed into the
condor_dagmansubmit description file bycondor_submit_dag. The default expression is
designed to ensure thatcondor_dagmanis automatically re-queued by thecondor_schedd
daemon if it exits abnormally or is killed (for example, during a reboot). If this results incon-
dor_dagmanstaying in the queue when it should exit, consider changing to a less restrictive
expression, as in the example

(ExitBySignal == false || ExitSignal =!= 9)

If not defined,DAGMAN_ON_EXIT_REMOVEdefaults to the expression

(ExitSignal =?= 11 || (ExitCode =!= UNDEFINED && ExitCode >= 0 && ExitCode <= 2))

DAGMAN_ABORT_ON_SCARY_SUBMITA boolean value that controls whether to abort a DAG
upon detection of a scary submit event. An example of a scary submit event is one in which
the Condor ID does not match the expected value. Note that in all Condor versions prior to
6.9.3,condor_dagmandid not abort a DAG upon detection of a scary submit event. This
behavior is what now happens ifDAGMAN_ABORT_ON_SCARY_SUBMITis set toFalse .
If not defined,DAGMAN_ABORT_ON_SCARY_SUBMITdefaults toTrue .

DAGMAN_PENDING_REPORT_INTERVALAn integer value representing the number of sec-
onds that controls how oftencondor_dagmanwill print a report of pending nodes to the
dagman.out file. The report will only be printed ifcondor_dagmanhas been waiting at
leastDAGMAN_PENDING_REPORT_INTERVALseconds without seeing any node job user
log events, in order to avoid cluttering thedagman.out file. This feature is mainly intended
to help diagnosecondor_dagmanprocesses that are stuck waiting indefinitely for a job to fin-
ish. If not defined,DAGMAN_PENDING_REPORT_INTERVALdefaults to 600 seconds (10
minutes).

DAGMAN_INSERT_SUB_FILE A file name of a file containing submit description file com-
mands to be inserted into the.condor.sub file created bycondor_submit_dag. The spec-
ified file is inserted into the.condor.sub file before thequeue command and before
any commands specified with the-appendcondor_submit_dagcommand line option. Note
that theDAGMAN_INSERT_SUB_FILEvalue can be overridden by thecondor_submit_dag
-insert_sub_filecommand line option.

DAGMAN_AUTO_RESCUE A boolean value that controls whethercondor_dagmanautomati-
cally runs Rescue DAGs. IfDAGMAN_AUTO_RESCUEis True and the DAG input file
my.dag is submitted, and if a Rescue DAG such as the examplesmy.dag.rescue001
or my.dag.rescue002 exists, then the largest magnitude Rescue DAG will be run. Ifnot
defined,DAGMAN_AUTO_RESCUEdefaults toTrue .

Condor Version 7.7.6 Manual

3.3. Configuration 259

DAGMAN_MAX_RESCUE_NUM An integer value that controls the maximum rescue DAG num-
ber that will be written, in the case thatDAGMAN_OLD_RESCUEis False , or run if
DAGMAN_AUTO_RESCUEis True . The maximum legal value is 999; the minimum value is
0, which prevents a rescue DAG from being written at all, or automatically run. If not defined,
DAGMAN_MAX_RESCUE_NUMdefaults to 100.

DAGMAN_WRITE_PARTIAL_RESCUEA boolean value that controls whethercondor_dagman
writes a partial or a full DAG file as a Rescue DAG. As of Condor version 7.2.2, writing a
partial DAG is preferred. If not defined,DAGMAN_WRITE_PARTIAL_RESCUEdefaults to
True .

DAGMAN_RESET_RETRIES_UPON_RESCUEA boolean value that controls whether node re-
tries are reset in a Rescue DAG. If this value isFalse , the number of node retries written in
a Rescue DAG is decreased, if any retries were used in the original run of the DAG; other-
wise, the original number of retries is allowed when runningthe Rescue DAG. If not defined,
DAGMAN_RESET_RETRIES_UPON_RESCUEdefaults toTrue .

DAGMAN_COPY_TO_SPOOL A boolean value that whenTrue copies thecondor_dagmanbinary
to the spool directory when a DAG is submitted. Setting this variable toTrue allows long-
running DAGs to survive a DAGMan version upgrade. For running large numbers of small
DAGs, leave this variable unset or set it toFalse . The default value if not defined isFalse .

DAGMAN_DEFAULT_NODE_LOG The name of a file to be used as a user log by any node
jobs that do not define their own log files. The default value ifnot defined is
<DagFile>.nodes.log , where<DagFile> is replaced by the command line argument
to condor_submit_dagthat specifies the DAG input file.

DAGMAN_GENERATE_SUBDAG_SUBMITSA boolean value specifying whethercondor_dagman
itself should create the.condor.sub files for nested DAGs. If set toFalse , nested
DAGs will fail unless the.condor.sub files are generated manually by runningcon-
dor_submit_dag -no_submiton each nested DAG, or the-do_recurseflag is passed tocon-
dor_submit_dagfor the top-level DAG. DAG nodes specified with theSUBDAG EXTERNAL
keyword or with submit description file names ending in.condor.sub are considered
nested DAGs. The default value if not defined isTrue .

DAGMAN_MAX_JOB_HOLDS An integer value defining the maximum number of times a node job
is allowed to go on hold. As a job goes on hold this number of times, it is removed from
the queue. For example, if the value is 2, as the job goes on hold for the second time, it will
be removed. At this time, this feature is not fully compatible with node jobs that have more
than oneProcID . The number of holds of each process in the cluster count towards the total,
rather than counting individually. So, this setting shouldtake that possibility into account,
possibly using a larger value. A value of 0 allows a job to go onhold any number of times.
The default value if not defined is 100.

DAGMAN_VERBOSITY An integer value defining the verbosity of output to thedagman.out
file, as follows (each level includes all output from lower debug levels):

• level = 0; never produce output, except for usage info

• level = 1; very quiet, output severe errors

Condor Version 7.7.6 Manual

3.3. Configuration 260

• level = 2; output errors and warnings

• level = 3; normal output

• level = 4; internal debugging output

• level = 5; internal debugging output; outer loop debugging

• level = 6; internal debugging output; inner loop debugging

• level = 7; internal debugging output; rarely used

The default value if not defined is 3.

DAGMAN_MAX_PRE_SCRIPTS An integer defining the maximum number of PRE scripts that any
givencondor_dagmanwill run at the same time. The default value if not defined is 0,which
means to allow any number of PRE scripts to run.

DAGMAN_MAX_POST_SCRIPTS An integer defining the maximum number of POST scripts that
any givencondor_dagmanwill run at the same time. The default value if not defined is 0,
which means to allow any number of POST scripts to run.

DAGMAN_ALLOW_LOG_ERROR A boolean value defining whethercondor_dagmanwill still at-
tempt to run a node job, even if errors are detected in the userlog specification. This setting
has an effect only on nodes that are Stork jobs (not Condor jobs). The default value if not
defined isFalse .

DAGMAN_USE_STRICT An integer defining the level of strictnesscondor_dagmanwill apply
when turning warnings into fatal errors, as follows:

• 0: no warnings become errors

• 1: severe warnings become errors

• 2: medium-severity warnings become errors

• 3: almost all warnings become errors

Using a strictness value greater than 0 may help find problemswith a DAG that may otherwise
escape notice. The default value if not defined is 0.

DAGMAN_ALWAYS_RUN_POST A boolean value defining whethercondor_dagmanwill ignore
the return value of a PRE script when deciding to run a POST script. The default isTrue ,
which says that the POST script will run regardless of the return value of the PRE script.
Changing this toFalse will restore old behavior ofcondor_dagman, which is that the failure
of a PRE script causes the POST script to not be executed.

DAGMAN_HOLD_CLAIM_TIME An integer defining the number of seconds thatcondor_dagman
will cause a hold on a claim after a job is finished, using the job ClassAd attribute
KeepClaimIdle . The default value is 20. A value of 0 causescondor_dagmannot to
set the job ClassAd attribute.

Condor Version 7.7.6 Manual

3.3. Configuration 261

3.3.26 Configuration File Entries Relating to Security

These macros affect the secure operation of Condor. Many of these macros are described in sec-
tion 3.6 on Security.

SEC_*_AUTHENTICATION This section has not yet been written

SEC_*_ENCRYPTION This section has not yet been written

SEC_*_INTEGRITY This section has not yet been written

SEC_*_NEGOTIATION This section has not yet been written

SEC_*_AUTHENTICATION_METHODS This section has not yet been written

SEC_*_CRYPTO_METHODS This section has not yet been written

GSI_DAEMON_NAME This configuration variable is retired. Instead useALLOW_CLIENT or
DENY_CLIENT as appropriate. When used, this variable defined a comma separated list of
the subject name(s) of the certificate(s) that the daemons use.

GSI_DAEMON_DIRECTORY A directory name used in the construction of complete
paths for the configuration variablesGSI_DAEMON_CERT, GSI_DAEMON_KEY, and
GSI_DAEMON_TRUSTED_CA_DIR, for any of these configuration variables are not
explicitly set.

GSI_DAEMON_CERT A complete path and file name to the X.509 certificate to be usedin GSI
authentication. If this configuration variable is not defined, andGSI_DAEMON_DIRECTORY
is defined, then Condor usesGSI_DAEMON_DIRECTORYto construct the path and file name
as

GSI_DAEMON_CERT = $(GSI_DAEMON_DIRECTORY)/hostcert.pe m

GSI_DAEMON_KEY A complete path and file name to the X.509 private key to be usedin GSI
authentication. If this configuration variable is not defined, andGSI_DAEMON_DIRECTORY
is defined, then Condor usesGSI_DAEMON_DIRECTORYto construct the path and file name
as

GSI_DAEMON_KEY = $(GSI_DAEMON_DIRECTORY)/hostkey.pem

GSI_DAEMON_TRUSTED_CA_DIRThe directory that contains the list of trusted certification
authorities to be used in GSI authentication. The files in this directory are the pub-
lic keys and signing policies of the trusted certification authorities. If this configuration
variable is not defined, andGSI_DAEMON_DIRECTORYis defined, then Condor uses
GSI_DAEMON_DIRECTORYto construct the directory path as

Condor Version 7.7.6 Manual

3.3. Configuration 262

GSI_DAEMON_TRUSTED_CA_DIR = $(GSI_DAEMON_DIRECTORY)/certificates

GSI_DAEMON_PROXY A complete path and file name to the X.509 proxy to be used in GSIau-
thentication. When this configuration variable is defined, use of this proxy takes precedence
over use of a certificate and key.

DELEGATE_JOB_GSI_CREDENTIALSA boolean value that defaults toTrue for Condor ver-
sion 6.7.19 and more recent versions. WhenTrue , a job’s GSI X.509 credentials are dele-
gated, instead of being copied. This results in a more securecommunication when not en-
crypted.

DELEGATE_FULL_JOB_GSI_CREDENTIALSA boolean value that controls whether Condor
will delegate a full or limited GSI X.509 proxy. The default value ofFalse indicates the
limited GSI X.509 proxy.

DELEGATE_JOB_GSI_CREDENTIALS_LIFETIMEAn integer value that specifies the maxi-
mum number of seconds for which delegated proxies should be valid. The default value is
one day. A value of 0 indicates that the delegated proxy should be valid for as long as allowed
by the credential used to create the proxy. The job may override this configuration setting by
using thedelegated_job_GSI_credentials_lifetimesubmit file command. This configuration
variable currently only applies to proxies delegated for non-grid jobs and Condor-C jobs. It
does not currently apply to globus grid jobs, which always behave as though the value is 0.
This variable has no effect ifDELEGATE_JOB_GSI_CREDENTIALSis False .

DELEGATE_JOB_GSI_CREDENTIALS_REFRESHA floating point number between 0 and 1
that indicates the fraction of a proxy’s lifetime at which point delegated credentials with
a limited lifetime should be renewed. The renewal is attempted periodically at or near
the specified fraction of the lifetime of the delegated credential. The default value is
0.25. This setting has no effect ifDELEGATE_JOB_GSI_CREDENTIALSis False or
if DELEGATE_JOB_GSI_CREDENTIALS_LIFETIMEis 0. For non-grid jobs, the precise
timing of the proxy refresh depends onSHADOW_CHECKPROXY_INTERVAL. To ensure
that the delegated proxy remains valid, the interval for checking the proxy should be, at most,
half of the interval for refreshing it.

GRIDMAP The complete path and file name of the Globus Gridmap file. The Gridmap file is used
to map X.509 distinguished names to Condor user ids.

SEC_<access-level>_SESSION_DURATIONThe amount of time in seconds before a com-
munication session expires. A session is a record of necessary information to do communica-
tion between a client and daemon, and is protected by a sharedsecret key. The session expires
to reduce the window of opportunity where the key may be compromised by attack. A short
session duration increases the frequency with which daemons have to reauthenticate with each
other, which may impact performance.

If the client and server are configured with different durations, the shorter of the two will
be used. The default for daemons is 86400 seconds (1 day) and the default for command-line
tools is 60 seconds. The shorter default for command-line tools is intended to prevent daemons

Condor Version 7.7.6 Manual

3.3. Configuration 263

from accumulating a large number of communication sessionsfrom the short-lived tools that
contact them over time. A large number of security sessions consumes a large amount of
memory. It is therefore important when changing this configuration setting to preserve the
small session duration for command-line tools.

One example of how to safely change the session duration is toexplicitly set a short duration
for tools andcondor_submitand a longer duration for everything else:

SEC_DEFAULT_SESSION_DURATION = 50000
TOOL.SEC_DEFAULT_SESSION_DURATION = 60
SUBMIT.SEC_DEFAULT_SESSION_DURATION = 60

Another example of how to safely change the session durationis to explicitly set the session
duration for a specific daemon:

COLLECTOR.SEC_DEFAULT_SESSION_DURATION = 50000

SEC_<access-level>_SESSION_LEASEThe maximum number of seconds an unused se-
curity session will be kept in a daemon’s session cache before being removed to save memory.
The default is 3600. If the server and client have different configurations, the smaller one will
be used.

SEC_INVALIDATE_SESSIONS_VIA_TCPUse TCP (if True) or UDP (if False) for respond-
ing to attempts to use an invalid security session. This happens, for example, if a daemon
restarts and receives incoming commands from other daemonsthat are still using a previously
established security session. The default is True.

FS_REMOTE_DIR The location of a file visible to both server and client in Remote File System
authentication. The default when not defined is the directory /shared/scratch/tmp .

ENCRYPT_EXECUTE_DIRECTORYThe execute directory for jobs on Windows platforms may
be encrypted by setting this configuration variable toTrue . Defaults toFalse . The method
of encryption uses the EFS (Encrypted File System) feature of Windows NTFS v5.

SEC_TCP_SESSION_TIMEOUT The length of time in seconds until the timeout on individual
network operations when establishing a UDP security session via TCP. The default value is
20 seconds. Scalability issues with a large pool would be theonly basis for a change from the
default value.

SEC_TCP_SESSION_DEADLINEAn integer representing the total length of time in seconds un-
til giving up when establishing a security session. WhereasSEC_TCP_SESSION_TIMEOUT
specifies the timeout for individual blocking operations (connect, read, write), this setting

specifies the total time across all operations, including non-blocking operations that have little
cost other than holding open the socket. The default value is120 seconds. The intention of
this setting is to avoid waiting for hours for a response in the rare event that the other side
freezes up and the socket remains in a connected state. This problem has been observed in
some types of operating system crashes.

Condor Version 7.7.6 Manual

3.3. Configuration 264

SEC_DEFAULT_AUTHENTICATION_TIMEOUTThe length of time in seconds that Condor
should attempt authenticating network connections beforegiving up. The default is 20 sec-
onds. Like other security settings, the portion of the configuration variable name,DEFAULT,
may be replaced by a different access level to specify the timeout to use for different types of
commands, for exampleSEC_CLIENT_AUTHENTICATION_TIMEOUT.

SEC_PASSWORD_FILE For Unix machines, the path and file name of the file containingthe pool
password for password authentication.

AUTH_SSL_SERVER_CAFILE The path and file name of a file containing one or more trusted
CA’s certificates for the server side of a communication authenticating with SSL.

AUTH_SSL_CLIENT_CAFILE The path and file name of a file containing one or more trusted
CA’s certificates for the client side of a communication authenticating with SSL.

AUTH_SSL_SERVER_CADIR The path to a directory that may contain the certificates (each in its
own file) for multiple trusted CAs for the server side of a communication authenticating with
SSL. When defined, the authenticating entity’s certificate is utilized to identify the trusted
CA’s certificate within the directory.

AUTH_SSL_CLIENT_CADIR The path to a directory that may contain the certificates (each in its
own file) for multiple trusted CAs for the client side of a communication authenticating with
SSL. When defined, the authenticating entity’s certificate is utilized to identify the trusted
CA’s certificate within the directory.

AUTH_SSL_SERVER_CERTFILE The path and file name of the file containing the public certifi-
cate for the server side of a communication authenticating with SSL.

AUTH_SSL_CLIENT_CERTFILE The path and file name of the file containing the public certifi-
cate for the client side of a communication authenticating with SSL.

AUTH_SSL_SERVER_KEYFILE The path and file name of the file containing the private key for
the server side of a communication authenticating with SSL.

AUTH_SSL_CLIENT_KEYFILE The path and file name of the file containing the private key for
the client side of a communication authenticating with SSL.

CERTIFICATE_MAPFILE A path and file name of the unified map file.

SEC_ENABLE_MATCH_PASSWORD_AUTHENTICATIONThis is a special authentication mech-
anism designed to minimize overhead in thecondor_scheddwhen communicating with the
execute machine. Essentially, matchmaking results in a secret being shared between thecon-
dor_scheddandcondor_startd, and this is used to establish a strong security session between
the execute and submit daemons without going through the usual security negotiation proto-
col. This is especially important when operating at large scale over high latency networks
(e.g. a glidein pool with one schedd and thousands of startdson a network with 0.1 second
round trip times).

The default value for this configuration option isFalse . To have any effect, it must beTrue
in the configuration of both the execute side (startd) as wellas the submit side (schedd).

Condor Version 7.7.6 Manual

3.3. Configuration 265

When this authentication method is used, all other securitynegotiation between the sub-
mit and execute daemons is bypassed. All inter-daemon communication between the sub-
mit and execute side will use the startd’s settings forSEC_DAEMON_ENCRYPTIONand
SEC_DAEMON_INTEGRITY; the configuration of these values in the schedd, shadow, and
starter are ignored.

Important: For strong security, at least one of the two, integrity or encryption, should be
enabled in the startd configuration. Also, some form of strong mutual authentication (e.g.
GSI) should be enabled between all daemons and the central manager or the shared secret
which is exchanged in matchmaking cannot be safely encrypted when transmitted over the
network.

The schedd and shadow will be authenticated assubmit-side@matchsession when
they talk to the startd and starter. The startd and starter will be authenticated as
execute-side@matchsession when they talk to the schedd and shadow. On the sub-
mit side, authorization of the execute side happens automatically. On the execute side, it is
necessary to explicitly authorize the submit side. Example:

ALLOW_DAEMON = submit-side@matchsession/192.168.123.*

Replace the example netmask with something suitable for your situation.

KERBEROS_SERVER_KEYTAB The path and file name of the keytab file that holds the necessary
Kerberos principals. If not defined, this variable’s value is set by the installed Kerberos; it is
/etc/v5srvtab on most systems.

KERBEROS_SERVER_PRINCIPALAn exact Kerberos principal to use. The default value
is host/<hostname>@<realm> , as set by the installed Kerberos. Where both
KERBEROS_SERVER_PRINCIPALandKERBEROS_SERVER_SERVICEare defined, this
value takes precedence.

KERBEROS_SERVER_USER The user name that the Kerberos server principal will map to after
authentication. The default value iscondor .

KERBEROS_SERVER_SERVICE A string representing the Kerberos service name. This
string is prepended with a slash character (/) and the host name in order to form
the Kerberos server principal. This value defaults tohost , resulting in the same
default value as specified by usingKERBEROS_SERVER_PRINCIPAL. Where both
KERBEROS_SERVER_PRINCIPALandKERBEROS_SERVER_SERVICEare defined, the
value ofKERBEROS_SERVER_PRINCIPALtakes precedence.

KERBEROS_CLIENT_KEYTAB The path and file name of the keytab file for the client in Kerberos
authentication. This variable has no default value.

3.3.27 Configuration File Entries Relating to PrivSep

PRIVSEP_ENABLED A boolean variable that, whenTrue , enables PrivSep. WhenTrue , the
condor_procdis used, ignoring the definition of the configuration variable USE_PROCD.
The default value when this configuration variable is not defined isFalse .

Condor Version 7.7.6 Manual

3.3. Configuration 266

PRIVSEP_SWITCHBOARD The full (trusted) path and file name of thecondor_root_switchboard
executable.

3.3.28 Configuration File Entries Relating to Virtual Machines

These macros affect how Condor runsvm universe jobs on a matched machine within the pool. They
specify items related to thecondor_vm-gahp.

VM_GAHP_SERVER The complete path and file name of thecondor_vm-gahp. There is no default
value for this required configuration variable.

VM_GAHP_LOG The complete path and file name of thecondor_vm-gahplog. If not specified on
a Unix platform, thecondor_starterlog will be used forcondor_vm-gahplog items. There is
no default value for this required configuration variable onWindows platforms.

MAX_VM_GAHP_LOG Controls the maximum length (in bytes) to which thecondor_vm-gahplog
will be allowed to grow.

VM_TYPE Specifies the type of supported virtual machine software. Itwill be the valuekvm, xen
or vmware . There is no default value for this required configuration variable.

VM_MEMORY An integer to specify the maximum amount of memory in Mbytes that will be al-
lowed to the virtual machine program.

VM_MAX_NUMBER An integer limit on the number of executing virtual machines. When not de-
fined, the default value is the sameNUM_CPUS. When it evaluates toUndefined , as is the
case when not defined with a numeric value, no meaningful limit is imposed.

VM_STATUS_INTERVAL An integer number of seconds that defaults to 60, representing the inter-
val between job status checks by thecondor_starterto see if the job has finished. A minimum
value of 30 seconds is enforced.

VM_GAHP_REQ_TIMEOUT An integer number of seconds that defaults to 300 (five minutes), rep-
resenting the amount of time Condor will wait for a command issued from thecondor_starter
to thecondor_vm-gahpto be completed. When a command times out, an error is reported to
thecondor_startd.

VM_RECHECK_INTERVAL An integer number of seconds that defaults to 600 (ten minutes), rep-
resenting the amount of time thecondor_startdwaits after a virtual machine error as reported
by thecondor_starter, and before checking a final time on the status of the virtual machine. If
the check fails, Condor disables starting any new vm universe jobs by removing theVM_Type
attribute from the machine ClassAd.

VM_SOFT_SUSPEND A boolean value that defaults toFalse , causing Condor to free the memory
of a vm universe job when the job is suspended. WhenTrue , the memory is not freed.

VM_UNIV_NOBODY_USER Identifies a login name of a user with a home directory that maybe
used for job owner of a vm universe job. Thenobody user normally utilized when the job
arrives from a different UID domain will not be allowed to invoke a VMware virtual machine.

Condor Version 7.7.6 Manual

3.3. Configuration 267

ALWAYS_VM_UNIV_USE_NOBODYA boolean value that defaults toFalse . When True ,
all vm universe jobs (independent of their UID domain) will run as the user defined in
VM_UNIV_NOBODY_USER.

VM_NETWORKING A boolean variable describing if networking is supported. When not defined,
the default value isFalse .

VM_NETWORKING_TYPE A string describing the type of networking, required and relevant only
whenVM_NETWORKINGis True . Defined strings are

bridge
nat
nat, bridge

VM_NETWORKING_DEFAULT_TYPEWhere multiple networking types are given in
VM_NETWORKING_TYPE, this optional configuration variable identifies which to use.
Therefore, for

VM_NETWORKING_TYPE = nat, bridge

this variable may be defined as eithernat or bridge . Where multiple networking types are
given inVM_NETWORKING_TYPE, and this variable isnot defined, a default ofnat is used.

VM_NETWORKING_BRIDGE_INTERFACEFor Xen and KVM only, a required string if bridge
networking is to be enabled. It specifies the networking interface that vm universe jobs will
use.

LIBVIRT_XML_SCRIPT For Xen and KVM only, a path and executable specifying a program.
When thecondor_vm-gahpis ready to start a Xen or KVMvm universe job, it will invoke
this program to generate the XML description of the virtual machine, which it then provides
to the virtualization software. The job ClassAd will be provided to this program via stan-
dard input. This program should print the XML to standard output. If this configuration
variable is not set, thecondor_vm-gahpwill generate the XML itself. The provided script in
$(LIBEXEC)/libvirt_simple_script.awk will generate the same XML that the
condor_vm-gahpwould.

LIBVIRT_XML_SCRIPT_ARGS For Xen and KVM only, the command-line arguments to be
given to the program specified byLIBVIRT_XML_SCRIPT .

The following configuration variables are specific to the VMware virtual machine software.

VMWARE_PERL The complete path and file name toPerl. There is no default value for this required
variable.

VMWARE_SCRIPT The complete path and file name of the script that controls VMware. There is
no default value for this required variable.

Condor Version 7.7.6 Manual

3.3. Configuration 268

VMWARE_NETWORKING_TYPE An optional string used in networking that thecondor_vm-gahp
inserts into the VMware configuration file to define a networking type. Defined types arenat
or bridged . If a default value is needed, the inserted string will benat .

VMWARE_NAT_NETWORKING_TYPEAn optional string used in networking that thecondor_vm-
gahp inserts into the VMware configuration file to define a networking type. If nat
networking is used, this variable’s definition takes precedence over one defined by
VMWARE_NETWORKING_TYPE.

VMWARE_BRIDGE_NETWORKING_TYPEAn optional string used in networking that the
condor_vm-gahpinserts into the VMware configuration file to define a networking type. If
bridge networking is used, this variable’s definition takesprecedence over one defined by
VMWARE_NETWORKING_TYPE.

VMWARE_LOCAL_SETTINGS_FILEThe complete path and file name to a file, whose contents
will be inserted into the VMware description file (i.e., the .vmx file) before Condor starts the
virtual machine. This parameter is optional.

The following configuration variables are specific to the Xenvirtual machine software.

XEN_BOOTLOADER A required full path and executable for the Xen bootloader, if the kernel im-
age includes a disk image.

The following two macros affect the configuration of Condor where Condor is running on a host
machine, the host machine is running an inner virtual machine, and Condor is also running on that
inner virtual machine. These two variables have nothing to do with thevm universe.

VMP_HOST_MACHINE A configuration variable for the inner virtual machine, which specifies the
host name.

VMP_VM_LIST For the host, a comma separated list of the host names or IP addresses for ma-
chines running inner virtual machines on a host.

3.3.29 Configuration File Entries Relating to High Availability

These macros affect the high availability operation of Condor.

MASTER_HA_LIST Similar toDAEMON_LIST, this macro defines a list of daemons that thecon-
dor_masterstarts and keeps its watchful eyes on. However, theMASTER_HA_LISTdaemons
are run in aHigh Availability mode. The list is a comma or space separated list of subsystem
names (as listed in section 3.3.1). For example,

MASTER_HA_LIST = SCHEDD

Condor Version 7.7.6 Manual

3.3. Configuration 269

TheHigh Availability feature allows for severalcondor_masterdaemons (most likely on sep-
arate machines) to work together to insure that a particularservice stays available. These
condor_masterdaemons ensure that one and only one of them will have the listed daemons
running.

To use this feature, the lock URL must be set withHA_LOCK_URL.

Currently, only file URLs are supported (those withfile: . . .). The default value for
MASTER_HA_LISTis the empty string, which disables the feature.

HA_LOCK_URL This macro specifies the URL that thecondor_masterprocesses use to synchro-
nize for theHigh Availability service. Currently, only file URLs are supported; for example,
file:/share/spool . Note that this URL must be identical for allcondor_masterpro-
cesses sharing this resource. Forcondor_scheddsharing, we recommend setting upSPOOL
on an NFS share and having allHigh Availability condor_scheddprocesses sharing it, and
setting theHA_LOCK_URLto point at this directory as well. For example:

MASTER_HA_LIST = SCHEDD
SPOOL = /share/spool
HA_LOCK_URL = file:/share/spool
VALID_SPOOL_FILES = SCHEDD.lock

A separate lock is created for eachHigh Availabilitydaemon.

There is no default value forHA_LOCK_URL.

Lock files are in the form<SUBSYS>.lock. condor_preenis not currently aware of the
lock files and will delete them if they are placed in theSPOOLdirectory, so be sure to add
<SUBSYS>.lock toVALID_SPOOL_FILES for eachHigh Availabilitydaemon.

HA_<SUBSYS>_LOCK_URL This macro controls theHigh Availability lock URL for a spe-
cific subsystem as specified in the configuration variable name, and it overrides the
system-wide lock URL specified byHA_LOCK_URL. If not defined for each subsystem,
HA_<SUBSYS>_LOCK_URLis ignored, and the value ofHA_LOCK_URLis used.

HA_LOCK_HOLD_TIME This macro specifies the number of seconds that thecondor_masterwill
hold the lock for eachHigh Availability daemon. Upon gaining the shared lock, thecon-
dor_masterwill hold the lock for this number of seconds. Additionally,thecondor_master
will periodically renew each lock as long as thecondor_masterand the daemon are running.
When the daemon dies, or thecondor_masterexists, thecondor_masterwill immediately
release the lock(s) it holds.

HA_LOCK_HOLD_TIMEdefaults to 3600 seconds (one hour).

HA_<SUBSYS>_LOCK_HOLD_TIMEThis macro controls theHigh Availability lock hold time
for a specific subsystem as specified in the configuration variable name, and it over-
rides the system wide poll period specified byHA_LOCK_HOLD_TIME. If not defined
for each subsystem,HA_<SUBSYS>_LOCK_HOLD_TIMEis ignored, and the value of
HA_LOCK_HOLD_TIMEis used.

Condor Version 7.7.6 Manual

3.3. Configuration 270

HA_POLL_PERIOD This macro specifies how often thecondor_masterpolls theHigh Availability
locks to see if any locks are either stale (meaning not updated for HA_LOCK_HOLD_TIME
seconds), or have been released by the owningcondor_master. Additionally, the con-
dor_masterrenews any locks that it holds during these polls.

HA_POLL_PERIODdefaults to 300 seconds (five minutes).

HA_<SUBSYS>_POLL_PERIOD This macro controls theHigh Availabilitypoll period for a spe-
cific subsystem as specified in the configuration variable name, and it overrides the sys-
tem wide poll period specified byHA_POLL_PERIOD. If not defined for each subsystem,
HA_<SUBSYS>_POLL_PERIODis ignored, and the value ofHA_POLL_PERIODis used.

MASTER_<SUBSYS>_CONTROLLERUsed only in HA configurations involving thecondor_had.

The condor_masterhas the concept of a controlling and controlled daemon, typically with
thecondor_haddaemon serving as the controlling process. In this case, allcondor_onand
condor_offcommands directed at controlled daemons are given to the controlling daemon,
which then handles the command, and, when required, sends appropriate commands to the
condor_masterto do the actual work. This allows the controlling daemon to know the state
of the controlled daemon.

As of 6.7.14, this configuration variable must be specified for all configurations usingcon-
dor_had. To configure thecondor_negotiatorcontrolled bycondor_had:

MASTER_NEGOTIATOR_CONTROLLER = HAD

The macro is named by substituting<SUBSYS>with the appropriate subsystem string as
defined in section 3.3.1.

HAD_LIST A comma-separated list of allcondor_haddaemons in the formIP:port or
hostname:port . Each central manager machine that runs thecondor_haddaemon should
appear in this list. IfHAD_USE_PRIMARYis set toTrue , then the first machine in this list
is the primary central manager, and all others in the list arebackups.

All central manager machines must be configured with an identical HAD_LIST. The machine
addresses are identical to the addresses defined inCOLLECTOR_HOST.

HAD_USE_PRIMARY Boolean value to determine if the first machine in theHAD_LIST configu-
ration variable is a primary central manager. Defaults toFalse .

HAD_CONTROLLEE This macro is used to specify the name of the daemon which thecon-
dor_haddaemon controls. This name should match the daemon name in thecondor_master’s
DAEMON_LIST. The default value ofHAD_CONTROLLEEis “NEGOTIATOR”.

HAD_CONNECTION_TIMEOUT The time (in seconds) that thecondor_haddaemon waits before
giving up on the establishment of a TCP connection. The failure of the communication con-
nection is the detection mechanism for the failure of a central manager machine. For a LAN,
a recommended value is 2 seconds. The use of authentication (by Condor) increases the con-
nection time. The default value is 5 seconds. If this value isset too low,condor_haddaemons
will incorrectly assume the failure of other machines.

Condor Version 7.7.6 Manual

3.3. Configuration 271

HAD_ARGS Command line arguments passed by thecondor_masterdaemon as it invokes thecon-
dor_haddaemon. To make high availability work, thecondor_haddaemon requires the port
number it is to use. This argument is of the form

-p $(HAD_PORT_NUMBER)

whereHAD_PORT_NUMBERis a helper configuration variable defined with the desired port
number. Note that this port number must be the same value hereas used inHAD_LIST. There
is no default value.

HAD The path to thecondor_hadexecutable. Normally it is defined relative to$(SBIN) . This
configuration variable has no default value.

MAX_HAD_LOG Controls the maximum length in bytes to which thecondor_haddaemon log will
be allowed to grow. It will grow to the specified length, then be saved to a file with the suffix
.old . The .old file is overwritten each time the log is saved, thus the maximum space
devoted to logging is twice the maximum length of this log file. A value of 0 specifies that
this file may grow without bounds. The default is 1 Mbyte.

HAD_DEBUG Logging level for thecondor_haddaemon. See<SUBSYS>_DEBUGfor values.

HAD_LOG Full path and file name of the log file. There is no default value.

REPLICATION_LIST A comma-separated list of allcondor_replicationdaemons in the form
IP:port or hostname:port . Each central manager machine that runs thecondor_had
daemon should appear in this list. All potential central manager machines must be configured
with an identicalREPLICATION_LIST .

STATE_FILE A full path and file name of the file protected by the replication mechanism. When
not defined, the default path and file used is

$(SPOOL)/Accountantnew.log

REPLICATION_INTERVAL Sets how often thecondor_replicationdaemon initiates its tasks of
replicating the$(STATE_FILE) . It is defined in seconds and defaults to 300 (5 minutes).

MAX_TRANSFERER_LIFETIME A timeout period within which the process that transfers the
state file must complete its transfer. The recommended valueis 2 * average size of
state file / network rate . It is defined in seconds and defaults to 300 (5 minutes).

HAD_UPDATE_INTERVAL Like UPDATE_INTERVAL, determines how often thecondor_hadis
to send a ClassAd update to thecondor_collector. Updates are also sent at each and every
change in state. It is defined in seconds and defaults to 300 (5minutes).

HAD_USE_REPLICATION A boolean value that defaults toFalse . WhenTrue , the use of
condor_replicationdaemons is enabled.

Condor Version 7.7.6 Manual

3.3. Configuration 272

REPLICATION_ARGS Command line arguments passed by thecondor_masterdaemon as
it invokes the condor_replicationdaemon. To make high availability work, thecon-
dor_replicationdaemon requires the port number it is to use. This argument isof the form

-p $(REPLICATION_PORT_NUMBER)

whereREPLICATION_PORT_NUMBERis a helper configuration variable defined with the
desired port number. Note that this port number must be the same value as used in
REPLICATION_LIST . There is no default value.

REPLICATION The full path and file name of thecondor_replicationexecutable. It is normally
defined relative to$(SBIN) . There is no default value.

MAX_REPLICATION_LOG Controls the maximum length in bytes to which thecon-
dor_replicationdaemon log will be allowed to grow. It will grow to the specified length,
then be saved to a file with the suffix.old . The .old file is overwritten each time the log
is saved, thus the maximum space devoted to logging is twice the maximum length of this log
file. A value of 0 specifies that this file may grow without bounds. The default is 1 Mbyte.

REPLICATION_DEBUG Logging level for the condor_replication daemon. See
<SUBSYS>_DEBUGfor values.

REPLICATION_LOG Full path and file name to the log file. There is no default value.

TRANSFERER The full path and file name of the condor_transferer exe-
cutable. Versions of Condor previous to 7.2.2 hard coded thelocation as
$(RELEASE_DIR)/sbin/condor_transferer . This is now the default value.
The future default value is likely to change, and be defined relative to$(SBIN) .

TRANSFERER_LOG Full path and file name to the log file. There is no default valuefor this
variable; a definition is required if thecondor_replicationdaemon does a file transfer.

TRANSFERER_DEBUG Logging level for the condor_transferer daemon. See
<SUBSYS>_DEBUGfor values.

MAX_TRANSFERER_LOG Controls the maximum length in bytes to which thecondor_transferer
daemon log will be allowed to grow. A value of 0 specifies that this file may grow without
bounds. The default is 1 Mbyte.

3.3.30 MyProxy Configuration File Macros

In some cases, Condor can autonomously refresh GSI certificate proxies viaMyProxy, available
from http://myproxy.ncsa.uiuc.edu/.

MYPROXY_GET_DELEGATION The full path name to themyproxy-get-delegationexecutable, in-
stalled as part of theMyProxysoftware. Often, it is necessary to wrap the actual executable

Condor Version 7.7.6 Manual

http://myproxy.ncsa.uiuc.edu/

3.3. Configuration 273

with a script that sets the environment, such as theLD_LIBRARY_PATH, correctly. If this
macro is defined, Condor-G andcondor_creddwill have the capability to autonomously re-
fresh proxy certificates. By default, this macro is undefined.

3.3.31 Configuration File Macros Affecting APIs

ENABLE_SOAP A boolean value that defaults toFalse . WhenTrue , Condor daemons will
respond to HTTP PUT commands as if they were SOAP calls. WhenFalse , all HTTP PUT
commands are denied.

ENABLE_WEB_SERVER A boolean value that defaults toFalse . WhenTrue , Condor daemons
will respond to HTTP GET commands, and send the static files sitting in the subdirectory
defined by the configuration variableWEB_ROOT_DIR. In addition, web commands are con-
sidered a READ command, so the client will be checked by host-based security.

SOAP_LEAVE_IN_QUEUE A boolean expression that whenTrue , causes a job in the completed
state to remain in the queue, instead of being removed based on the completion of file transfer.
If provided, this expression will be logically ANDed with the default behavior of leaving the
job in the queue untilFilesRetrieved becomesTrue .

WEB_ROOT_DIR A complete path to the directory containing all the files served by the web server.

<SUBSYS>_ENABLE_SOAP_SSLA boolean value that defaults toFalse . When
True , enables SOAP over SSL for the specified<SUBSYS>. Any specific
<SUBSYS>_ENABLE_SOAP_SSLsetting overrides the value ofENABLE_SOAP_SSL.

ENABLE_SOAP_SSL A boolean value that defaults toFalse . WhenTrue , enables SOAP over
SSL for all daemons.

<SUBSYS>_SOAP_SSL_PORT The port number on which SOAP over SSL messages are ac-
cepted, when SOAP over SSL is enabled. The<SUBSYS>must be specified, because mul-
tiple daemons running on a single machine may not share a port. This parameter is required
when SOAP over SSL is enabled. There is no default value.

The macro is named by substituting<SUBSYS>with the appropriate subsystem string as
defined in section 3.3.1.

SOAP_SSL_SERVER_KEYFILE The complete path and file name to specify the daemon’s iden-
tity, as used in authentication when SOAP over SSL is enabled. The file is to be an OpenSSL
PEM file containing a certificate and private key. This parameter is required when SOAP over
SSL is enabled. There is no default value.

SOAP_SSL_SERVER_KEYFILE_PASSWORDAn optional complete path and file name to spec-
ify a password for unlocking the daemon’s private key. Thereis no default value.

SOAP_SSL_CA_FILE The complete path and file name to specify a file containing certificates
of trusted Certificate Authorities (CAs). Only clients who present a certificate signed by
a trusted CA will be authenticated. When SOAP over SSL is enabled, this parameter or
SOAP_SSL_CA_DIRmust be set. There is no default value.

Condor Version 7.7.6 Manual

3.3. Configuration 274

SOAP_SSL_CA_DIR The complete path to a directory containing certificates of trusted Cer-
tificate Authorities (CAs). Only clients who present a certificate signed by a trusted CA
will be authenticated. When SOAP over SSL is enabled, this variable or the variable
SOAP_SSL_CA_FILE must be defined. There is no default value.

SOAP_SSL_DH_FILE An optional complete path and file name to a DH file containing keys for
a DH key exchange. There is no default value.

SOAP_SSL_SKIP_HOST_CHECKWhen a SOAP server is authenticated via SSL, the server’s
host name is normally compared with the host name contained in the server’s X.509 credential.
If the two do not match, authentication fails. When this boolean variable is set toTrue , the
host name comparison is disabled. The default value isFalse .

3.3.32 Configuration File Entries Relating tocondor_ssh_to_job

These macros affect how Condor deals withcondor_ssh_to_job, a tool that allows users to inter-
actively debug jobs. With these configuration variables, the administrator can control who can use
the tool, and how thesshprograms are invoked. The manual page forcondor_ssh_to_jobis at
section 10.

ENABLE_SSH_TO_JOB A boolean expression read by thecondor_starter, that whenTrue al-
lows the owner of the job or a queue super user on thecondor_scheddwhere the job was
submitted to connect to the job viassh. The expression may refer to attributes of both the job
and the machine ClassAds. The job ClassAd attributes may be referenced by using the prefix
TARGET., and the machine ClassAd attributes may be referenced by using the prefixMY..
WhenFalse , it preventscondor_ssh_to_jobfrom starting ansshsession. The default value
is True .

SCHEDD_ENABLE_SSH_TO_JOBA boolean expression read by thecondor_schedd, that when
True allows the owner of the job or a queue super user to connect to the job viassh if
the execute machine also allowscondor_ssh_to_jobaccess (seeENABLE_SSH_TO_JOB).
The expression may refer to attributes of only the job ClassAd. WhenFalse , it prevents
condor_ssh_to_jobfrom starting ansshsession for all jobs managed by thecondor_schedd.
The default value isTrue .

SSH_TO_JOB_<SSH-CLIENT>_CMDA string read by thecondor_ssh_to_jobtool. It spec-
ifies the command and arguments to use when invoking the program specified by
<SSH-CLIENT> . Values substituted for the placeholder<SSH-CLIENT> may beSSH,
SFTP, SCP, or any othersshclient capable of using a command as a proxy for the connection
to sshd. The entire command plus arguments string is enclosed in double quote marks. Indi-
vidual arguments may be quoted with single quotes, using thesame syntax as for arguments
in a condor_submitfile. The following substitutions are made within the arguments:

%h: is substituted by the remote host

%i : is substituted by the ssh key

Condor Version 7.7.6 Manual

3.3. Configuration 275

%k: is substituted by the known hosts file

%u: is substituted by the remote user

%x: is substituted by a proxy command suitable for use with theOpenSSHProxyCommand
option

%%: is substituted by the percent mark character

The default string is:
"ssh -oUser=%u -oIdentityFile=%i -oStrictHostKeyChecki ng=yes
-oUserKnownHostsFile=%k -oGlobalKnownHostsFile=%k
-oProxyCommand=%x %h"

When the<SSH-CLIENT> is scp, %h is omitted.

SSH_TO_JOB_SSHD The path and executable name of thesshdaemon. The value is read by the
condor_starter. The default value is/usr/sbin/sshd .

SSH_TO_JOB_SSHD_ARGS A string, read by thecondor_starterthat specifies the command-
line arguments to be passed to thesshdto handle an incoming ssh connection on itsstdin or
stdout streams in inetd mode. Enclose the entire arguments string in double quote marks.
Individual arguments may be quoted with single quotes, using the same syntax as for ar-
guments in a Condor submit description file. Within the arguments, the characters%f are
replaced by the path to thesshdconfiguration file the characters%%are replaced by a single
percent character. The default value is the string"-i -e -f %f" .

SSH_TO_JOB_SSHD_CONFIG_TEMPLATEA string, read by thecondor_starterthat spec-
ifies the path and file name of ansshd configuration template file. The template
is turned into ansshd configuration file by replacing macros within the template that
specify such things as the paths to key files. The macro replacement is done by
the script$(LIBEXEC)/condor_ssh_to_job_sshd_setup . The default value is
$(LIB)/condor_ssh_to_job_sshd_config_template .

SSH_TO_JOB_SSH_KEYGEN A string, read by thecondor_starterthat specifies the path to
ssh_keygen, the program used to create ssh keys.

SSH_TO_JOB_SSH_KEYGEN_ARGSA string, read by thecondor_starterthat specifies the
command-line arguments to be passed to thessh_keygento generate an ssh key. Enclose
the entire arguments string in double quotes. Individual arguments may be quoted with single
quotes, using the same syntax as for arguments in a Condor submit description file. Within
the arguments, the characters%f are replaced by the path to the key file to be generated, and
the characters%%are replaced by a single percent character. The default value is the string
"-N '' -C '' -q -f %f -t rsa" . If the user specifies additional arguments with
the commandcondor_ssh_to_job -keygen-options , then those arguments are
placed after the arguments specified by the value ofSSH_TO_JOB_SSH_KEYGEN_ARGS.

3.3.33 condor_roosterConfiguration File Macros

condor_rooster is an optional daemon that may be added to thecondor_masterdaemon’s
DAEMON_LIST. It is responsible for waking up hibernating machines when their UNHIBERNATE

Condor Version 7.7.6 Manual

3.3. Configuration 276

expression becomesTrue . In the typical case, a pool runs a single instance ofcondor_roosteron
the central manager. However, if the network topology requires that Wake On LAN packets be sent
to specific machines from different locations,condor_roostercan be run on any machine(s) that can
read from the pool’scondor_collectordaemon.

Forcondor_roosterto wake up hibernating machines, the collecting of offline machine ClassAds
must be enabled. See variableOFFLINE_LOG on page 215 for details on how to do this.

ROOSTER_INTERVAL The integer number of seconds between checks for offline machines that
should be woken. The default value is 300.

ROOSTER_MAX_UNHIBERNATE An integer specifying the maximum number of machines to
wake up per cycle. The default value of 0 means no limit.

ROOSTER_UNHIBERNATE A boolean expression that specifies which machines should bewoken
up. The default expression isOffline && Unhibernate . If network topology or other
considerations demand that some machines in a pool be woken up by one instance ofcon-
dor_rooster, while others be woken up by a different instance,ROOSTER_UNHIBERNATE
may be set locally such that it is different for the two instances ofcondor_rooster. In this way,
the different instances will only try to wake up their respective subset of the pool.

ROOSTER_UNHIBERNATE_RANKA ClassAd expression specifying which machines should be
woken up first in a given cycle. Higher ranked machines are woken first. If the number of
machines to be woken up is limited byROOSTER_MAX_UNHIBERNATE, the rank may be
used for determining which machines are woken before reaching the limit.

ROOSTER_WAKEUP_CMD A string representing the command line invoked bycondor_roosterthat
is to wake up a machine. The command and any arguments should be enclosed in double quote
marks, the same asargumentssyntax in a Condor submit description file. The default valueis
"$(BIN)/condor_power -d -i" . The command is expected to read from its standard
input a ClassAd representing the offline machine.

3.3.34 condor_shared_portConfiguration File Macros

These configuration variables affect thecondor_shared_portdaemon. For general discussion of
condor_shared_port, see 373.

SHARED_PORT_DAEMON_AD_FILEThis specifies the full path and name of a file used to pub-
lish the address ofcondor_shared_port. This file is read by the other daemons that have
USE_SHARED_PORT=Trueand which are therefore sharing the same port. The default
typically does not need to be changed.

SHARED_PORT_MAX_WORKERS An integer that specifies the maximum number of sub-processes
created bycondor_shared_portwhile servicing requests to connect to the daemons that are
sharing the port. The default is 50.

Condor Version 7.7.6 Manual

3.3. Configuration 277

DAEMON_SOCKET_DIR This specifies the directory where Unix versions of Condor daemons
will create named sockets so that incoming connections can be forwarded to them bycon-
dor_shared_port. If this directory does not exist, it will be created. The maximum length of
named socket paths plus names is restricted by the operatingsystem, so it is important that
this path not exceed 90 characters.

Write access to this directory grants permission to receiveconnections through the shared port.
By default, the directory is created to be owned by Condor andis made to be only writable
by Condor. One possible reason to broaden access to this directory is if execute nodes are
accessed via CCB and the submit node is behind a firewall with only one open port (the port
assigned tocondor_shared_port). In this case, commands that interact with the execute node
such ascondor_ssh_to_jobwill not be able to operate unless run by a user with write access to
DAEMON_SOCKET_DIR. In this case, one could grant tmp-like permissions to this directory
so that all users can receive CCB connections back through the firewall. (But consider the
wisdom of having a firewall in the first place if you are going tocircumvent it in this way.)
The defaultDAEMON_SOCKET_DIRis $(LOCK)/daemon_sock . This directory must be
on a local file system that supports named sockets.

SHARED_PORT_ARGS Like all daemons started bycondor_master, condor_shared_portargu-
ments can be customized. One reason to do this is to specify the port number thatcon-
dor_shared_portshould use. For example, the following line configurescondor_shared_port
to use port 4080.

SHARED_PORT_ARGS = -p 4080

If no port is specified, a port will be dynamically chosen; it may be different each time Condor
is started.

3.3.35 Configuration File Entries Relating to Hooks

These macros control the various hooks that interact with Condor. Currently, there are two indepen-
dent sets of hooks. One is a set of fetch work hooks, some of which are invoked by thecondor_startd
to optionally fetch work, and some are invoked by thecondor_starter. See section 4.4.1 on page 483
on Job Hooks for more details. The other set replace functionality of thecondor_job_routerdaemon.
Documentation for thecondor_job_routerdaemon is in section 5.6 on page 557.

SLOT<N>_JOB_HOOK_KEYWORD For the fetch work hooks, the keyword used to define which
set of hooks a particular compute slot should invoke. The value of <N> is replaced by
the slot identification number. For example, on slot 1, the variable name will be called
[SLOT1_JOB_HOOK_KEYWORD. There is no default keyword. Sites that wish to use these
job hooks must explicitly define the keyword and the corresponding hook paths.

STARTD_JOB_HOOK_KEYWORD For the fetch work hooks, the keyword used to define which set
of hooks a particularcondor_startdshould invoke. This setting is only used if a slot-specific
keyword is not defined for a given compute slot. There is no default keyword. Sites that wish
to use job hooks must explicitly define the keyword and the corresponding hook paths.

Condor Version 7.7.6 Manual

3.3. Configuration 278

<Keyword>_HOOK_FETCH_WORKFor the fetch work hooks, the full path to the program to
invoke whenever thecondor_startdwants to fetch work.<Keyword> is the hook keyword
defined to distinguish between sets of hooks. There is no default.

<Keyword>_HOOK_REPLY_FETCHFor the fetch work hooks, the full path to the program to
invoke when the hook defined by<Keyword>_HOOK_FETCH_WORKreturns data and the
thecondor_startddecides if it is going to accept the fetched job or not.<Keyword> is the
hook keyword defined to distinguish between sets of hooks.

<Keyword>_HOOK_REPLY_CLAIMFor the fetch work hooks, the full path to the program to
invoke whenever thecondor_startdfinishes fetching a job and decides what to do with it.
<Keyword> is the hook keyword defined to distinguish

between sets of hooks. There is no default.

<Keyword>_HOOK_PREPARE_JOBFor the fetch work hooks, the full path to the program in-
voked by thecondor_starterbefore it runs the job.<Keyword> is the hook keyword defined
to distinguish between sets of hooks.

<Keyword>_HOOK_UPDATE_JOB_INFOThis configuration variable is used by both fetch
work hooks and bycondor_job_routerhooks.

For the fetch work hooks, the full path to the program invokedby thecondor_starterperiod-
ically as the job runs, allowing thecondor_starterto present an updated and augmented job
ClassAd to the program. See section 4.4.1 on page 484 for the list of additional attributes
included. When the job is first invoked, thecondor_starterwill invoke the program after
$(STARTER_INITIAL_UPDATE_INTERVAL) seconds. Thereafter, thecondor_starter
will invoke the program every$(STARTER_UPDATE_INTERVAL)seconds.<Keyword>
is the hook keyword defined to distinguish between sets of hooks.

As a Job Router hook, the full path to the program invoked whenthe Job Router polls the
status of routed jobs at intervals set byJOB_ROUTER_POLLING_PERIOD. <Keyword> is
the hook keyword defined byJOB_ROUTER_HOOK_KEYWORDto identify the hooks.

<Keyword>_HOOK_EVICT_CLAIMFor the fetch work hooks, the full path to the program to
invoke whenever thecondor_startdneeds to evict a fetched claim.<Keyword> is the hook
keyword defined to distinguish between sets of hooks. There is no default.

<Keyword>_HOOK_JOB_EXIT For the fetch work hooks, the full path to the program invoked
by thecondor_starterwhenever a job exits, either on its own or when being evicted from
an execution slot.<Keyword> is the hook keyword defined to distinguish between sets of
hooks.

<Keyword>_HOOK_JOB_EXIT_TIMEOUTFor the fetch work hooks, the number of seconds
thecondor_starterwill wait for the hook defined by<Keyword>_HOOK_JOB_EXIT hook
to exit, before continuing with job clean up. Defaults to 30 seconds.<Keyword> is the hook
keyword defined to distinguish between sets of hooks.

FetchWorkDelay An expression that defines the number of seconds that thecondor_startd
should wait after an invocation of<Keyword>_HOOK_FETCH_WORKcompletes before the
hook should be invoked again. The expression is evaluated inthe context of the slot ClassAd,

Condor Version 7.7.6 Manual

3.3. Configuration 279

and the ClassAd of the currently running job (if any). The expression must evaluate to an in-
teger. If not defined, thecondor_startdwill wait 300 seconds (five minutes) between attempts
to fetch work. For more information about this expression, see section 4.4.1 on page 487.

JOB_ROUTER_HOOK_KEYWORD For the Job Router hooks, the keyword used to define the set of
hooks thecondor_job_routeris to invoke to replace functionality of routing translation. There
is no default keyword. Use of these hooks requires the explicit definition of the keyword and
the corresponding hook paths.

<Keyword>_HOOK_TRANSLATE_JOBA Job Router hook, the full path to the program invoked
when the Job Router has determined that a job meets the definition for a route. This hook is
responsible for doing the transformation of the job.<Keyword> is the hook keyword defined
by JOB_ROUTER_HOOK_KEYWORDto identify the hooks.

<Keyword>_HOOK_JOB_FINALIZEA Job Router hook, the full path to the program invoked
when the Job Router has determined that the job completed.<Keyword> is the hook key-
word defined byJOB_ROUTER_HOOK_KEYWORDto identify the hooks.

<Keyword>_HOOK_JOB_CLEANUPA Job Router hook, the full path to the program invoked
when the Job Router finishes managing the job.<Keyword> is the hook keyword defined by
JOB_ROUTER_HOOK_KEYWORDto identify the hooks.

The following macros describe theDaemon ClassAd Hookcapabilities of Condor. The Daemon
ClassAd Hook mechanism is used to run executables (called jobs) directly from thecondor_startd
andcondor_schedddaemons. The output from the jobs is incorporated into the machine ClassAd
generated by the respective daemon. The mechanism is described in section 4.4.3 on page 491.

STARTD_CRON_NAMEand SCHEDD_CRON_NAME These variables will be honored through
Condor versions 7.6, and support will be removed in Condor version 7.7. They are no longer
documented as to their usage.

Defines a logical name to be used in the formation of related configuration macro names.
This macro made other Daemon ClassAd Hook macros more readable and maintainable. A
common example was

STARTD_CRON_NAME = HAWKEYE

This example allowed the naming of other related macros to contain the stringHAWKEYEin
their name, replacing the stringSTARTD_CRON.

The value of these variables may not beBENCHMARKS. The Daemon ClassAd Hook mecha-
nism is used to implement a set of provided hooks that providebenchmark attributes.

STARTD_CRON_CONFIG_VALand SCHEDD_CRON_CONFIG_VALand BENCHMARKS_CONFIG_VAL
This configuration variable can be used to specify the path and executable name of thecon-
dor_config_valprogram which the jobs (hooks) should use to get configuration information
from the daemon. If defined, an environment variable by the same name with the same value
will be passed to all jobs.

Condor Version 7.7.6 Manual

3.3. Configuration 280

STARTD_CRON_AUTOPUBLISHOptional setting that determines if thecondor_startdshould au-
tomatically publish a new update to thecondor_collectorafter any of the jobs produce output.
Beware that enabling this setting can greatly increase the network traffic in a Condor pool,
especially when many modules are executed, or if the period in which they run is short. There
are three possible (case insensitive) values for this variable:

Never This default value causes thecondor_startdto not automatically publish updates
based on any jobs. Instead, updates rely on the usual behavior for sending updates,
which is periodic, based on theUPDATE_INTERVALconfiguration variable, or when-
ever a given slot changes state.

Always Causes thecondor_startdto always send a new update to thecondor_collector
whenever any job exits.

If_Changed Causes thecondor_startdto only send a new update to thecondor_collector
if the output produced by a given job is different than the previous output of the
same job. The only exception is theLastUpdate attribute, which is automati-
cally set for all jobs to be the timestamp when the job last ran. It is ignored when
STARTD_CRON_AUTOPUBLISHis set toIf_Changed .

STARTD_CRON_JOBLISTand SCHEDD_CRON_JOBLISTand BENCHMARKS_JOBLIST
These configuration variables are defined by a comma and/or white space separated list of job
names to run. Each is the logical name of a job. This name must be unique; no two jobs may
have the same name.

STARTD_CRON_<JobName>_PREFIXand SCHEDD_CRON_<JobName>_PREFIXand BENCHMARKS_<JobName>_PREFIX
Specifies a string which is prepended by Condor to all attribute names that the job generates.
The use of prefixes avoids the conflicts that would be caused byattributes of the same name
generated and utilized by different jobs. For example, if a module prefix isxyz_ , and an
individual attribute is namedabc , then the resulting attribute name will bexyz_abc . Due to
restrictions on ClassAd names, a prefix is only permitted to contain alpha-numeric characters
and the underscore character.

<JobName> is the logical name assigned for a job as defined by configuration variable
STARTD_CRON_JOBLIST, SCHEDD_CRON_JOBLIST, or BENCHMARKS_JOBLIST.

STARTD_CRON_<JobName>_SLOTSand BENCHMARKS_<JobName>_SLOTSA comma
separated list of slots. The output of the job specified by<JobName> is incorporated into
ClassAds; this list specifies which slots are to incorporatethe output attributes of the job. If
not specified, the default is to incorporate the output attributes into the ClassAd of all slots.

<JobName> is the logical name assigned for a job as defined by configuration variable
STARTD_CRON_JOBLISTor BENCHMARKS_JOBLIST.

STARTD_CRON_<JobName>_EXECUTABLEand SCHEDD_CRON_<JobName>_EXECUTABLEand BENCHMARKS_<JobName>_EXECUTABLE
The full path and executable to run for this job. Note that multiple jobs may specify the same
executable, although the jobs need to have different logical names.

<JobName> is the logical name assigned for a job as defined by configuration variable
STARTD_CRON_JOBLIST, SCHEDD_CRON_JOBLIST, or BENCHMARKS_JOBLIST.

Condor Version 7.7.6 Manual

3.3. Configuration 281

STARTD_CRON_<JobName>_PERIODand SCHEDD_CRON_<JobName>_PERIODand BENCHMARKS_<JobName>_PERIOD
The period specifies time intervals at which the job should berun. For periodic jobs, this
is the time interval that passes between starting the execution of the job. The value may be
specified in seconds, minutes, or hours. Specify this time byappending the characters , m, or
h to the value. As an example, 5m starts the execution of the jobevery five minutes. If no
character is appended to the value, seconds are used as a default. In WaitForExit mode,
the value has a different meaning: the period specifies the length of time after the job ceases
execution and before it is restarted. The minimum valid value of the period is 1 second.

<JobName> is the logical name assigned for a job as defined by configuration variable
STARTD_CRON_JOBLIST, SCHEDD_CRON_JOBLIST, or BENCHMARKS_JOBLIST.

STARTD_CRON_<JobName>_MODEand SCHEDD_CRON_<JobName>_MODEand BENCHMARKS_<JobName>_MODE
A string that specifies a mode within which the job operates. Legal values are

• Periodic , which is the default.

• WaitForExit

• OneShot

• OnDemand

<JobName> is the logical name assigned for a job as defined by configuration variable
STARTD_CRON_JOBLIST, SCHEDD_CRON_JOBLIST, or BENCHMARKS_JOBLIST.

The defaultPeriodic mode is used for most jobs. In this mode, the job is expected tobe
started by thecondor_startddaemon, gather and publish its data, and then exit.

In WaitForExit mode thecondor_startddaemon interprets the period as defined by
STARTD_CRON_<JobName>_PERIODdifferently. In this case, it refers to the amount of
time to wait after the job exits before restarting it. With a value of 1, the job is kept running
nearly continuously. In general,WaitForExit mode is for jobs that produce a periodic
stream of updated data, but it can be used for other purposes,as well.

The OneShot mode is used for jobs that are run once at the start of the daemon. If the
reconfig_rerun option is specified, the job will be run again after any reconfiguration.

TheOnDemandmode is used only by theBENCHMARKSmechanism. All benchmark jobs
must be beOnDemandjobs. Any other jobs specified asOnDemandwill never run. Addi-
tional future features may allow for otherOnDemandjob uses.

STARTD_CRON_<JobName>_RECONFIGand SCHEDD_CRON_<JobName>_RECONFIG
A boolean value that whenTrue , causes the daemon to send an HUP signal to the job when
the daemon is reconfigured. The job is expected to reread its configuration at that time.

<JobName> is the logical name assigned for a job as defined by configuration variable
STARTD_CRON_JOBLISTor SCHEDD_CRON_JOBLIST.

STARTD_CRON_<JobName>_RECONFIG_RERUNand SCHEDD_CRON_<JobName>_RECONFIG_RERUN
A boolean value that whenTrue , causes the daemon ClassAd hooks mechanism to re-run
the specified job when the daemon is reconfigured viacondor_reconfig. The default value is
False .

<JobName> is the logical name assigned for a job as defined by configuration variable
STARTD_CRON_JOBLISTor SCHEDD_CRON_JOBLIST.

Condor Version 7.7.6 Manual

3.3. Configuration 282

STARTD_CRON_<JobName>_JOB_LOADand SCHEDD_CRON_<JobName>_JOB_LOADand BENCHMARKS_<JobName>_JOB_LOAD
A floating point value that represents the assumed and therefore expected CPU load that a
job induces on the system. This job load is then used to limit the total number of jobs that
run concurrently, by not starting new jobs if the assumed total load from all jobs is over a set
threshold. The default value for each individualSTARTD_CRONor aSCHEDD_CRONjob is
0.01. The default value for each individualBENCHMARKSjob is 1.0.

<JobName> is the logical name assigned for a job as defined by configuration variable
STARTD_CRON_JOBLIST, SCHEDD_CRON_JOBLIST, or BENCHMARKS_JOBLIST.

STARTD_CRON_MAX_JOB_LOADand SCHEDD_CRON_MAX_JOB_LOADand BENCHMARKS_MAX_JOB_LOAD
A floating point value representing a threshold for CPU load,such that if starting another
job would cause the sum of assumed loads for all running jobs to exceed this value, no
further jobs will be started. The default value forSTARTD_CRONor aSCHEDD_CRONhook
managers is 0.1. This implies that a maximum of 10 jobs (usingtheir default, assumed load)
could be concurrently running. The default value for theBENCHMARKShook manager is 1.0.
This implies that only 1BENCHMARKSjob (at the default, assumed load) may be running.

STARTD_CRON_<JobName>_KILLand SCHEDD_CRON_<JobName>_KILLand BENCHMARKS_<JobName>_KILL
A boolean value applicable only for jobs with aMODEof anything other thanWaitForExit .
The default value isFalse .

This variable controls the behavior of the daemon hook manager when it detects that an in-
stance of the job’s executable is still running as it is time to invoke the job again. IfTrue , the
daemon hook manager will kill the currently running job and then invoke an new instance of
the job. IfFalse , the existing job invocation is allowed to continue running.

<JobName> is the logical name assigned for a job as defined by configuration variable
STARTD_CRON_JOBLIST, SCHEDD_CRON_JOBLIST, or BENCHMARKS_JOBLIST.

STARTD_CRON_<JobName>_ARGSand SCHEDD_CRON_<JobName>_ARGSand BENCHMARKS_<JobName>_ARGS
The command line arguments to pass to the job as it is invoked.The first argument will be
<JobName>.

<JobName> is the logical name assigned for a job as defined by configuration variable
STARTD_CRON_JOBLIST, SCHEDD_CRON_JOBLIST, or BENCHMARKS_JOBLIST.

STARTD_CRON_<JobName>_ENVand SCHEDD_CRON_<JobName>_ENVand BENCHMARKS_<JobName>_ENV
The environment string to pass to the job. The syntax is the same as that of
<DaemonName>_ENVIRONMENTas defined at 3.3.9.

<JobName> is the logical name assigned for a job as defined by configuration variable
STARTD_CRON_JOBLIST, SCHEDD_CRON_JOBLIST, or BENCHMARKS_JOBLIST.

STARTD_CRON_<JobName>_CWDand SCHEDD_CRON_<JobName>_CWDand BENCHMARKS_<JobName>_CWD
The working directory in which to start the job.

<JobName> is the logical name assigned for a job as defined by configuration variable
STARTD_CRON_JOBLIST, SCHEDD_CRON_JOBLIST, or BENCHMARKS_JOBLIST.

Condor Version 7.7.6 Manual

3.3. Configuration 283

3.3.36 Configuration File Entries Only for Windows Platforms

These macros are utilized only on Windows platforms.

WINDOWS_RMDIR The complete path and executable name of the Condor version of the built-in
rmdir program. The Condor version will not fail when the directorycontains files that have
ACLs that deny the SYSTEM process delete access. If not defined, the built-in Windows
rmdir program is invoked, and a value defined forWINDOWS_RMDIR_OPTIONSis ignored.

WINDOWS_RMDIR_OPTIONS Command line options to be specified when configuration vari-
able WINDOWS_RMDIRis defined. Defaults to/S /C when configuration variable
WINDOWS_RMDIRis defined and its definition contains the string"condor_rmdir.exe" .

3.3.37 condor_defragConfiguration File Macros

These configuration variables affect thecondor_defragdaemon. A general discussion ofcon-
dor_defragmay be found in section 3.12.8.

DEFRAG_NAME Used to give an alternative value to theNameattribute in thecondor_defrag’s
ClassAd. This esoteric configuration macro might be used in the situation where there are
two condor_defragdaemons running on one machine, and each reports to the samecon-
dor_collector. Different names will distinguish the two daemons. See the description of
MASTER_NAMEin section 3.3.9 on page 200 for defaults and composition of valid Condor
daemon names.

DEFRAG_DRAINING_MACHINES_PER_HOURA floating point number that specifies how many
machines should be drained per hour. The default is 0, so no draining will happen unless this
setting is changed. Eachcondor_startdis considered to be one machine. The actual number
of machines drained per hour may be less than this if drainingis halted by one of the other
defragmentation policy controls. The granularity in timing of draining initiation is controlled
by DEFRAG_INTERVAL. The lowest rate of draining that is supported is one machineper
day or one machine perDEFRAG_INTERVAL, whichever is lower. A fractional number
of machines contributing to the value ofDEFRAG_DRAINING_MACHINES_PER_HOURis
rounded to the nearest whole number of machines on a per day basis.

DEFRAG_REQUIREMENTS An expression that specifies which machines to drain. The default is

PartitionableSlot && Offline=!=True

A machine, meaning acondor_startd, is matched ifany of its slots match this expres-
sion. Machines are automatically excluded if they are already draining, or if they match
DEFRAG_WHOLE_MACHINE_EXPR.

DEFRAG_RANK An expression that specifies which machines are more desirable to drain. The ex-
pression should evaluate to a number for each candidate machine to be drained. If the number

Condor Version 7.7.6 Manual

3.3. Configuration 284

of machines to be drained is less than the number of candidates, the machines with higher rank
will be chosen. The rank of a machine, meaning acondor_startd, is the rank of its highest
ranked slot. The default rank is-ExpectedMachineGracefulDrainingBadput .

DEFRAG_WHOLE_MACHINE_EXPRAn expression that specifies which machines are already op-
erating as whole machines. The default is

Cpus == TotalCpus && Offline=!=True

A machine is matched ifanyslot on the machine matches this expression. Eachcondor_startd
is considered to be one machine. Whole machines are excludedwhen selecting machines to
drain. They are also counted againstDEFRAG_MAX_WHOLE_MACHINES.

DEFRAG_MAX_WHOLE_MACHINESAn integer that specifies the maximum number of whole ma-
chines. When the number of whole machines is greater than or equal to this, no new machines
will be selected for draining. Eachcondor_startdis counted as one machine. The special
value -1 indicates that there is no limit. The default is -1.

DEFRAG_MAX_CONCURRENT_DRAININGAn integer that specifies the maximum number of
draining machines. When the number of machines that are draining is greater than or equal to
this, no new machines will be selected for draining. Each draining condor_startdis counted
as one machine. The special value -1 indicates that there is no limit. The default is -1.

DEFRAG_INTERVAL An integer that specifies the number of seconds between evaluations of the
defragmentation policy. In each cycle, the state of the poolis observed and machines are
drained, if specified by the policy. The default is 600 seconds. Very small intervals could
create excessive load on thecondor_collector.

DEFRAG_SCHEDULE A setting that specifies the draining schedule to use when draining ma-
chines. Possible values aregraceful , quick , andfast . The default isgraceful .

graceful Initiate a graceful eviction of the job. This means all promises that have been made
to the job are honored, includingMaxJobRetirementTime . The eviction of jobs
is coordinated to reduce idle time. This means that if one slot has a job with a long
retirement time and the other slots have jobs with shorter retirement times, the effective
retirement time for all of the jobs is the longer one.

quick MaxJobRetirementTime is not honored. Eviction of jobs is immediately initi-
ated. Jobs are given time to shut down and produce a checkpoint according to the usual
policy, as given byMachineMaxVacateTime .

fast Jobs are immediately hard-killed, with no chance to gracefully shut down or produce a
checkpoint.

DEFRAG_STATE_FILE The path to a file used to record information used bycondor_defrag
when it is restarted. This should only need to be modified if there will be multiple
instances of thecondor_defragdaemon running on the same machine. The default is
$(LOCK)/defrag_state .

DEFRAG_LOG The path to thecondor_defragdaemon’s log file. The default log location is
$(LOG)/DefragLog .

Condor Version 7.7.6 Manual

3.4. User Priorities and Negotiation 285

3.4 User Priorities and Negotiation

Condor uses priorities to determine machine allocation forjobs. This section details the priorities
and the allocation of machines (negotiation).

For accounting purposes, each user is identified by username@uid_domain. Each user is as-
signed a priority value even if submitting jobs from different machines in the same domain, or even
if submitting from multiple machines in the different domains.

The numerical priority value assigned to a user is inverselyrelated to thegoodnessof the priority.
A user with a numerical priority of 5 gets more resources thana user with a numerical priority of
50. There are two priority values assigned to Condor users:

• Real User Priority (RUP), which measures resource usage ofthe user.

• Effective User Priority (EUP), which determines the number of resources the user can get.

This section describes these two priorities and how they affect resource allocations in Condor. Doc-
umentation on configuring and controlling priorities may befound in section 3.3.17.

3.4.1 Real User Priority (RUP)

A user’s RUP measures the resource usage of the user through time. Every user begins with a RUP
of one half (0.5), and at steady state, the RUP of a user equilibrates to the number of resources used
by that user. Therefore, if a specific user continuously usesexactly ten resources for a long period
of time, the RUP of that user stabilizes at ten.

However, if the user decreases the number of resources used,the RUP gets better. The rate at
which the priority value decays can be set by the macroPRIORITY_HALFLIFE , a time period
defined in seconds. Intuitively, if thePRIORITY_HALFLIFE in a pool is set to 86400 (one day),
and if a user whose RUP was 10 removes all his jobs, the user’s RUP would be 5 one day later, 2.5
two days later, and so on.

3.4.2 Effective User Priority (EUP)

The effective user priority (EUP) of a user is used to determine how many resources that user may
receive. The EUP is linearly related to the RUP by apriority factor which may be defined on a
per-user basis. Unless otherwise configured, the priority factor for all users is 1.0, and so the EUP
is the same as the the RUP. However, if desired, the priority factors of specific users (such as remote
submitters) can be increased so that others are served preferentially.

The number of resources that a user may receive is inversely related to the ratio between the
EUPs of submitting users. Therefore userA with EUP=5 will receive twice as many resources as
userB with EUP=10 and four times as many resources as userC with EUP=20. However, ifA

Condor Version 7.7.6 Manual

3.4. User Priorities and Negotiation 286

does not use the full number of allocated resources, the available resources are repartitioned and
distributed among remaining users according to the inverseratio rule.

Condor supplies mechanisms to directly support two policies in which EUP may be useful:

Nice users A job may be submitted with the parameternice_user set to TRUE in the submit
command file. A nice user job gets its RUP boosted by theNICE_USER_PRIO_FACTOR
priority factor specified in the configuration file, leading to a (usually very large) EUP. This
corresponds to a low priority for resources. These jobs are therefore equivalent to Unix back-
ground jobs, which use resources not used by other Condor users.

Remote UsersThe flocking feature of Condor (see section 5.2) allows thecondor_scheddto sub-
mit to more than one pool. In addition, the submit-only feature allows a user to run acon-
dor_scheddthat is submitting jobs into another pool. In such situations, submitters from other
domains can submit to the local pool. It is often desirable tohave Condor treat local users
preferentially over these remote users. If configured, Condor will boost the RUPs of remote
users byREMOTE_PRIO_FACTORspecified in the configuration file, thereby lowering their
priority for resources.

The priority boost factors for individual users can be set with the setfactor option of con-
dor_userprio. Details may be found in thecondor_userpriomanual page on page 925.

3.4.3 Priorities in Negotiation and Preemption

Priorities are used to ensure that users get their fair shareof resources. The priority values are
used at allocation time, meaning during negotiation and matchmaking. Therefore, there are ClassAd
attributes that take on defined values only during negotiation, making them ephemeral. In addition
to allocation, Condor may preempt a machine claim and reallocate it when conditions change.

Too many preemptions lead to thrashing, a condition in whichnegotiation for a machine iden-
tifies a new job with a better priority most every cycle. Each job is, in turn, preempted, and no job
finishes. To avoid this situation, thePREEMPTION_REQUIREMENTSconfiguration variable is de-
fined for and used only by thecondor_negotiatordaemon to specify the conditions that must be met
for a preemption to occur. It is usually defined to deny preemption if a current running job has been
running for a relatively short period of time. This effectively limits the number of preemptions per
resource per time interval. Note thatPREEMPTION_REQUIREMENTSonly applies to preemptions
due to user priority. It does not have any effect if the machine’sRANKexpression prefers a different
job, or if the machine’s policy causes the job to vacate due toother activity on the machine. See
section 3.5.9 for a general discussion of limiting preemption.

The following ephemeral attributes may be used within policy definitions. Care should be taken
when using these attributes, due to their ephemeral nature;they are not always defined, so the usage
of an expression to check if defined such as

(RemoteUserPrio =?= UNDEFINED)

Condor Version 7.7.6 Manual

3.4. User Priorities and Negotiation 287

is likely necessary.

Within these attributes, those with names that contain the string Submitter refer to char-
acteristics about the candidate job’s user; those with names that contain the stringRemote
refer to characteristics about the user currently using theresource. Further, those with
names that end with the stringResourcesInUse have values that may change within the
time period associated with a single negotiation cycle. Therefore, the configuration variables
PREEMPTION_REQUIREMENTS_STABLEand andPREEMPTION_RANK_STABLEexist to in-
form thecondor_negotiatordaemon that values may change. See section 3.3.17 on page 241for
definitions of these configuration variables.

SubmitterUserPrio: A floating point value representing the user priority of the candidate job.

SubmitterUserResourcesInUse: The integer number of slots currently utilized by the user
submitting the candidate job.

RemoteUserPrio: A floating point value representing the user priority of the job currently run-
ning on the machine. This version of the attribute, with no slot represented in the attribute
name, refers to the current slot being evaluated.

Slot<N>_RemoteUserPrio: A floating point value representing the user priority of the job
currently running on the particular slot represented by<N> on the machine.

RemoteUserResourcesInUse: The integer number of slots currently utilized by the user of
the job currently running on the machine.

SubmitterGroupResourcesInUse: If the owner of the candidate job is a member of a valid
accounting group, with a defined group quota, then this attribute is the integer number of slots
currently utilized by the group.

SubmitterGroup: The accounting group name of the requesting submitter.

SubmitterGroupQuota: If the owner of the candidate job is a member of a valid accounting
group, with a defined group quota, then this attribute is the integer number of slots defined as
the group’s quota.

RemoteGroupResourcesInUse: If the owner of the currently running job is a member of a
valid accounting group, with a defined group quota, then thisattribute is the integer number
of slots currently utilized by the group.

RemoteGroup: The accounting group name of the owner of the currently running job.

RemoteGroupQuota: If the owner of the currently running job is a member of a validaccounting
group, with a defined group quota, then this attribute is the integer number of slots defined as
the group’s quota.

SubmitterNegotiatingGroup: The accounting group name that the candidate job is negoti-
ating under.

RemoteNegotiatingGroup: The accounting group name that the currently running job nego-
tiated under.

Condor Version 7.7.6 Manual

3.4. User Priorities and Negotiation 288

SubmitterAutoregroup: Boolean attribute isTrue if candidate job is negotiated via autore-
goup.

RemoteAutoregroup: Boolean attribute isTrue if currently running job negotiated via autore-
goup.

3.4.4 Priority Calculation

This section may be skipped if the reader so feels, but for thecurious, here is Condor’s priority
calculation algorithm.

The RUP of a useru at timet, πr(u, t), is calculated every time intervalδt using the formula

πr(u, t) = β × π(u, t − δt) + (1 − β) × ρ(u, t)

whereρ(u, t) is the number of resources used by useru at timet, andβ = 0.5δt/h. h is the half life
period set byPRIORITY_HALFLIFE .

The EUP of useru at timet, πe(u, t) is calculated by

πe(u, t) = πr(u, t) × f(u, t)

wheref(u, t) is the priority boost factor for useru at timet.

As mentioned previously, the RUP calculation is designed sothat at steady state, each user’s
RUP stabilizes at the number of resources used by that user. The definition ofβ ensures that the
calculation ofπr(u, t) can be calculated over non-uniform time intervalsδt without affecting the
calculation. The time intervalδt varies due to events internal to the system, but Condor guarantees
that unless the central manager machine is down, no matches will be unaccounted for due to this
variance.

3.4.5 Negotiation

Negotiation is the method Condor undergoes periodically tomatch queued jobs with resources ca-
pable of running jobs. Thecondor_negotiatordaemon is responsible for negotiation.

During a negotiation cycle, thecondor_negotiatordaemon accomplishes the following ordered
list of items.

1. Build a list of all possible resources, regardless of the state of those resources.

2. Obtain a list of all job submitters (for the entire pool).

3. Sort the list of all job submitters based on EUP (see section 3.4.2 for an explanation of EUP).
The submitter with the best priority is first within the sorted list.

4. Iterate until there are either no more resources to match,or no more jobs to match.

Condor Version 7.7.6 Manual

3.4. User Priorities and Negotiation 289

For each submitter (in EUP order):

For each submitter, get each job. Since jobs may be submittedfrom more than one ma-
chine (hence to more than onecondor_schedddaemon), here is a further definition
of the ordering of these jobs. With jobs from a singlecondor_schedddaemon, jobs
are typically returned in job priority order. When more thanonecondor_schedd
daemon is involved, they are contacted in an undefined order.All jobs from a single
condor_schedddaemon are considered before moving on to the next. For each job:

• For each machine in the pool that can execute jobs:
(a) If machine.requirements evaluates to False or

job.requirements evaluates toFalse , skip this machine
(b) If the machine is in the Claimed state, but not running a job, skip this ma-

chine.
(c) If this machine is not running a job, add it to the potential match list by reason

of No Preemption.

(d) If the machine is running a job
– If the machine.RANK on this job is better than the running job, add this

machine to the potential match list by reason of Rank.
– If the EUP of this job is better than the EUP of the currently

running job, andPREEMPTION_REQUIREMENTSis True , and the
machine.RANK on this job is not worse than the currently running job,
add this machine to the potential match list by reason of Priority.

• Of machines in the potential match list, sort
by NEGOTIATOR_PRE_JOB_RANK, job.RANK ,
NEGOTIATOR_POST_JOB_RANK, Reason for claim (No Preemption,
then Rank, then Priority),PREEMPTION_RANK

• The job is assigned to the top machine on the potential matchlist. The machine
is removed from the list of resources to match (on this negotiation cycle).

Thecondor_negotiatorasks thecondor_scheddfor the "next job" from a given submitter/user.
Typically, thecondor_scheddreturns jobs in the order of job priority. If priorities are the same,
job submission time is used; older jobs go first. If a cluster has multiple procs in it and one of
the jobs cannot be matched, thecondor_scheddwill not return any more jobs in that cluster on
that negotiation pass. This is an optimization based on the theory that the cluster jobs are similar.
The configuration variableNEGOTIATE_ALL_JOBS_IN_CLUSTERdisables the cluster-skipping
optimization. Use of the configuration variableSIGNIFICANT_ATTRIBUTES will change the
definition of what thecondor_scheddconsiders a cluster from the default definition of all jobs that
share the sameClusterId .

3.4.6 The Layperson’s Description of the Pie Spin and Pie Slice

Condor schedules in a variety of ways. First, it takes all users who have submitted jobs and calculates
their priority. Then, it totals the number of resources available at the moment, and using the ratios of
the user priorities, it calculates the number of machines each user could get. This is theirpie slice.

Condor Version 7.7.6 Manual

3.4. User Priorities and Negotiation 290

The Condor matchmaker goes in user priority order, contactseach user, and asks for job infor-
mation. Thecondor_schedddaemon (on behalf of a user) tells the matchmaker about a job,and the
matchmaker looks at available resources to create a list of resources that match the requirements ex-
pression. With the list of resources that match, it sorts them according to the rank expressions within
ClassAds. If a machine prefers a job, the job is assigned to that machine, potentially preempting a
job that might already be running on that machine. Otherwise, give the machine to the job that the
job ranks highest. If the machine ranked highest is already running a job, we may preempt running
job for the new job. A default policy for preemption states that the user must have a 20% better
priority in order for preemption to succeed. If the job has nopreferences as to what sort of machine
it gets, matchmaking gives it the first idle resource to meet its requirements.

This matchmaking cycle continues until the user has received all of the machines in their pie
slice. The matchmaker then contacts the next highest priority user and offers that user their pie slice
worth of machines. After contacting all users, the cycle is repeated with any still available resources
and recomputed pie slices. The matchmaker continuesspinning the pieuntil it runs out of machines
or all thecondor_schedddaemons say they have no more jobs.

3.4.7 Group Accounting

By default, Condor does all accounting on a per-user basis, and this accounting is primarily used to
compute priorities for Condor’s fair-share scheduling algorithms. However, accounting can also be
done on a per-group basis. Multiple users can all submit jobsinto the same accounting group, and
all of the jobs will be treated with the same priority.

To use an accounting group, each job inserts an attribute into the job ClassAd which defines the
accounting group name for the job. A common name is decided upon and used for the group. The
following line is an example that defines the attribute within the job’s submit description file:

+AccountingGroup = "group_physics"

TheAccountingGroup attribute is a string, and it therefore must be enclosed in double quote
marks. The string may have a maximum length of 40 characters.The name shouldnot be qualified
with a domain. Certain parts of the Condor system do append the value$(UID_DOMAIN) (as
specified in the configuration file on the submit machine) to this string for internal use. For example,
if the value ofUID_DOMAINis example.com , and the accounting group name is as specified,
condor_userpriowill show statistics for this accounting group using the appended domain, for ex-
ample

Effective
User Name Priority
------------------------------ ---------
group_physics@example.com 0.50
user@example.com 23.11
heavyuser@example.com 111.13
...

Additionally, thecondor_userpriocommand allows administrators to remove an entity from the
accounting system in Condor. The-deleteoption tocondor_userprioaccomplishes this if all the

Condor Version 7.7.6 Manual

3.4. User Priorities and Negotiation 291

jobs from a given accounting group are completed, and the administrator wishes to remove that
group from the system. The-deleteoption identifies the accounting group with the fully-qualified
name of the accounting group. For example

condor_userprio -delete group_physics@example.com

Condor removes entities itself as they are no longer relevant. Intervention by an administrator to
delete entities can be beneficial when the use of thousands ofshort term accounting groups leads to
scalability issues.

Note that the name of an accounting group may include a period(.). Inclusion of a period
character in the accounting group name only has relevance ifthe portion of the name before the
period matches a group name, as described in the next sectionon group quotas.

3.4.8 Hierarchical Group Quotas

The use of group quotas modifies the negotiation for available resources (machines) within a Con-
dor pool. This solves the difficulties inherent when priorities assigned based on each single user
are insufficient. This may be the case when different groups (of varying size) own computers, and
the groups choose to combine their computers to form a Condorpool. Consider an imaginary Con-
dor pool example with thirty computers; twenty computers are owned by the physics group and ten
computers are owned by the chemistry group. One notion of fair allocation could be implemented
by configuring the twenty machines owned by the physics groupto prefer (using theRANKconfigu-
ration macro) jobs submitted by the users identified as associated with the physics group. Likewise,
the ten machines owned by the chemistry group are configured to prefer jobs from users associated
with the the chemistry group. This routes jobs to execute on specific machines, perhaps causing
more preemption than necessary. The (fair allocation) policy desired is likely somewhat different,
if these thirty machines have been pooled. The desired policy does not tie users to specific sets of
machines, but to numbers of machines (a quota). Given thirtysimilar machines, the desired policy
allows users within the physics group to have preference on up to twenty of the machines within the
pool, and the machines can be any of the machines that are available.

The implementation of quotas is hierarchical, such that quotas may be described for groups,
subgroups, sub subgroups, etc. The hierarchy is described by adherence to a naming scheme set up
in advance.

A quota for a set of users requires an identification of the set; members are called group users.
Jobs under the group quota specify the group user with theAccountingGroup job ClassAd
attribute. This is the same attribute as is used with group accounting.

The submit description file syntax for specifying a job is to be part of a group includes a series
of names separated by the period character (’. ’). Example syntax that shows only 2 levels of a
(limited) hierarchy is

+AccountingGroup = "<group>.<subgroup>.<user>"

Condor Version 7.7.6 Manual

3.4. User Priorities and Negotiation 292

Both <group> and <subgroup> are names chosen for the group. Group names are
case-insensitive for negotiation. The topmost level groupname is not required to be-
gin with the string "group_" , as in the examples"group_physics.newton" and
"group_chemistry.curie" , but it is a useful convention, because group names must not con-
flict with subgroup or user names. Note that a job specifying avalue for theAccountingGroup
ClassAd attribute that lacks at least one period in the specification will cause the job to not be con-
sidered part of a group when negotiating, even if the group name (highest within the hierarchy) has
a quota. Furthermore, there will be no warnings that the group quota is not in effect for the job, as
this syntax defines group accounting.

Configuration controls the order of negotiation for groups,subgroups within the hierarchy de-
fined, and individual users, as well as sets quotas (preferentially allocated numbers of machines) for
the groups.

Quotas are categorized as either static or dynamic. A staticquota specifies an integral numbers
of machines (slots), independent of the size of the pool. A dynamic quota specifies a percentage of
machines (slots) calculated based on the current number of machines in the pool. It is intended that
only one of a static or a dynamic quota is defined for a specifiedgroup. If both are defined, then the
static quota is implemented, and the dynamic quota is ignored.

Static Quotas In the hierarchical implementation, there are two cases defined here, to specify for
the allocation of machines where there is both a group and a subgroup. In the first case, the
sum for the numbers of machines within all of a group’s subgroups totals to fewer than the
specification for the group’s static quota. For example:

GROUP_QUOTA_group_physics = 100
GROUP_QUOTA_group_physics.experiment1 = 20
GROUP_QUOTA_group_physics.experiment2 = 70

In this case, the unused quota of 10 machines is assigned to thegroup_physics submitters.

In the second case, the specification for the numbers of machines of a set of subgroups totals
to more than the specification for the group’s quota. For example:

GROUP_QUOTA_group_chemistry = 100
GROUP_QUOTA_group_chemistry.lab1 = 40
GROUP_QUOTA_group_chemistry.lab2 = 80

In this case, a warning is written to the log for thecondor_negotiatordaemon, and each of the
subgroups will have their static quota scaled. In this example, the ratio 100/120 scales each
subgroup. lab1 will have a revised (floating point) quota of 33.333 machines, and lab2
will have a revised (floating point) quota of 66.667 machines. As numbers of machines are
always integer values, the floating point values are truncated for quota allocation. Fractional
remainders resulting from the truncation are summed and assigned to the next higher level
within the group hierarchy.

Dynamic Quotas A dynamic quota specifies a percentage of machines (slots) calculated based on
the quota of the next higher level group within the hierarchy. For groups at the top level, a

Condor Version 7.7.6 Manual

3.4. User Priorities and Negotiation 293

dynamic quota specifies a percentage of machines (slots) that currently exist in the pool. The
quota is specified for a group (subgroup, etc.) by a floating point value in range 0.0 to 1.0
(inclusive).

Like static quota specification, there are two cases defined:when the dynamic quotas of all
sub groups of a specific group sum to a fraction less than 1.0, and when the dynamic quotas
of all sub groups of a specific group sum to greater than 1.0.

Here is an example configuration in which dynamic group quotas are assigned for a single
group and its subgroups.

GROUP_QUOTA_DYNAMIC_group_econ = .6
GROUP_QUOTA_DYNAMIC_group_econ.project1 = .2
GROUP_QUOTA_DYNAMIC_group_econ.project2 = .15
GROUP_QUOTA_DYNAMIC_group_econ.project3 = .2

The sum of dynamic quotas for the subgroups is .55, which is less than 1.0. If the pool
has 100 slots, then theproject1 subgroup is assigned a quota that equals (100)(.6)(.2)
= 12 machines. Theproject2 subgroup is assigned a quota that equals (100)(.6)(.15) =
9 machines. Theproject3 subgroup is assigned a quota that equals (100)(.6)(.2) = 12
machines. The 60-33=27 machines unused by the subgroups areassigned for use by job
submitters in the parentgroup_econ group.

If the calculated dynamic quota of the subgroups resulted innon integer numbers of machines,
integer numbers of machines are assigned based on the truncation of the non integer dynamic
group quota. The unused, surplus quota of machines resulting from fractional remainders
resulting from the truncation are summed and assigned to thenext higher level within the
group hierarchy.

Here is another example configuration in which dynamic groupquotas are assigned for a
single group and its subgroups.

GROUP_QUOTA_DYNAMIC_group_stat = .5
GROUP_QUOTA_DYNAMIC_group_stat.project1 = .4
GROUP_QUOTA_DYNAMIC_group_stat.project2 = .3
GROUP_QUOTA_DYNAMIC_group_stat.project3 = .4

In this case, the sum of dynamic quotas for the subgroups is 1.1, which is greater than 1.0 .
A warning is written to the log for thecondor_negotiatordaemon, and each of the subgroups
will have their dynamic group quota scaled for this example..4 becomes .4/1.1=.3636, and .3
becomes .3/1.1=.2727 . If the pool has 100 slots, then each oftheproject1 andproject3
subgroups is assigned a dynamic quota of (100)(.5)(.3636),which is 18.1818 machines. The
project2 subgroup is assigned a dynamic quota of (100)(.5)(.2727), which is 13.6364 ma-
chines. The quota for each ofproject1 andproject3 results in the truncated amount
of 18 machines, andproject2 results in the truncated amount of 13 machines, with the
0.1818 + .6364 + .1818 = 1.0 remaining machine assigned to jobsubmitters in the parent
group,group_stat .

Mixed Quotas - Both Static and Dynamic

Condor Version 7.7.6 Manual

3.5. Policy Configuration for thecondor_startd 294

This section has not yet been completed

3.5 Policy Configuration for the condor_startd

This section describes the configuration of machines, such that they, through thecondor_startd
daemon, implement a desired policy for when remote jobs should start, be suspended, (possibly)
resumed, vacate (with a checkpoint) or be killed (no checkpoint). This policy is the heart of Condor’s
balancing act between the needs and wishes of resource owners (machine owners) and resource users
(people submitting their jobs to Condor). Please read this section carefully if you plan to change
any of the settings described here, as a wrong setting can have a severe impact on either the owners
of machines in your pool (they may ask to be removed from the pool entirely) or the users of your
pool (they may stop using Condor).

Before the details, there are a few things to note:

• Much of this section refers to ClassAd expressions. Pleaseread through section 4.1 on
ClassAd expressions before continuing.

• If defining the policy for an SMP machine (a multi-CPU machine), also read section 3.12.8 for
specific information on configuring thecondor_startddaemon for SMP machines. Eachslot
represented by thecondor_startddaemon on an SMP machine has its ownstateandactivity
(as described below). In the future, each slot will be able tohave its own individual policy
expressions defined. Within this manual section, the word “machine” refers to an individual
slot within an SMP machine.

To define a policy, set expressions in the configuration file (see section 3.3 on Configuring Con-
dor for an introduction to Condor’s configuration files). Theexpressions are evaluated in the context
of the machine’s ClassAd and a job ClassAd. The expressions can therefore reference attributes
from either ClassAd. See the unnumbered Appendix on page 956for a list of job ClassAd attributes.
See the unnumbered Appendix on page 969 for a list of machine ClassAd attributes. TheSTART
expression is explained. It describes the conditions that must be met for a machine to start a job.
TheRANKexpression for a machine is described. It allows the specification of the kinds of jobs a
machine prefers to run. A final discussion details how thecondor_startddaemon works. Included
are the machinestatesandactivities, to give an idea of what is possible in policy decisions. Two
example policy settings are presented.

3.5.1 Startd ClassAd Attributes

Thecondor_startddaemon represents the machine on which it is running to the Condor pool. The
daemon publishes characteristics about the machine in the machine’s ClassAd to aid matchmaking
with resource requests. The values of these attributes may be listed by using the command:con-
dor_status -l hostname. On an SMP machine, thecondor_startdwill break the machine up and
advertise it as separate slots, each with its own name and ClassAd.

Condor Version 7.7.6 Manual

3.5. Policy Configuration for thecondor_startd 295

3.5.2 TheSTARTexpression

The most important expression to thecondor_startdis theSTART expression. This expression
describes the conditions that must be met for a machine to runa job. This expression can reference
attributes in the machine’s ClassAd (such asKeyboardIdle andLoadAvg) and attributes in a
job ClassAd (such asOwner, Imagesize , andCmd, the name of the executable the job will run).
The value of theSTARTexpression plays a crucial role in determining the state andactivity of a
machine.

TheRequirements expression is used for matching machines with jobs.

The condor_startddefines theRequirements expression by logicallyanding the START
expression and theIS_VALID_CHECKPOINT_PLATFORMexpression.

In situations where a machine wants to make itself unavailable for further matches, the
Requirements expression is set to FALSE. When theSTARTexpression locally evaluates to
TRUE, the machine advertises theRequirements expression as TRUE and does not publish the
STARTexpression.

Normally, the expressions in the machine ClassAd are evaluated against certain request ClassAds
in thecondor_negotiatorto see if there is a match, or against whatever request ClassAd currently
has claimed the machine. However, by locally evaluating an expression, the machine only evaluates
the expression against its own ClassAd. If an expression cannot be locally evaluated (because it
references other expressions that are only found in a request ad, such asOwner or Imagesize),
the expression is (usually) undefined. See section 4.1 for specifics on how undefined terms are
handled in ClassAd expression evaluation.

A note of caution is in order when modifying theSTARTto reference job ClassAd attributes.
The defaultIs_OWNERexpression is a function of theSTARTexpression

START =?= FALSE

See a detailed discussion of theIS_OWNERexpression in section 3.5.7. However, the machine lo-
cally evaluates theIS_OWNERexpression to determine if it is capable of running jobs for Condor.
Any job ClassAd attributes appearing in theSTARTexpression, and hence in theIS_OWNERex-
pression are undefined in this context, and may lead to unexpected behavior. Whenever theSTART
expression is modified to reference job ClassAd attributes,the IS_OWNERexpression should also
be modified to reference only machine ClassAd attributes.

NOTE: If you have machines with lots of real memory and swap space such that the only scarce
resource is CPU time, consider definingJOB_RENICE_INCREMENTso that Condor starts jobs on
the machine with low priority. Then, further configure to setup the machines with:

START = True
SUSPEND = False
PREEMPT = False
KILL = False

Condor Version 7.7.6 Manual

3.5. Policy Configuration for thecondor_startd 296

In this way, Condor jobs always run and can never be kicked offfrom activity on the machine.
However, because they would run with “nice priority”, interactive response on the machines will not
suffer. You probably would not notice Condor was running thejobs, assuming you had enough free
memory for the Condor jobs that there was little swapping.

3.5.3 TheIS_VALID_CHECKPOINT_PLATFORMexpression

A checkpoint is the platform-dependent information necessary to continue the execution of a stan-
dard universe job. Therefore, the machine (platform) upon which a job executed and produced a
checkpoint limits the machines (platforms) which may use the checkpoint to continue job execution.
This platform-dependent information is no longer the obvious combination of architecture and oper-
ating system, but may include subtle items such as the difference between the normal, bigmem, and
hugemem kernels within the Linux operating system. This results in the incorporation of a separate
expression to indicate the ability of a machine to resume andcontinue the execution of a job that has
produced a checkpoint. TheREQUIREMENTSexpression is dependent on this information.

At a high level,IS_VALID_CHECKPOINT_PLATFORMis an expression which becomes true
when a job’s checkpoint platform matches the current checkpointing platform of the machine. Since
this expression isanded with theSTARTexpression to produce theREQUIREMENTSexpression, it
must also behave correctly when evaluating in the context ofjobs that are not standard universe.

In words, the current default policy for this expression:

Any non standard universe job may run on this machine. A standard universe job may run
on machines with the new checkpointing identification system. A standard universe job may
run if it has not yet produced a first checkpoint. If a standard universe job has produced a
checkpoint, then make sure the checkpoint platforms between the job and the machine match.

The following is the default boolean expression for this policy. A JobUniverse value of 1
denotes the standard universe. This expression may be overridden in the Condor configuration files.

IS_VALID_CHECKPOINT_PLATFORM =
(

(TARGET.JobUniverse =!= 1) ||

(
(MY.CheckpointPlatform =!= UNDEFINED) &&
(

(TARGET.LastCheckpointPlatform =?= MY.CheckpointPlatf orm) ||
(TARGET.NumCkpts == 0)

)
)

)

IS_VALID_CHECKPOINT_PLATFORMis a separate policy expression because the complex-
ity of IS_VALID_CHECKPOINT_PLATFORMcan be very high. While this functionality is con-
ceptually separate from the normalSTARTpolicies usually constructed, it is also a part of the
Requirements to allow the job to run.

Condor Version 7.7.6 Manual

3.5. Policy Configuration for thecondor_startd 297

3.5.4 TheRANK expression

A machine may be configured to prefer certain jobs over othersusing theRANKexpression. It is an
expression, like any other in a machine ClassAd. It can reference any attribute found in either the
machine ClassAd or a job ClassAd. The most common use of this expression is likely to configure a
machine to prefer to run jobs from the owner of that machine, or by extension, a group of machines
to prefer jobs from the owners of those machines.

For example, imagine there is a small research group with 4 machines called tenorsax, piano,
bass, and drums. These machines are owned by the 4 users coltrane, tyner, garrison, and jones,
respectively.

Assume that there is a large Condor pool in the department, and this small research group has
spent a lot of money on really fast machines for the group. As part of the larger pool, but to imple-
ment a policy that gives priority on the fast machines to anyone in the small research group, set the
RANKexpression on the machines to reference theOwner attribute and prefer requests where that
attribute matches one of the people in the group as in

RANK = Owner == "coltrane" || Owner == "tyner" \
|| Owner == "garrison" || Owner == "jones"

The RANKexpression is evaluated as a floating point number. However,like in C, boolean
expressions evaluate to either 1 or 0 depending on if they areTrue or False . So, if this expression
evaluated to 1, because the remote job was owned by one of the preferred users, it would be a larger
value than any other user for whom the expression would evaluate to 0.

A more complexRANKexpression has the same basic set up, where anyone from the group has
priority on their fast machines. Its difference is that the machine owner has better priority on their
own machine. To set this up for Garrison’s machine (bass), place the following entry in the local
configuration file of machinebass :

RANK = (Owner == "coltrane") + (Owner == "tyner") \
+ ((Owner == "garrison") * 10) + (Owner == "jones")

Note that the parentheses in this expression are important,because the+ operator has higher default
precedence than==.

The use of+ instead of|| allows us to distinguish which terms matched and which ones did
not. If anyone not in the research group quartet was running ajob on the machine calledbass , the
RANKwould evaluate numerically to 0, since none of the boolean terms evaluates to 1, and 0+0+0+0
still equals 0.

Suppose Elvin Jones submits a job. His job would match thebass machine, assumingSTART
evaluated toTrue for him at that time. TheRANKwould numerically evaluate to 1. Therefore,
the Elvin Jones job could preempt the Condor job currently running. Further assume that later
Jimmy Garrison submits a job. TheRANKevaluates to 10 on machinebass , since the boolean that

Condor Version 7.7.6 Manual

3.5. Policy Configuration for thecondor_startd 298

matches gets multiplied by 10. Due to this, Jimmy Garrison’sjob could preempt Elvin Jones’ job
on thebass machine where Jimmy Garrison’s jobs are preferred.

TheRANKexpression is not required to reference theOwner of the jobs. Perhaps there is one
machine with an enormous amount of memory, and others with not much at all. Perhaps configure
this large-memory machine to prefer to run jobs with larger memory requirements:

RANK = ImageSize

That’s all there is to it. The bigger the job, the more this machine wants to run it. It is an
altruistic preference, always servicing the largest of jobs, no matter who submitted them. A little
less altruistic is theRANKon Coltrane’s machine that prefers John Coltrane’s jobs over those with
the largestImagesize :

RANK = (Owner == "coltrane" * 1000000000000) + Imagesize

This RANKdoes not work if a job is submitted with an image size of more1012 Kbytes. However,
with that size, thisRANKexpression preferring that job would not be Condor’s only problem!

3.5.5 Machine States

A machine is assigned astateby Condor. The state depends on whether or not the machine is
available to run Condor jobs, and if so, what point in the negotiations has been reached. The possible
states are

Owner The machine is being used by the machine owner, and/or is not available to run Condor
jobs. When the machine first starts up, it begins in this state.

Unclaimed The machine is available to run Condor jobs, but it is not currently doing so.

Matched The machine is available to run jobs, and it has been matched by the negotiator with a
specific schedd. That schedd just has not yet claimed this machine. In this state, the machine
is unavailable for further matches.

Claimed The machine has been claimed by a schedd.

Preempting The machine was claimed by a schedd, but is now preempting that claim for one of the
following reasons.

1. the owner of the machine came back

2. another user with higher priority has jobs waiting to run

3. another request that this resource would rather serve wasfound

Backfill The machine is running a backfill computation while waiting for either the machine owner
to come back or to be matched with a Condor job. This state is only entered if the machine is
specifically configured to enable backfill jobs.

Condor Version 7.7.6 Manual

3.5. Policy Configuration for thecondor_startd 299

Drained The machine is not running jobs, because it is being drained.One reason a machine may be
drained is to consolidate resources that have been divided in a partitionable slot. Consolidating
the resources gives large jobs a chance to run.

Figure 3.2 shows the states and the possible transitions between the states.

Figure 3.2: Machine States

Each transition is labeled with a letter. The cause of each transition is described below.

• Transitions out of the Owner state

A The machine switches from Owner to Unclaimed whenever theSTARTexpression no
longer locally evaluates to FALSE. This indicates that the machine is potentially avail-
able to run a Condor job.

N The machine switches from the Owner to the Drained state whenever draining of the ma-
chine is initiated, for example bycondor_drainor by thecondor_defragdaemon.

• Transitions out of the Unclaimed state

B The machine switches from Unclaimed back to Owner whenever theSTARTexpression lo-
cally evaluates to FALSE. This indicates that the machine isunavailable to run a Condor
job and is in use by the resource owner.

C The transition from Unclaimed to Matched happens whenever the condor_negotiator
matches this resource with a Condor job.

Condor Version 7.7.6 Manual

3.5. Policy Configuration for thecondor_startd 300

D The transition from Unclaimed directly to Claimed also happens if thecondor_negotiator
matches this resource with a Condor job. In this case thecondor_scheddreceives the
match and initiates the claiming protocol with the machine before thecondor_startd
receives the match notification from thecondor_negotiator.

E The transition from Unclaimed to Backfill happens if the machine is configured to run back-
fill computations (see section 3.12.10) and theSTART_BACKFILLexpression evaluates
to TRUE.

P The transition from Unclaimed to Drained happens if draining of the machine is initiated,
for example bycondor_drainor by thecondor_defragdaemon.

• Transitions out of the Matched state

F The machine moves from Matched to Owner if either theSTARTexpression locally evalu-
ates to FALSE, or if theMATCH_TIMEOUTtimer expires. This timeout is used to ensure
that if a machine is matched with a givencondor_schedd, but thatcondor_schedddoes
not contact thecondor_startdto claim it, that the machine will give up on the match and
become available to be matched again. In this case, since theSTARTexpression does
not locally evaluate to FALSE, as soon as transitionF is complete, the machine will im-
mediately enter the Unclaimed state again (via transitionA). The machine might also go
from Matched to Owner if thecondor_scheddattempts to perform the claiming protocol
but encounters some sort of error. Finally, the machine willmove into the Owner state if
thecondor_startdreceives acondor_vacatecommand while it is in the Matched state.

G The transition from Matched to Claimed occurs when thecondor_scheddsuccessfully
completes the claiming protocol with thecondor_startd.

• Transitions out of the Claimed state

H From the Claimed state, the only possible destination is thePreempting state. This transi-
tion can be caused by many reasons:

– Thecondor_scheddthat has claimed the machine has no more work to perform and
releases the claim

– The PREEMPTexpression evaluates to TRUE (which usually means the resource
owner has started using the machine again and is now using thekeyboard, mouse,
CPU, etc)

– Thecondor_startdreceives acondor_vacatecommand

– The condor_startdis told to shutdown (either via a signal or acondor_offcom-
mand)

– The resource is matched to a job with a better priority (either a better user priority,
or one where the machine rank is higher)

• Transitions out of the Preempting state

I The resource will move from Preempting back to Claimed if theresource was matched to a
job with a better priority.

Condor Version 7.7.6 Manual

3.5. Policy Configuration for thecondor_startd 301

J The resource will move from Preempting to Owner if thePREEMPTexpression had evalu-
ated to TRUE, ifcondor_vacatewas used, or if theSTARTexpression locally evaluates
to FALSE when thecondor_startdhas finished evicting whatever job it was running
when it entered the Preempting state.

• Transitions out of the Backfill state

K The resource will move from Backfill to Owner for the following reasons:

– TheEVICT_BACKFILL expression evaluates to TRUE

– Thecondor_startdreceives acondor_vacatecommand

– Thecondor_startdis being shutdown

L The transition from Backfill to Matched occurs whenever a resource running a backfill
computation is matched with acondor_scheddthat wants to run a Condor job.

M The transition from Backfill directly to Claimed is similar to the transition from Unclaimed
directly to Claimed. It only occurs if thecondor_scheddcompletes the claiming protocol
before thecondor_startdreceives the match notification from thecondor_negotiator.

• Transitions out of the Drained state

O The transition from Drained to Owner state happens when draining is finalized or is can-
celed. When a draining request is made, the request either asks for the machine to stay in
a Drained state until canceled, or it asks for draining to be automatically finalized once
all slots have finished draining.

The Claimed State and Leases

When acondor_scheddclaims acondor_startd, there is a claim lease. So long as the keep alive
updates from thecondor_scheddto thecondor_startdcontinue to arrive, the lease is reset. If the
lease duration passes with no updates, thecondor_startddrops the claim and evicts any jobs the
condor_scheddsent over.

The alive interval is the amount of time between, or the frequency at which thecondor_schedd
sends keep alive updates to allcondor_schedddaemons. An alive update resets the claim lease at
thecondor_startd. Updates are UDP packets.

Initially, as when thecondor_scheddstarts up, the alive interval starts at the value set by the
configuration variableALIVE_INTERVAL . It may be modified when a job is started. The job’s
ClassAd attributeJobLeaseDuration is checked. If the value ofJobLeaseDuration/3
is less than the current alive interval, then the alive interval is set to either this lower value or
the imposed lowest limit on the alive interval of 10 seconds.Thus, the alive interval starts at
ALIVE_INTERVAL and goes down, never up.

If a claim lease expires, thecondor_startdwill drop the claim. The length of the claim lease is
the job’s ClassAd attributeJobLeaseDuration . JobLeaseDuration defaults to 20 minutes
time, except when explicitly set within the job’s submit description file. If JobLeaseDuration

Condor Version 7.7.6 Manual

3.5. Policy Configuration for thecondor_startd 302

is explicitly set to 0, or it is not set as may be the case for a Web Services job that does not define the
attribute, thenJobLeaseDuration is given the Undefined value. Further, when undefined, the
claim lease duration is calculated withMAX_CLAIM_ALIVES_MISSED * alive interval .
The alive interval is thecurrentvalue, as sent by thecondor_schedd. If the condor_scheddreduces
the current alive interval, it does not update thecondor_startd.

3.5.6 Machine Activities

Within some machine states,activitiesof the machine are defined. The state has meaning regardless
of activity. Differences between activities are significant. Therefore, a “state/activity” pair describes
a machine. The following list describes all the possible state/activity pairs.

• Owner

Idle This is the only activity for Owner state. As far as Condor is concerned the machine is
Idle, since it is not doing anything for Condor.

• Unclaimed

Idle This is the normal activity of Unclaimed machines. The machine is still Idle in that the
machine owner is willing to let Condor jobs run, but Condor isnot using the machine
for anything.

Benchmarking The machine is running benchmarks to determine the speed on this machine.
This activity only occurs in the Unclaimed state. How often the activity occurs is deter-
mined by theRUNBENCHMARKSexpression.

• Matched

Idle When Matched, the machine is still Idle to Condor.

• Claimed

Idle In this activity, the machine has been claimed, but the schedd that claimed it has yet to
activatethe claim by requesting acondor_starterto be spawned to service a job. The
machine returns to this state (usually briefly) when jobs (and thereforecondor_starter)
finish.

Busy Once acondor_starterhas been started and the claim is active, the machine moves to
the Busy activity to signify that it is doing something as faras Condor is concerned.

SuspendedIf the job is suspended by Condor, the machine goes into the Suspended activity.
The match between the schedd and machine has not been broken (the claim is still valid),
but the job is not making any progress and Condor is no longer generating a load on the
machine.

Retiring When an active claim is about to be preempted for any reason, it enters retirement,
while it waits for the current job to finish. TheMaxJobRetirementTime expression
determines how long to wait (counting since the time the job started). Once the job
finishes or the retirement time expires, the Preempting state is entered.

Condor Version 7.7.6 Manual

3.5. Policy Configuration for thecondor_startd 303

• Preempting The preempting state is used for evicting a Condor job from a given machine.
When the machine enters the Preempting state, it checks theWANT_VACATEexpression to
determine its activity.

Vacating In the Vacating activity, the job that was running is in the process of checkpointing.
As soon as the checkpoint process completes, the machine moves into either the Owner
state or the Claimed state, depending on the reason for its preemption.

Killing Killing means that the machine has requested the running jobto exit the machine
immediately, without checkpointing.

• Backfill

Idle The machine is configured to run backfill jobs and is ready to doso, but it has not yet
had a chance to spawn a backfill manager (for example, the BOINC client).

Busy The machine is performing a backfill computation.

Killing The machine was running a backfill computation, but it is now killing the job to either
return resources to the machine owner, or to make room for a regular Condor job.

• Drained

Idle All slots have been drained.

Retiring This slot has been drained. It is waiting for other slots to finish draining.

Figure 3.3 on page 304 gives the overall view of all machine states and activities and shows the
possible transitions from one to another within the Condor system. Each transition is labeled with a
number on the diagram, and transition numbers referred to inthis manual will bebold.

Various expressions are used to determine when and if many ofthese state and activity transi-
tions occur. Other transitions are initiated by parts of theCondor protocol (such as when thecon-
dor_negotiatormatches a machine with a schedd). The following section describes the conditions
that lead to the various state and activity transitions.

3.5.7 State and Activity Transitions

This section traces through all possible state and activitytransitions within a machine and describes
the conditions under which each one occurs. Whenever a transition occurs, Condor records when the
machine entered its new activity and/or new state. These times are often used to write expressions
that determine when further transitions occurred. For example, enter the Killing activity if a machine
has been in the Vacating activity longer than a specified amount of time.

Owner State

When the startd is first spawned, the machine it represents enters the Owner state. The machine
remains in the Owner state while the expressionIS_OWNERis TRUE. If theIS_OWNERexpression

Condor Version 7.7.6 Manual

3.5. Policy Configuration for thecondor_startd 304

Figure 3.3: Machine States and Activities

is FALSE, then the machine transitions to the Unclaimed state. The default value for theIS_OWNER
expression is optimized for a shared resource

START =?= FALSE

So, the machine will remain in the Owner state as long as theSTARTexpression locally evaluates
to FALSE. Section 3.5.2 provides more detail on theSTARTexpression. If theSTART locally
evaluates to TRUE or cannot be locally evaluated (it evaluates to UNDEFINED), transition1 occurs
and the machine enters the Unclaimed state. TheIS_OWNERexpression is locally evaluated by the

Condor Version 7.7.6 Manual

3.5. Policy Configuration for thecondor_startd 305

machine, and should not reference job ClassAd attributes, which would be UNDEFINED.

For dedicated resources, the recommended value for theIS_OWNERexpression is FALSE.

The Owner state represents a resource that is in use by its interactive owner (for example, if
the keyboard is being used). The Unclaimed state representsa resource that is neither in use by
its interactive user, nor the Condor system. From Condor’s point of view, there is little difference
between the Owner and Unclaimed states. In both cases, the resource is not currently in use by
the Condor system. However, if a job matches the resource’sSTARTexpression, the resource is
available to run a job, regardless of if it is in the Owner or Unclaimed state. The only differences
between the two states are how the resource shows up incondor_statusand other reporting tools,
and the fact that Condor will not run benchmarking on a resource in the Owner state. As long as
the IS_OWNERexpression is TRUE, the machine is in the Owner State. When the IS_OWNER
expression is FALSE, the machine goes into the Unclaimed State.

Here is an example that assumes that anIS_OWNERexpression is not present in the configura-
tion. If theSTARTexpression is

START = KeyboardIdle > 15 * $(MINUTE) && Owner == "coltrane"

and if KeyboardIdle is 34 seconds, then the machine would remain in the Owner state. Owner
is undefined, andanything && FALSE is FALSE.

If, however, theSTARTexpression is

START = KeyboardIdle > 15 * $(MINUTE) || Owner == "coltrane"

andKeyboardIdle is 34 seconds, then the machine leaves the Owner state and becomes Un-
claimed. This is becauseFALSE || UNDEFINED is UNDEFINED. So, while this machine is not
available to just anybody, if user coltrane has jobs submitted, the machine is willing to run them.
Any other user’s jobs have to wait untilKeyboardIdle exceeds 15 minutes. However, since
coltrane might claim this resource, but has not yet, the machine goes to the Unclaimed state.

While in the Owner state, the startd polls the status of the machine everyUPDATE_INTERVAL
to see if anything has changed that would lead it to a different state. This minimizes the impact on
the Owner while the Owner is using the machine. Frequently waking up, computing load averages,
checking the access times on files, computing free swap spacetake time, and there is nothing time
critical that the startd needs to be sure to notice as soon as it happens. If theSTARTexpression
evaluates to TRUE and five minutes pass before the startd notices, that’s a drop in the bucket of
high-throughput computing.

The machine can only transition to the Unclaimed state from the Owner state. It does so when
the IS_OWNERexpression no longer evaluates to FALSE. By default, that happens whenSTART
no longer locally evaluates to FALSE.

Whenever the machine is not actively running a job, it will transition back to the Owner state if
IS_OWNERevaluates to TRUE. Once a job is started, the value ofIS_OWNERdoes not matter; the

Condor Version 7.7.6 Manual

3.5. Policy Configuration for thecondor_startd 306

job either runs to completion or is preempted. Therefore, you must configure the preemption policy
if you want to transition back to the Owner state from ClaimedBusy.

If draining of the machine is initiated while in the Owner state, the slot transitions to
Drained/Retiring (transition36).

Unclaimed State

If the IS_OWNERexpression becomes TRUE, then the machine returns to the Owner state. If
the IS_OWNERexpression becomes FALSE, then the machine remains in the Unclaimed state. If
the IS_OWNERexpression is not present in the configuration files, then thedefault value for the
IS_OWNERexpression is

START =?= FALSE

so that while in the Unclaimed state, if theSTARTexpression locally evaluates to FALSE, the
machine returns to the Owner state by transition2.

When in the Unclaimed state, theRUNBENCHMARKSexpression is relevant. If
RUNBENCHMARKSevaluates to TRUE while the machine is in the Unclaimed state, then the ma-
chine will transition from the Idle activity to the Benchmarking activity (transition3) and perform
benchmarks to determineMIPS andKFLOPS. When the benchmarks complete, the machine returns
to the Idle activity (transition4).

The startd automatically inserts an attribute,LastBenchmark , whenever it runs benchmarks,
so commonlyRunBenchmarks is defined in terms of this attribute, for example:

BenchmarkTimer = (CurrentTime - LastBenchmark)
RunBenchmarks = $(BenchmarkTimer) >= (4 * $(HOUR))

Here, a macro,BenchmarkTimer is defined to help write the expression. This macro holds the
time since the last benchmark, so when this time exceeds 4 hours, we run the benchmarks again.
The startd keeps a weighted average of these benchmarking results to try to get the most accurate
numbers possible. This is why it is desirable for the startd to run them more than once in its lifetime.

NOTE: LastBenchmark is initialized to 0 before benchmarks have ever been run. To have the
condor_startdrun benchmarks as soon as the machine is Unclaimed (if it has not done so already),
include a term usingLastBenchmark as in the example above.

NOTE: If RUNBENCHMARKSis defined and set to something other than FALSE, the startd
will automatically run one set of benchmarks when it first starts up. To disable benchmarks, both
at startup and at any time thereafter, setRUNBENCHMARKSto FALSE or comment it out of the
configuration file.

From the Unclaimed state, the machine can go to four other possible states: Owner (transition
2), Backfill/Idle, Matched, or Claimed/Idle.

Condor Version 7.7.6 Manual

3.5. Policy Configuration for thecondor_startd 307

Once thecondor_negotiatormatches an Unclaimed machine with a requester at a given schedd,
the negotiator sends a command to both parties, notifying them of the match. If the schedd re-
ceives that notification and initiates the claiming procedure with the machine before the negotia-
tor’s message gets to the machine, the Match state is skipped, and the machine goes directly to
the Claimed/Idle state (transition5). However, normally the machine will enter the Matched state
(transition6), even if it is only for a brief period of time.

If the machine has been configured to perform backfill jobs (see section 3.12.10), while it is
in Unclaimed/Idle it will evaluate theSTART_BACKFILL expression. OnceSTART_BACKFILL
evaluates to TRUE, the machine will enter the Backfill/Idle state (transition7) to begin the process
of running backfill jobs.

If draining of the machine is initiated while in the Unclaimed state, the slot transitions to
Drained/Retiring (transition37).

Matched State

The Matched state is not very interesting to Condor. Noteworthy in this state is that the machine lies
about itsSTARTexpression while in this state and says thatRequirements areFalse to prevent
being matched again before it has been claimed. Also interesting is that the startd starts a timer to
make sure it does not stay in the Matched state too long. The timer is set with theMATCH_TIMEOUT
configuration file macro. It is specified in seconds and defaults to 120 (2 minutes). If the schedd

that was matched with this machine does not claim it within this period of time, the machine gives
up, and goes back into the Owner state via transition8. It will probably leave the Owner state right
away for the Unclaimed state again and wait for another match.

At any time while the machine is in the Matched state, if theSTARTexpression locally evaluates
to FALSE, the machine enters the Owner state directly (transition 8).

If the schedd that was matched with the machine claims it before theMATCH_TIMEOUTexpires,
the machine goes into the Claimed/Idle state (transition9).

Claimed State

The Claimed state is certainly the most complex state. It hasthe most possible activities and the most
expressions that determine its next activities. In addition, thecondor_checkpointandcondor_vacate
commands affect the machine when it is in the Claimed state. In general, there are two sets of
expressions that might take effect. They depend on the universe of the request: standard or vanilla.
The standard universe expressions are the normal expressions. For example:

WANT_SUSPEND = True
WANT_VACATE = $(ActivationTimer) > 10 * $(MINUTE)
SUSPEND = $(KeyboardBusy) || $(CPUBusy)
...

Condor Version 7.7.6 Manual

3.5. Policy Configuration for thecondor_startd 308

The vanilla expressions have the string“_VANILLA” appended to their names. For example:

WANT_SUSPEND_VANILLA = True
WANT_VACATE_VANILLA = True
SUSPEND_VANILLA = $(KeyboardBusy) || $(CPUBusy)
...

Without specific vanilla versions, the normal versions willbe used for all jobs, including vanilla
jobs. In this manual, the normal expressions are referenced. The difference exists for the the re-
source owner that might want the machine to behave differently for vanilla jobs, since they cannot
checkpoint. For example, owners may want vanilla jobs to remain suspended for longer than stan-
dard jobs.

While Claimed, thePOLLING_INTERVAL takes effect, and the startd polls the machine much
more frequently to evaluate its state.

If the machine owner starts typing on the console again, it isbest to notice this as soon as possible
to be able to start doing whatever the machine owner wants at that point. For SMP machines, if any
slot is in the Claimed state, the startd polls the machine frequently. If already polling one slot, it
does not cost much to evaluate the state of all the slots at thesame time.

There are a variety of events that may cause the startd to try to get rid of or temporarily suspend
a running job. Activity on the machine’s console, load from other jobs, or shutdown of the startd via
an administrative command are all possible sources of interference. Another one is the appearance
of a higher priority claim to the machine by a different Condor user.

Depending on the configuration, the startd may respond quitedifferently to activity on the ma-
chine, such as keyboard activity or demand for the cpu from processes that are not managed by
Condor. The startd can be configured to completely ignore such activity or to suspend the job or
even to kill it. A standard configuration for a desktop machine might be to go through successive
levels of getting the job out of the way. The first and least costly to the job is suspending it. This
works for both standard and vanilla jobs. If suspending the job for a short while does not satisfy
the machine owner (the owner is still using the machine aftera specific period of time), the startd
moves on to vacating the job. Vacating a standard universe job involves performing a checkpoint so
that the work already completed is not lost. Vanilla jobs aresent asoft kill signalso that they can
gracefully shut down if necessary; the default isSIGTERM. If vacating does not satisfy the machine
owner (usually because it is taking too long and the owner wants their machine backnow), the final,
most drastic stage is reached: killing. Killing is a quick death to the job, using a hard-kill signal
that cannot be intercepted by the application. For vanilla jobs that do no special signal handling,
vacating and killing are equivalent.

TheWANT_SUSPENDexpression determines if the machine will evaluate theSUSPENDexpres-
sion to consider entering the Suspended activity. TheWANT_VACATEexpression determines what
happens when the machine enters the Preempting state. It will go to the Vacating activity or directly
to Killing. If one or both of these expressions evaluates to FALSE, the machine will skip that stage
of getting rid of the job and proceed directly to the more drastic stages.

Condor Version 7.7.6 Manual

3.5. Policy Configuration for thecondor_startd 309

When the machine first enters the Claimed state, it goes to theIdle activity. From there, it has
two options. It can enter the Preempting state via transition 10 (if a condor_vacatearrives, or if the
STARTexpression locally evaluates to FALSE), or it can enter the Busy activity (transition11) if
the schedd that has claimed the machine decides to activate the claim and start a job.

From Claimed/Busy, the machine can transition to three other state/activity pairs. The startd
evaluates theWANT_SUSPENDexpression to decide which other expressions to evaluate. If
WANT_SUSPENDis TRUE, then the startd evaluates theSUSPENDexpression. IfWANT_SUSPEND
is any value other than TRUE, then the startd will evaluate the PREEMPTexpression and
skip the Suspended activity entirely. By transition, the possible state/activity destinations from
Claimed/Busy:

Claimed/Idle If the starter that is serving a given job exits (for example because the jobs completes),
the machine will go to Claimed/Idle (transition12).

Claimed/Retiring If WANT_SUSPENDis FALSE and thePREEMPTexpression is TRUE, the ma-
chine enters the Retiring activity (transition13). From there, it waits for a configurable amount
of time for the job to finish before moving on to preemption.

Another reason the machine would go from Claimed/Busy to Claimed/Retiring is if thecon-
dor_negotiatormatched the machine with a “better” match. This better matchcould either
be from the machine’s perspective using the startdRANKexpression, or it could be from the
negotiator’s perspective due to a job with a higher user priority.

Another case resulting in a transition to Claimed/Retiringis when the startd is being shut
down. The only exception is a “fast” shutdown, which bypasses retirement completely.

Claimed/SuspendedIf both theWANT_SUSPENDandSUSPENDexpressions evaluate to TRUE,
the machine suspends the job (transition14).

If a condor_checkpointcommand arrives, or thePERIODIC_CHECKPOINTexpression eval-
uates to TRUE, there is no state change. The startd has no way of knowing when this process
completes, so periodic checkpointing can not be another state. Periodic checkpointing remains in
the Claimed/Busy state and appears as a running job.

From the Claimed/Suspended state, the following transitions may occur:

Claimed/Busy If the CONTINUEexpression evaluates to TRUE, the machine resumes the job and
enters the Claimed/Busy state (transition15) or the Claimed/Retiring state (transition16),
depending on whether the claim has been preempted.

Claimed/Retiring If the PREEMPT expression is TRUE, the machine will enter the
Claimed/Retiring activity (transition16).

Preempting If the claim is in suspended retirement and the retirement time expires, the job enters
the Preempting state (transition17). This is only possible ifMaxJobRetirementTime
decreasesduring the suspension.

Condor Version 7.7.6 Manual

3.5. Policy Configuration for thecondor_startd 310

For the Claimed/Retiring state, the following transitionsmay occur:

Preempting If the job finishes or the job’s run time exceeds the value defined for the job
ClassAd attributeMaxJobRetirementTime , the Preempting state is entered (transition
18). The run time is computed from the time when the job was started by the startd mi-
nus any suspension time. When retiring due tocondor_startddaemon shutdown or restart,
it is possible for the administrator to issue apeacefulshutdown command, which causes
MaxJobRetirementTime to effectively be infinite, avoiding any killing of jobs. It
is also possible for the administrator to issue afast shutdown command, which causes
MaxJobRetirementTime to be effectively 0.

Claimed/Busy If the startd was retiring because of a preempting claim onlyand the preempting
claim goes away, the normal Claimed/Busy state is resumed (transition19). If instead the re-
tirement is due to owner activity (PREEMPT) or the startd is being shut down, no unretirement
is possible.

Claimed/SuspendedIn exactly the same way that suspension may happen from the Claimed/Busy
state, it may also happen during the Claimed/Retiring state(transition20). In this case, when
the job continues from suspension, it moves back into Claimed/Retiring (transition16) instead
of Claimed/Busy (transition15).

Preempting State

The Preempting state is less complex than the Claimed state.There are two activities. Depending
on the value ofWANT_VACATE, a machine will be in the Vacating activity (if TRUE) or the Killing
activity (if FALSE).

While in the Preempting state (regardless of activity) the machine advertises its
Requirements expression as FALSE to signify that it is not available for further matches, ei-
ther because it is about to transition to the Owner state, or because it has already been matched with
one preempting match, and further preempting matches are disallowed until the machine has been
claimed by the new match.

The main function of the Preempting state is to get rid of the starter associated with the resource.
If the condor_starterassociated with a given claim exits while the machine is still in the Vacat-
ing activity, then the job successfully completed a graceful shutdown. For standard universe jobs,
this means that a checkpoint was saved. For other jobs, this means the application was given an
opportunity to do a graceful shutdown, by intercepting the soft kill signal.

If the machine is in the Vacating activity, it keeps evaluating theKILL expression. As soon
as this expression evaluates to TRUE, the machine enters theKilling activity (transition 21). If
the Vacating activity lasts for as long as the maximum vacating time, then the machine also en-
ters the Killing activity. The maximum vacating time is determined by the configuration variable
MachineMaxVacateTime . This may be adjusted by the setting of the job ClassAd attribute
JobMaxVacateTime .

Condor Version 7.7.6 Manual

3.5. Policy Configuration for thecondor_startd 311

When the starter exits, or if there was no starter running when the machine enters the Preempting
state (transition10), the other purpose of the Preempting state is completed: notifying the schedd
that had claimed this machine that the claim is broken.

At this point, the machine enters either the Owner state by transition22(if the job was preempted
because the machine owner came back) or the Claimed/Idle state by transition23 (if the job was
preempted because a better match was found).

If the machine enters the Killing activity, (because eitherWANT_VACATEwas FALSE or the
KILL expression evaluated to TRUE), it attempts to force thecondor_starterto immediately kill the
underlying Condor job. Once the machine has begun to hard kill the Condor job, thecondor_startd
starts a timer, the length of which is defined by theKILLING_TIMEOUT macro. This macro is
defined in seconds and defaults to 30. If this timer expires and the machine is still in the Killing
activity, something has gone seriously wrong with thecondor_starterand the startd tries to vacate
the job immediately by sending SIGKILL to all of thecondor_starter’s children, and then to the
condor_starteritself.

Once thecondor_starterhas killed off all the processes associated with the job and exited, and
once the schedd that had claimed the machine is notified that the claim is broken, the machine will
leave the Preempting/Killing state. If the job was preempted because a better match was found, the
machine will enter Claimed/Idle (transition24). If the preemption was caused by the machine owner
(thePREEMPTexpression evaluated to TRUE,condor_vacatewas used, etc), the machine will enter
the Owner state (transition25).

Backfill State

The Backfill state is used whenever the machine is performinglow priority background tasks to
keep itself busy. For more information about backfill support in Condor, see section 3.12.10 on
page 426. This state is only used if the machine has been configured to enable backfill computation,
if a specific backfill manager has been installed and configured, and if the machine is otherwise idle
(not being used interactively or for regular Condor computations). If the machine meets all these
requirements, and theSTART_BACKFILLexpression evaluates to TRUE, the machine will move
from the Unclaimed/Idle state to Backfill/Idle (transition7).

Once a machine is in Backfill/Idle, it will immediately attempt to spawn whatever backfill man-
ager it has been configured to use (currently, only the BOINC client is supported as a backfill man-
ager in Condor). Once the BOINC client is running, the machine will enter Backfill/Busy (transition
26) to indicate that it is now performing a backfill computation.

NOTE: On SMP machines, thecondor_startdwill only spawn a single instance of the BOINC
client, even if multiple slots are available to run backfill jobs. Therefore, only the first machine to
enter Backfill/Idle will cause a copy of the BOINC client to start running. If a given slot on an SMP
enters the Backfill state and a BOINC client is already running under thiscondor_startd, the slot
will immediately enter Backfill/Busy without waiting to spawn another copy of the BOINC client.

If the BOINC client ever exits on its own (which normally wouldn’t happen), the machine will
go back to Backfill/Idle (transition27) where it will immediately attempt to respawn the BOINC

Condor Version 7.7.6 Manual

3.5. Policy Configuration for thecondor_startd 312

client (and return to Backfill/Busy via transition26).

As the BOINC client is running a backfill computation, a number of events can occur that will
drive the machine out of the Backfill state. The machine can get matched or claimed for a Condor
job, interactive users can start using the machine again, the machine might be evicted withcon-
dor_vacate, or thecondor_startdmight be shutdown. All of these events cause thecondor_startd
to kill the BOINC client and all its descendants, and enter the Backfill/Killing state (transition28).

Once the BOINC client and all its children have exited the system, the machine will enter the
Backfill/Idle state to indicate that the BOINC client is now gone (transition29). As soon as it enters
Backfill/Idle after the BOINC client exits, the machine willgo into another state, depending on what
caused the BOINC client to be killed in the first place.

If the EVICT_BACKFILL expression evaluates to TRUE while a machine is in Backfill/Busy,
after the BOINC client is gone, the machine will go back into the Owner/Idle state (transition30).
The machine will also return to the Owner/Idle state after the BOINC client exits ifcondor_vacate
was used, or if thecondor_startdis being shutdown.

When a machine running backfill jobs is matched with a requester that wants to run a Condor
job, the machine will either enter the Matched state, or go directly into Claimed/Idle. As with the
case of a machine in Unclaimed/Idle (described above), thecondor_negotiatorinforms both thecon-
dor_startdand thecondor_scheddof the match, and the exact state transitions at the machine depend
on what order the various entities initiate communication with each other. If thecondor_scheddis
notified of the match and sends a request to claim thecondor_startdbefore thecondor_negotiator
has a chance to notify thecondor_startd, once the BOINC client exits, the machine will immediately
enter Claimed/Idle (transition31). Normally, the notification from thecondor_negotiatorwill reach
the condor_startdbefore thecondor_scheddattempts to claim it. In this case, once the BOINC
client exits, the machine will enter Matched/Idle (transition 32).

Drained State

The Drained state is used when the machine is being drained, for example bycondor_drainor by
the condor_defragdaemon, and the slot has finished running jobs and is no longerwilling to run
new jobs.

Slots initially enter the Drained/Retiring state. Once allslots have been drained, the slots transi-
tion to the Idle activity (transition33).

If draining is finalized or canceled, the slot transitions toOwner/Idle (transitions34and35).

3.5.8 State/Activity Transition Expression Summary

This section is a summary of the information from the previous sections. It serves as a quick refer-
ence.

Condor Version 7.7.6 Manual

3.5. Policy Configuration for thecondor_startd 313

START When TRUE, the machine is willing to spawn a remote Condor job.

RUNBENCHMARKS While in the Unclaimed state, the machine will run benchmarks whenever
TRUE.

MATCH_TIMEOUT If the machine has been in the Matched state longer than this value, it will
transition to the Owner state.

WANT_SUSPEND If TRUE, the machine evaluates theSUSPENDexpression to see if it should
transition to the Suspended activity. If any value other than TRUE, the machine will look at
thePREEMPTexpression.

SUSPEND If WANT_SUSPENDis TRUE, and the machine is in the Claimed/Busy state, it enters
the Suspended activity ifSUSPENDis TRUE.

CONTINUE If the machine is in the Claimed/Suspended state, it enter the Busy activity if
CONTINUEis TRUE.

PREEMPT If the machine is either in the Claimed/Suspended activity,or is in the Claimed/Busy
activity andWANT_SUSPENDis FALSE, the machine enters the Claimed/Retiring state when-
everPREEMPTis TRUE.

CLAIM_WORKLIFE If provided, this expression specifies the number of secondsduring which a
claim will continue accepting new jobs. Once this time expires, any existing job may continue
to run as usual, but once it finishes or is preempted, the claimis closed. This may be useful
if you want to force periodic renegotiation of resources without preemption having to occur.
For example, if you have some low-priority jobs which shouldnever be interrupted with kill
signals, you could prevent them from being killed withMaxJobRetirementTime , but
now high-priority jobs may have to wait in line when they match to a machine that is busy
running one of these uninterruptible jobs. You can prevent the high-priority jobs from ever
matching to such a machine by using a rank expression in the job or in the negotiator’s rank
expressions, but then the low-priority claim will never be interrupted; it can keep running more
jobs. The solution is to useCLAIM_WORKLIFEto force the claim to stop running additional
jobs after a certain amount of time. The default value forCLAIM_WORKLIFEis -1, which is
treated as an infinite claim worklife, so claims may be held indefinitely (as long as they are
not preempted and the schedd does not relinquish them, of course).

MachineMaxVacateTime When the machine enters the Preempting/Vacating state, this ex-
pression specifies the maximum time in seconds that thecondor_startdwill wait for the job
to finish. The job may adjust the wait time by settingJobMaxVacateTime . If the job’s
setting is less than the machine’s, the job’s is used. If the job’s setting is larger than the ma-
chine’s, the result depends on whether the job has any excessretirement time. If the job has
more retirement time left than the machine’s maximum vacatetime setting, then retirement
time will be converted into vacating time, up to the amount ofJobMaxVacateTime . Once
the vacating time expires, the job is hard-killed. TheKILL expression may be used to abort
the graceful shutdown of the job at any time.

MAXJOBRETIREMENTTIME If the machine is in the Claimed/Retiring state, this expression spec-
ifies the maximum time (in seconds) that thecondor_startdwill wait for the job to finish. The

Condor Version 7.7.6 Manual

3.5. Policy Configuration for thecondor_startd 314

clock starts when the job is started and is paused during any suspension. The job may provide
its own expression forMaxJobRetirementTime , but this can only be used to takeless
than the time granted by thecondor_startd, never more. For convenience, standard universe
and nice_user jobs are submitted with a default retirement time of 0, so they will never wait
in retirement unless the user overrides the default.

The machine enters the Preempting state with the goal of finishing shutting down the job
by the end of the retirement time. If the job vacating policy grants the job X seconds of
vacating time, the transition to the Preempting state will happen X seconds before the end
of the retirement time, so that the hard-killing of the job will not happen until the end of the
retirement time, if the job does not finish shutting down before then.

This expression is evaluated in the context of the job ClassAd, so it may refer to attributes
of the current job as well as machine attributes. The expression is continually re-evaluated
while the job is running, so it is possible, though unusual, to have an expression that changes
over time. For example, if you want the retirement time to drop to 0 if an especially high
priority job is waiting for the current job to retire, you could usePreemptingRank in the
expression. Example:

MAXJOBRETIREMENTTIME = 3600 * (\
MY.PreemptingRank =?= UNDEFINED || \
PreemptingRank < 600)

In this example, the retirement time is 3600 seconds, but if ajob gets matched to this machine
and it has aPreemptingRank of 600 or more, the retirement time drops to 0 and the current
job is immediately preempted.

WANT_VACATE This is checked only when thePREEMPTexpression is TRUE and the machine
enters the Preempting state. IfWANT_VACATEis TRUE, the machine enters the Vacating
activity. If it is FALSE, the machine will proceed directly to the Killing activity.

KILL If the machine is in the Preempting/Vacating state, it enters Preempting/Killing whenever
KILL is TRUE.

KILLING_TIMEOUT If the machine is in the Preempting/Killing state for longerthan
KILLING_TIMEOUT seconds, thecondor_startdsends a SIGKILL to thecondor_starter
and all its children to try to kill the job as quickly as possible.

PERIODIC_CHECKPOINTIf the machine is in the Claimed/Busy state and
PERIODIC_CHECKPOINTis TRUE, the user’s job begins a periodic checkpoint.

RANK If this expression evaluates to a higher number for a pendingresource request than it does for
the current request, the machine preempts the current request (enters the Preempting/Vacating
state). When the preemption is complete, the machine entersthe Claimed/Idle state with the
new resource request claiming it.

START_BACKFILL When TRUE, if the machine is otherwise idle, it will enter theBackfill state
and spawn a backfill computation (using BOINC).

EVICT_BACKFILL When TRUE, if the machine is currently running a backfill computation, it
will kill the BOINC client and return to the Owner/Idle state.

Condor Version 7.7.6 Manual

3.5. Policy Configuration for thecondor_startd 315

3.5.9 Policy Settings

This section describes the default configuration policy andthen provides examples of extensions to
these policies.

Default Policy Settings

These settings are the default as shipped with Condor. They have been used for many years with no
problems. The vanilla expressions are identical to the regular ones. (They are not listed here. If not
defined, the standard expressions are used for vanilla jobs as well).

The following are macros to help write the expressions clearly.

StateTimer Amount of time in seconds in the current state.

ActivityTimer Amount of time in seconds in the current activity.

ActivationTimerAmount of time in seconds that the job has been running on thismachine.

LastCkpt Amount of time since the last periodic checkpoint.

NonCondorLoadAvgThe difference between the system load and the Condor load (the load
generated by everything but Condor).

BackgroundLoadAmount of background load permitted on the machine and stillstart a Condor
job.

HighLoad If the $(NonCondorLoadAvg) goes over this, the CPU is considered too busy, and
eviction of the Condor job should start.

StartIdleTime Amount of time the keyboard must to be idle before Condor willstart a job.

ContinueIdleTimeAmount of time the keyboard must to be idle before resumptionof a sus-
pended job.

MaxSuspendTimeAmount of time a job may be suspended before more drastic measures are
taken.

KeyboardBusy A boolean expression that evaluates to TRUE when the keyboard is being used.

CPUIdle A boolean expression that evaluates to TRUE when the CPU is idle.

CPUBusy A boolean expression that evaluates to TRUE when the CPU is busy.

MachineBusy The CPU or the Keyboard is busy.

CPUIsBusy A boolean value set to the same value asCPUBusy.

CPUBusyTime The value 0 ifCPUBusy is False; the time in seconds sinceCPUBusy became
True.

Condor Version 7.7.6 Manual

3.5. Policy Configuration for thecondor_startd 316

These macros are here to help write legible expressions:
MINUTE = 60
HOUR = (60 * $(MINUTE))
StateTimer = (CurrentTime - EnteredCurrentState)
ActivityTimer = (CurrentTime - EnteredCurrentActivity)
ActivationTimer = (CurrentTime - JobStart)
LastCkpt = (CurrentTime - LastPeriodicCheckpoint)

NonCondorLoadAvg = (LoadAvg - CondorLoadAvg)
BackgroundLoad = 0.3
HighLoad = 0.5
StartIdleTime = 15 * $(MINUTE)
ContinueIdleTime = 5 * $(MINUTE)
MaxSuspendTime = 10 * $(MINUTE)

KeyboardBusy = KeyboardIdle < $(MINUTE)
ConsoleBusy = (ConsoleIdle < $(MINUTE))
CPUIdle = $(NonCondorLoadAvg) <= $(BackgroundLoad)
CPUBusy = $(NonCondorLoadAvg) >= $(HighLoad)
KeyboardNotBusy = ($(KeyboardBusy) == False)
MachineBusy = ($(CPUBusy) || $(KeyboardBusy)

Macros are defined to want to suspend jobs (instead of killingthem) in the case of jobs that
use little memory, when the keyboard is not being used, and for vanilla universe jobs. We want to
gracefully vacate jobs which have been running for more than10 minutes or are vanilla universe
jobs.

WANT_SUSPEND = ($(SmallJob) || $(KeyboardNotBusy) \
|| $(IsVanilla))

WANT_VACATE = ($(ActivationTimer) > 10 * $(MINUTE) \
|| $(IsVanilla))

Finally, definitions of the actual expressions. Start a job if the keyboard has been idle long
enough and the load average is low enough OR the machine is currently running a Condor job. Note
that Condor would only run one job at a time. It just may preferto run a different job, as defined by
the machine rank or user priorities.

START = ((KeyboardIdle > $(StartIdleTime)) \
&& ($(CPUIdle) || \

(State != "Unclaimed" && State != "Owner")))

Suspend a job if the keyboard has been touched. Alternatively, suspend if the CPU has been
busy for more than two minutes and the job has been running formore than 90 seconds.

SUSPEND = ($(KeyboardBusy) || \

Condor Version 7.7.6 Manual

3.5. Policy Configuration for thecondor_startd 317

((CpuBusyTime > 2 * $(MINUTE)) \
&& $(ActivationTimer) > 90))

Continue a suspended job if the CPU is idle, the Keyboard has been idle for long enough, and
the job has been suspended more than 10 seconds.

CONTINUE = ($(CPUIdle) && ($(ActivityTimer) > 10) \
&& (KeyboardIdle > $(ContinueIdleTime)))

There are two conditions that signal preemption. The first condition is if the job is suspended,
but it has been suspended too long. The second condition is ifsuspension is not desired and the
machine is busy.

PREEMPT = (((Activity == "Suspended") && \
($(ActivityTimer) > $(MaxSuspendTime))) \
|| (SUSPEND && (WANT_SUSPEND == False)))

Do not give jobs any time to retire on their own when they are about to be preempted.

MAXJOBRETIREMENTTIME = 0

Kill jobs that take too long leaving gracefully.

MachineMaxVacateTime = 10 * $(MINUTE)

KILL = False

Finally, specify periodic checkpointing. For jobs smallerthan 60 Mbytes, do a periodic check-
point every 6 hours. For larger jobs, only checkpoint every 12 hours.

PERIODIC_CHECKPOINT = ((ImageSize < 60000) && \
($(LastCkpt) > (6 * $(HOUR)))) || \

($(LastCkpt) > (12 * $(HOUR)))

At UW-Madison, we have a fast network. We simplify our expression considerably to

PERIODIC_CHECKPOINT = $(LastCkpt) > (3 * $(HOUR))

For reference, the entire set of policy settings are included once more without comments:

Condor Version 7.7.6 Manual

3.5. Policy Configuration for thecondor_startd 318

These macros are here to help write legible expressions:
MINUTE = 60
HOUR = (60 * $(MINUTE))
StateTimer = (CurrentTime - EnteredCurrentState)
ActivityTimer = (CurrentTime - EnteredCurrentActivity)
ActivationTimer = (CurrentTime - JobStart)
LastCkpt = (CurrentTime - LastPeriodicCheckpoint)

NonCondorLoadAvg = (LoadAvg - CondorLoadAvg)
BackgroundLoad = 0.3
HighLoad = 0.5
StartIdleTime = 15 * $(MINUTE)
ContinueIdleTime = 5 * $(MINUTE)
MaxSuspendTime = 10 * $(MINUTE)

KeyboardBusy = KeyboardIdle < $(MINUTE)
ConsoleBusy = (ConsoleIdle < $(MINUTE))
CPUIdle = $(NonCondorLoadAvg) <= $(BackgroundLoad)
CPUBusy = $(NonCondorLoadAvg) >= $(HighLoad)
KeyboardNotBusy = ($(KeyboardBusy) == False)
MachineBusy = ($(CPUBusy) || $(KeyboardBusy)

WANT_SUSPEND = ($(SmallJob) || $(KeyboardNotBusy) \
|| $(IsVanilla))

WANT_VACATE = ($(ActivationTimer) > 10 * $(MINUTE) \
|| $(IsVanilla))

START = ((KeyboardIdle > $(StartIdleTime)) \
&& ($(CPUIdle) || \

(State != "Unclaimed" && State != "Owner")))
SUSPEND = ($(KeyboardBusy) || \

((CpuBusyTime > 2 * $(MINUTE)) \
&& $(ActivationTimer) > 90))

CONTINUE = ($(CPUIdle) && ($(ActivityTimer) > 10) \
&& (KeyboardIdle > $(ContinueIdleTime)))

PREEMPT = (((Activity == "Suspended") && \
($(ActivityTimer) > $(MaxSuspendTime))) \
|| (SUSPEND && (WANT_SUSPEND == False)))

MAXJOBRETIREMENTTIME = 0
MachineMaxVacateTime = 10 * $(MINUTE)
KILL = False
PERIODIC_CHECKPOINT = ((ImageSize < 60000) && \

($(LastCkpt) > (6 * $(HOUR)))) || \
($(LastCkpt) > (12 * $(HOUR)))

Condor Version 7.7.6 Manual

3.5. Policy Configuration for thecondor_startd 319

Test-job Policy Example

This example shows how the default macros can be used to set upa machine for running test jobs
from a specific user. Suppose we want the machine to behave normally, except if user coltrane
submits a job. In that case, we want that job to start regardless of what is happening on the machine.
We do not want the job suspended, vacated or killed. This is reasonable if we know coltrane is
submitting very short running programs for testing purposes. The jobs should be executed right
away. This works with any machine (or the whole pool, for thatmatter) by adding the following 5
expressions to the existing configuration:

START = ($(START)) || Owner == "coltrane"
SUSPEND = ($(SUSPEND)) && Owner != "coltrane"
CONTINUE = $(CONTINUE)
PREEMPT = ($(PREEMPT)) && Owner != "coltrane"
KILL = $(KILL)

Notice that there is nothing special in either theCONTINUEor KILL expressions. If Coltrane’s jobs
never suspend, they never look atCONTINUE. Similarly, if they never preempt, they never look at
KILL .

Time of Day Policy

Condor can be configured to only run jobs at certain times of the day. In general, we discourage
configuring a system like this, since you can often get lots ofgood cycles out of machines, even
when their owners say “I’m always using my machine during theday.” However, if you submit
mostly vanilla jobs or other jobs that cannot checkpoint, itmight be a good idea to only allow the
jobs to run when you know the machines will be idle and when they will not be interrupted.

To configure this kind of policy, you should use theClockMin and ClockDay attributes,
defined in section 3.5.1 on “Startd ClassAd Attributes”. These are special attributes which are
automatically inserted by thecondor_startdinto its ClassAd, so you can always reference them in
your policy expressions.ClockMin defines the number of minutes that have passed since midnight.
For example, 8:00am is 8 hours after midnight, or 8 * 60 minutes, or 480. 5:00pm is 17 hours after
midnight, or 17 * 60, or 1020.ClockDay defines the day of the week, Sunday = 0, Monday = 1,
and so on.

To make the policy expressions easy to read, we recommend using macros to define the time
periods when you want jobs to run or not run. For example, assume regular “work hours” at your
site are from 8:00am until 5:00pm, Monday through Friday:

WorkHours = ((ClockMin >= 480 && ClockMin < 1020) && \
(ClockDay > 0 && ClockDay < 6))

AfterHours = ((ClockMin < 480 || ClockMin >= 1020) || \
(ClockDay == 0 || ClockDay == 6))

Condor Version 7.7.6 Manual

3.5. Policy Configuration for thecondor_startd 320

Of course, you can fine-tune these settings by changing the definition of AfterHours and
WorkHours for your site.

Assuming you are using the default policy expressions discussed above, there are only a few
minor changes required to force Condor jobs to stay off of your machines during work hours:

Only start jobs after hours.
START = $(AfterHours) && $(CPUIdle) && KeyboardIdle > $(Sta rtIdleTime)

Consider the machine busy during work hours, or if the keybo ard or
CPU are busy.
MachineBusy = ($(WorkHours) || $(CPUBusy) || $(KeyboardBu sy))

By default, theMachineBusy macro is used to define theSUSPENDandPREEMPTexpres-
sions. If you have changed these expressions at your site, you will need to add$(WorkHours) to
yourSUSPENDandPREEMPTexpressions as appropriate.

Depending on your site, you might also want to avoid suspending jobs during work hours, so
that in the morning, if a job is running, it will be immediately preempted, instead of being suspended
for some length of time:

WANT_SUSPEND = $(AfterHours)

Desktop/Non-Desktop Policy

Suppose you have two classes of machines in your pool: desktop machines and dedicated cluster
machines. In this case, you might not want keyboard activityto have any effect on the dedicated
machines. For example, when you log into these machines to debug some problem, you probably
do not want a running job to suddenly be killed. Desktop machines, on the other hand, should do
whatever is necessary to remain responsive to the user.

There are many ways to achieve the desired behavior. One way is to make a standard desktop
policy and a standard non-desktop policy and to copy the desired one into the local configuration file
for each machine. Another way is to define one standard policy(in condor_config) with a simple
toggle that can be set in the local configuration file. The following example illustrates the latter
approach.

For ease of use, an entire policy is included in this example.Some of the expressions are just the
usual default settings.

If "IsDesktop" is configured, make it an attribute of the ma chine ClassAd.
STARTD_ATTRS = IsDesktop

Only consider starting jobs if:

Condor Version 7.7.6 Manual

3.5. Policy Configuration for thecondor_startd 321

1) the load average is low enough OR the machine is currently
running a Condor job
2) AND the user is not active (if a desktop)
START = (($(CPUIdle) || (State != "Unclaimed" && State != "Ow ner")) \

&& (IsDesktop =!= True || (KeyboardIdle > $(StartIdleTime))))

Suspend (instead of vacating/killing) for the following c ases:
WANT_SUSPEND = ($(SmallJob) || $(JustCpu) \

|| $(IsVanilla))

When preempting, vacate (instead of killing) in the follow ing cases:
WANT_VACATE = ($(ActivationTimer) > 10 * $(MINUTE) \

|| $(IsVanilla))

Suspend jobs if:
1) The CPU has been busy for more than 2 minutes, AND
2) the job has been running for more than 90 seconds
3) OR suspend if this is a desktop and the user is active
SUSPEND = (((CpuBusyTime > 2 * $(MINUTE)) && ($(ActivationT imer) > 90)) \

|| (IsDesktop =?= True && $(KeyboardBusy)))

Continue jobs if:
1) the CPU is idle, AND
2) we've been suspended more than 5 minutes AND
3) the keyboard has been idle for long enough (if this is a des ktop)
CONTINUE = ($(CPUIdle) && ($(ActivityTimer) > 300) \

&& (IsDesktop =!= True || (KeyboardIdle > $(ContinueIdleTi me))))

Preempt jobs if:
1) The job is suspended and has been suspended longer than we want
2) OR, we don't want to suspend this job, but the conditions t o
suspend jobs have been met (someone is using the machine)
PREEMPT = (((Activity == "Suspended") && \

($(ActivityTimer) > $(MaxSuspendTime))) \
|| (SUSPEND && (WANT_SUSPEND == False)))

Replace 0 in the following expression with whatever amount of
retirement time you want dedicated machines to provide. Th e other part
of the expression forces the whole expression to 0 on deskto p
machines.
MAXJOBRETIREMENTTIME = (IsDesktop =!= True) * 0

Kill jobs if they have taken too long to vacate gracefully
MachineMaxVacateTime = 10 * $(MINUTE)
KILL = False

Condor Version 7.7.6 Manual

3.5. Policy Configuration for thecondor_startd 322

With this policy in condor_config, the local configuration files for desktops can be easily config-
ured with the following line:

IsDesktop = True

In all other cases, the default policy described above will ignore keyboard activity.

Disabling Preemption

Preemption can result in jobs being killed by Condor. When this happens, the jobs remain in the
queue and will be automatically rescheduled. We highly recommend designing jobs that work well
in this environment, rather than simply disabling preemption.

Planning for preemption makes jobs more robust in the face ofother sources of failure. One way
to live happily with preemption is to use Condor’s standard universe, which provides the ability to
produce checkpoints. If a job is incompatible with the requirements of standard universe, the job
can still gracefully shutdown and restart by intercepting the soft kill signal.

All that being said, there may be cases where it is appropriate to force Condor to never kill jobs
within some upper time limit. This can be achieved with the following policy in the configuration
of the execute nodes:

When we want to kick a job off, let it run uninterrupted for
up to 2 days before forcing it to vacate.
MAXJOBRETIREMENTTIME = $(HOUR) * 24 * 2

Construction of this expression may be more complicated. For example, it could provide a
different retirement time to different users or different types of jobs. Also be aware that the job
may come with its own definition ofMaxJobRetirementTime , but this may only causeless
retirement time to be used, never more than what the machine offers.

The longer the retirement time that is given, the slower reallocation of resources in the pool can
become if there are long-running jobs. However, by preventing jobs from being killed, you may
decrease the number of cycles that are wasted on non-checkpointable jobs that are killed. That is the
basic trade off.

Note that the use ofMAXJOBRETIREMENTTIMElimits the killing of jobs, but it does not
prevent the preemption of resource claims. Therefore, it istechnically not a way of disabling pre-
emption, but simply a way of forcing preempting claims to wait until an existing job finishes or runs
out of time. In other words, it limits the preemption of jobs but not the preemption of claims.

Limiting the preemption of jobs is often more desirable thanlimiting the preemption of resource
claims. However, if you really do want to limit the preemption of resource claims, the following
policy may be used. Some of these settings apply to the execute node and some apply to the central
manager, so this policy should be configured so that it is readby both.

Condor Version 7.7.6 Manual

3.5. Policy Configuration for thecondor_startd 323

#Disable preemption by machine activity.
PREEMPT = False
#Disable preemption by user priority.
PREEMPTION_REQUIREMENTS = False
#Disable preemption by machine RANK by ranking all jobs equa lly.
RANK = 0
#Since we are disabling claim preemption, we
may as well optimize negotiation for this case:
NEGOTIATOR_CONSIDER_PREEMPTION = False

Be aware of the consequences of this policy. Without any preemption of resource claims, once
thecondor_negotiatorgives thecondor_schedda match to a machine, thecondor_scheddmay hold
onto this claim indefinitely, as long as the user keeps supplying more jobs to run. If this is not
desired, force claims to be retired after some amount of timeusing CLAIM_WORKLIFE. This
enforces a time limit, beyond which no new jobs may be startedon an existing claim; therefore the
condor_schedddaemon is forced to go back to thecondor_negotiatorto request a new match, if
there is still more work to do. Example execute machine configuration to include in addition to the
example above:

after 20 minutes, schedd must renegotiate to run
additional jobs on the machine
CLAIM_WORKLIFE = 1200

Also be aware that in all versions of Condor prior to 6.8.1, itis not advisable to set
NEGOTIATOR_CONSIDER_PREEMPTIONto False, because of a bug that can lead to some ma-
chines never being matched to jobs.

Job Suspension

As new jobs are submitted that receive a higher priority thancurrently executing jobs, the executing
jobs may be preempted. If the preempted jobs are not capable of writing checkpoints, they lose
whatever forward progress they have made, and are sent back to the job queue to await starting over
again as another machine becomes available. An alternativeto this is to use suspension to freeze the
job while some other task runs, and then unfreeze it so that itcan continue on from where it left off.
This does not require any special handling in the job, unlikemost strategies that take checkpoints.
However, it does require a special configuration of Condor. This example implements a policy that
allows the job to decide whether it should be evicted or suspended. The jobs announce their choice
through the use of the invented job ClassAd attributeIsSuspendableJob , that is also utilized in
the configuration.

The implementation of this policy utilizes two categories of slots, identified as suspendable or
nonsuspendable. A job identifies which category of slot it wishes to run on. This affects two aspects
of the policy:

• Of two jobs that might run on a slot, which job is chosen. The four cases that may occur de-
pend on whether the currently running job identifies itself as suspendable or nonsuspendable,
and whether the potentially running job identifies itself assuspendable or nonsuspendable.

Condor Version 7.7.6 Manual

3.5. Policy Configuration for thecondor_startd 324

1. If the currently running job is one that identifies itself as suspendable, and the potentially
running job identifies itself as nonsuspendable, the currently running job is suspended,
in favor of running the nonsuspendable one. This occurs independent of the user priority
of the two jobs.

2. If both the currently running job and the potentially running job identify themselves as
suspendable, then the relative priorities of the users and the preemption policy deter-
mines whether the new job will replace the existing job.

3. If both the currently running job and the potentially running job identify themselves
as nonsuspendable, then the relative priorities of the users and the preemption policy
determines whether the new job will replace the existing job.

4. If the currently running job is one that identifies itself as nonsuspendable, and the po-
tentially running job identifies itself as suspendable, thecurrently running job continues
running.

• What happens to a currently running job that is preempted. Ajob that identifies itself as
suspendable will be suspended, which means it is frozen in place, and will later be unfrozen
when the preempting job is finished. A job that identifies itself as nonsuspendable is evicted,
which means it writes a checkpoint, when possible, and then is killed. The job will return to
the idle state in the job queue, and it can try to run again in the future.

Lie to Condor, to achieve 2 slots for each real slot
NUM_CPUS = $(DETECTED_CORES)*2
There is no good way to tell Condor that the two slots should b e treated
as though they share the same real memory, so lie about how mu ch
memory we have.
MEMORY = $(DETECTED_MEMORY)*2

Slots 1 through DETECTED_CORES are nonsuspendable and the rest are
suspendable
IsSuspendableSlot = SlotID > $(DETECTED_CORES)

If I am a suspendable slot, my corresponding nonsuspendabl e slot is
my SlotID plus $(DETECTED_CORES)
NonSuspendableSlotState = eval(strcat("slot",SlotID-$ (DETECTED_CORES),"_State")

The above expression looks at slotX_State, so we need to add
State to the list of slot attributes to advertise.
STARTD_SLOT_ATTRS = $(STARTD_SLOT_ATTRS) State

For convenience, advertise these expressions in the machi ne ad.
STARTD_ATTRS = $(STARTD_ATTRS) IsSuspendableSlot NonSus pendableSlotState

MyNonSuspendableSlotIsIdle = \
(NonSuspendableSlotState =!= "Claimed" && NonSuspendabl eSlotState =!= "Preempting")

NonSuspendable slots are always willing to start jobs.
Suspendable slots are only willing to start if the NonSuspe ndable slot is idle.
START = \

IsSuspendableSlot!=True && IsSuspendableJob=!=True || \
IsSuspendableSlot && IsSuspendableJob==True && $(MyNonS uspendableSlotIsIdle)

Condor Version 7.7.6 Manual

3.6. Security 325

Suspend the suspendable slot if the other slot is busy.
SUSPEND = \

IsSuspendableSlot && $(MyNonSuspendableSlotIsIdle)!=T rue

WANT_SUSPEND = $(SUSPEND)

CONTINUE = ($(SUSPEND)) != True

Note that in this example, the job ClassAd attributeIsSuspendableJob has no special mean-
ing to Condor. It is an invented name chosen for this example.To take advantage of the policy, a job
that wishes to be suspended must submit the job so that this attribute is defined. The following line
should be placed in the job’s submit description file:

+IsSuspendableJob = True

3.6 Security

Security in Condor is a broad issue, with many aspects to consider. Because Condor’s main purpose
is to allow users to run arbitrary code on large numbers of computers, it is important to try to limit
who can access a Condor pool and what privileges they have when using the pool. This section
covers these topics.

There is a distinction between the kinds of resource attacksCondor can defeat, and the kinds
of attacks Condor cannot defeat. Condor cannot prevent security breaches of users that can elevate
their privilege to the root or administrator account. Condor does not run user jobs in sandboxes
(standard universe jobs are a partial exception to this), soCondor cannot defeat all malicious actions
by user jobs. An example of a malicious job is one that launches a distributed denial of service
attack. Condor assumes that users are trustworthy. Condor can prevent unauthorized access to the
Condor pool, to help ensure that only trusted users have access to the pool. In addition, Condor
provides encryption and integrity checking, to ensure thatdata (both Condor’s data and user jobs’
data) has not been examined or tampered with while in transit.

Broadly speaking, the aspects of security in Condor may be categorized and described:

Users Authorization or capability in an operating system is basedon a process owner. Both those
that submit jobs and Condor daemons become process owners. The Condor system prefers
that Condor daemons are run as the userroot , while other common operations are owned
by a user of Condor. Operations that do not belong to eitherroot or a Condor user are often
owned by thecondor user. See Section 3.6.13 for more detail.

Authentication Proper identification of a user is accomplished by the process of authentication. It
attempts to distinguish between real users and impostors. By default, Condor’s authentica-
tion uses the user id (UID) to determine identity, but Condorcan choose among a variety of
authentication mechanisms, including the stronger authentication methods Kerberos and GSI.

Condor Version 7.7.6 Manual

3.6. Security 326

Authorization Authorization specifies who is allowed to do what. Some usersare allowed to sub-
mit jobs, while other users are allowed administrative privileges over Condor itself. Condor
provides authorization on either a per-user or on a per-machine basis.

Privacy Condor may encrypt data sent across the network, which prevents others from viewing
the data. With persistence and sufficient computing power, decryption is possible. Condor
can encrypt the data sent for internal communication, as well as user data, such as files and
executables. Encryption operates on network transmissions: unencrypted data is stored on
disk.

Integrity Theman-in-the-middleattack tampers with data without the awareness of either side of
the communication. Condor’s integrity check sends additional cryptographic data to verify
that network data transmissions have not been tampered with. Note that the integrity infor-
mation is only for network transmissions: data stored on disk does not have this integrity
information.

3.6.1 Condor’s Security Model

At the heart of Condor’s security model is the notion that communications are subject to various
security checks. A request from one Condor daemon to anothermay require authentication to pre-
vent subversion of the system. A request from a user of Condormay need to be denied due to the
confidential nature of the request. The security model handles these example situations and many
more.

Requests to Condor are categorized into groups ofaccess levels, based on the type of operation
requested. The user of a specific request must be authorized at the required access level. For exam-
ple, executing thecondor_statuscommand requires theREADaccess level. Actions that accomplish
management tasks, such as shutting down or restarting of a daemon require anADMINISTRATOR
access level. See Section 3.6.7 for a full list of Condor’s access levels and their meanings.

There are two sides to any communication or command invocation in Condor. One side is
identified as theclient, and the other side is identified as thedaemon. The client is the party that
initiates the command, and the daemon is the party that processes the command and responds. In
some cases it is easy to distinguish the client from the daemon, while in other cases it is not as easy.
Condor tools such ascondor_submitandcondor_config_valare clients. They send commands to
daemons and act as clients in all their communications. For example, thecondor_submitcommand
communicates with thecondor_schedd. Behind the scenes, Condor daemons also communicate
with each other; in this case the daemon initiating the command plays the role of the client. For
instance, thecondor_negotiatordaemon acts as a client when contacting thecondor_schedddaemon
to initiate matchmaking. Once a match has been found, thecondor_schedddaemon acts as a client
and contacts thecondor_startddaemon.

Condor’s security model is implemented using configuration. Commands in Condor are exe-
cuted over TCP/IP network connections. While network communication enables Condor to manage
resources that are distributed across an organization (or beyond), it also brings in security challenges.
Condor must have ways of ensuring that commands are being sent by trustworthy users. Jobs that

Condor Version 7.7.6 Manual

3.6. Security 327

are operating on sensitive data must be allowed to use encryption such that the data is not seen by
outsiders. Jobs may need assurance that data has not been tampered with. These issues can be
addressed with Condor’s authentication, encryption, and integrity features.

Access Level Descriptions

Authorization is granted based on specified access levels. This list describes each access level, and
provides examples of their usage. The levels implement a partial hierarchy; a higher level often
implies aREADor both aWRITEand aREADlevel of access as described.

READ This access level can obtain or read information about Condor. Examples that require only
READaccess are viewing the status of the pool withcondor_status, checking a job queue with
condor_q, or viewing user priorities withcondor_userprio. READaccess does not allow any
changes, and it does not allow job submission.

WRITE This access level is required to send (write) information toCondor. Examples that require
WRITEaccess are job submission withcondor_submitand advertising a machine so it appears
in the pool (this is usually done automatically by thecondor_startddaemon). TheWRITE
level of access impliesREADaccess.

ADMINISTRATOR This access level has additional Condor administrator rights to the pool. It
includes the ability to change user priorities with the commandcondor_userprio, as well as
the ability to turn Condor on and off (as with the commandscondor_onandcondor_off). The
ADMINISTRATORlevel of access implies bothREADandWRITEaccess.

SOAP This access level is required for the authorization of any party that will use the Web Services
(SOAP) interface to Condor. It is not a general access level to be used with the variety of
configuration variables for authentication, encryption, and integrity checks.

CONFIG This access level is required to modify a daemon’s configuration using thecon-
dor_config_valcommand. By default, this level of access can change any configuration
parameters of a Condor pool, except those specified in thecondor_config.root con-
figuration file. TheCONFIGlevel of access impliesREADaccess.

OWNER This level of access is required for commands that the owner of a machine (any local user)
should be able to use, in addition to the Condor administrators. An example that requires the
OWNERaccess level is thecondor_vacatecommand. The command causes thecondor_startd
daemon to vacate any Condor job currently running on a machine. The owner of that machine
should be able to cause the removal of a job running on the machine.

DAEMON This access level is used for commands that are internal to the operation of Condor. An
example of this internal operation is when thecondor_startddaemon sends its ClassAd up-
dates to thecondor_collectordaemon (which may be more specifically controlled by the
ADVERTISE_STARTDaccess level). Authorization at this access level should only be given
to the user account under which the Condor daemons run. TheDAEMONlevel of access im-
plies bothREADandWRITEaccess. Any setting for this access level that is not defined will
default to the corresponding setting in theWRITEaccess level.

Condor Version 7.7.6 Manual

3.6. Security 328

NEGOTIATOR This access level is used specifically to verify that commands are sent by thecon-
dor_negotiatordaemon. Thecondor_negotiatordaemon runs on the central manager of the
pool. Commands requiring this access level are the ones thattell thecondor_schedddaemon
to begin negotiating, and those that tell an availablecondor_startddaemon that it has been
matched to acondor_scheddwith jobs to run. TheNEGOTIATORlevel of access implies
READaccess.

ADVERTISE_MASTERThis access level is used specifically for commands used to advertise a
condor_masterdaemon to the collector. Any setting for this access level that is not defined
will default to the corresponding setting in theDAEMONaccess level.

ADVERTISE_STARTDThis access level is used specifically for commands used to advertise a
condor_startddaemon to the collector. Any setting for this access level that is not defined
will default to the corresponding setting in theDAEMONaccess level.

ADVERTISE_SCHEDDThis access level is used specifically for commands used to advertise a
condor_schedddaemon to the collector. Any setting for this access level that is not defined
will default to the corresponding setting in theDAEMONaccess level.

CLIENT This access level is different from all the others. Whereas all of the other access levels
refer to the security policy for accepting connectionsfrom others, theCLIENT access level
applies when a Condor daemon or tool is connectingto some other Condor daemon. In other
words, it specifies the policy of the client that is initiating the operation, rather than the server
that is being contacted.

The following is a list of registered commands that daemons will accept. The list is ordered by
daemon. For each daemon, the commands are grouped by the access level required for a daemon to
accept the command from a given machine.

ALL DAEMONS:

WRITE The command sent as a result ofcondor_reconfigto reconfigure a daemon.

STARTD:

WRITE All commands that relate to acondor_schedddaemon claiming a machine, starting jobs
there, or stopping those jobs.

The command thatcondor_checkpointsends to periodically checkpoint all running jobs.

READ The command thatcondor_preensends to request the current state of thecondor_startd
daemon.

OWNER The command thatcondor_vacatesends to cause any running jobs to stop running.

NEGOTIATOR The command that thecondor_negotiatordaemon sends to match a machine’scon-
dor_startddaemon with a givencondor_schedddaemon.

Condor Version 7.7.6 Manual

3.6. Security 329

NEGOTIATOR:

WRITE The command that initiates a new negotiation cycle. It is sent by thecondor_scheddwhen
new jobs are submitted or acondor_reschedulecommand is issued.

READ The command that can retrieve the current state of user priorities in the pool, sent by the
condor_userpriocommand.

ADMINISTRATOR The command that can set the current values of user priorities, sent as a result
of thecondor_userpriocommand.

COLLECTOR:

ADVERTISE_MASTERCommands that update thecondor_collectordaemon with newcon-
dor_masterClassAds.

ADVERTISE_SCHEDDCommands that update thecondor_collectordaemon with newcon-
dor_scheddClassAds.

ADVERTISE_STARTDCommands that update thecondor_collectordaemon with newcon-
dor_startdClassAds.

DAEMON All other commands that update thecondor_collectordaemon with new ClassAds. Note
that the specific access levels such asADVERTISE_STARTDdefault to theDAEMONsettings,
which in turn defaults toWRITE.

READ All commands that query thecondor_collectordaemon for ClassAds.

SCHEDD:

NEGOTIATOR The command that thecondor_negotiatorsends to begin negotiating with thiscon-
dor_scheddto match its jobs with availablecondor_startds.

WRITE The command whichcondor_reschedulesends to thecondor_scheddto get it to update the
condor_collectorwith a current ClassAd and begin a negotiation cycle.

The commands which write information into the job queue (such ascondor_submitandcon-
dor_hold). Note that for most commands which attempt to write to the job queue, Condor will
perform an additional user-level authentication step. This additional user-level authentication
prevents, for example, an ordinary user from removing a different user’s jobs.

READ The command from any tool to view the status of the job queue.

The commands that acondor_startdsends to thecondor_scheddwhen thecondor_schedd
daemon’s claim is being preempted and also when the lease on the claim is renewed. These
operations only requireREADaccess, rather thanDAEMONin order to limit the level of trust
that thecondor_scheddmust have for thecondor_startd. Success of these commands is only
possible if thecondor_startdknows the secret claim id, so effectively, authorization for these

Condor Version 7.7.6 Manual

3.6. Security 330

commands is more specific than Condor’s general security model implies. Thecondor_schedd
automaticallygrants thecondor_startdREADaccess for the duration of the claim. Therefore,
if one desires to only authorize specific execute machines torun jobs, one must either limit
which machines are allowed to advertise themselves to the pool (most common) or config-
ure thecondor_schedd’s ALLOW_CLIENT setting to only allow connections from thecon-
dor_scheddto the trusted execute machines.

MASTER: All commands are registered withADMINISTRATORaccess:

restart : Master restarts itself (and all its children)

off : Master shuts down all its children

off -master : Master shuts down all its children and exits

on : Master spawns all the daemons it is configured to spawn

3.6.2 Security Negotiation

Because of the wide range of environments and security demands necessary, Condor must be flex-
ible. Configuration provides this flexibility. The process by which Condor determines the security
settings that will be used when a connection is established is calledsecurity negotiation. Security
negotiation’s primary purpose is to determine which of the features of authentication, encryption,
and integrity checking will be enabled for a connection. In addition, since Condor supports multiple
technologies for authentication and encryption, securitynegotiation also determines which technol-
ogy is chosen for the connection.

Security negotiation is a completely separate process frommatchmaking, and should not be con-
fused with any specific function of thecondor_negotiatordaemon. Security negotiation occurs when
one Condor daemon or tool initiates communication with another Condor daemon, to determine the
security settings by which the communication will be ruled.Thecondor_negotiatordaemon does
negotiation, whereby queued jobs and available machines within a pool go through the process of
matchmaking (deciding out which machines will run which jobs).

Configuration

The configuration macro names that determine what features will be used during client-daemon
communication follow the pattern:

SEC_<context>_<feature>

The<feature> portion of the macro name determines which security feature’s policy is being
set.<feature> may be any one of

Condor Version 7.7.6 Manual

3.6. Security 331

AUTHENTICATION
ENCRYPTION
INTEGRITY
NEGOTIATION

The<context> component of the security policy macros can be used to craft afine-grained
security policy based on the type of communication taking place.<context> may be any one of

CLIENT
READ
WRITE
ADMINISTRATOR
CONFIG
OWNER
DAEMON
NEGOTIATOR
ADVERTISE_MASTER
ADVERTISE_STARTD
ADVERTISE_SCHEDD
DEFAULT

Any of these constructed configuration macros may be set to any of the following values:

REQUIRED
PREFERRED
OPTIONAL
NEVER

Security negotiation resolves various client-daemon combinations of desired security features in
order to set a policy.

As an example, consider Frida the scientist. Frida wants to avoid authentication when possible.
She sets

SEC_DEFAULT_AUTHENTICATION = OPTIONAL

The machine running thecondor_scheddto which Frida will remotely submit jobs, however, is
operated by a security-conscious system administrator whodutifully sets:

SEC_DEFAULT_AUTHENTICATION = REQUIRED

When Frida submits her jobs, Condor’s security negotiationdetermines that authentication will be
used, and allows the command to continue. This example illustrates the point that the most restrictive
security policy sets the levels of security enforced. Thereis actually more to the understanding of

Condor Version 7.7.6 Manual

3.6. Security 332

Daemon Setting
NEVER OPTIONAL REQUIRED

Client NEVER No No Fail
Setting REQUIRED Fail Yes Yes

Table 3.1: Resolution of security negotiation.

Daemon Setting
NEVER OPTIONAL PREFERRED REQUIRED

NEVER No No No Fail
Client OPTIONAL No No Yes Yes
Setting PREFERRED No Yes Yes Yes

REQUIRED Fail Yes Yes Yes

Table 3.2: Resolution of security features.

this scenario. Some Condor commands, such as the use ofcondor_submitto submit jobsalways
require authentication of the submitter, no matter what thepolicy says. This is because the identity
of the submitter needs to be known in order to carry out the operation. Others commands, such as
condor_q, do not always require authentication, so in the above example, the server’s policy would
force Frida’scondor_qqueries to be authenticated, whereas a different policy could allow condor_q
to happen without any authentication.

Whether or not security negotiation occurs depends on the setting at both the client
and daemon side of the configuration variable(s) defined bySEC_*_NEGOTIATION.
SEC_DEFAULT_NEGOTIATIONis a variable representing the entire set of configuration variables
for NEGOTIATION. For the client side setting, the only definitions that make sense areREQUIRED
andNEVER. For the daemon side setting, thePREFERREDvalue makes no sense. Table 3.1 shows
how security negotiation resolves various client-daemon combinations of security negotiation policy
settings. Within the table, Yes means the security negotiation will take place. No means it will not.
Fail means that the policy settings are incompatible and thecommunication cannot continue.

Enabling authentication, encryption, and integrity checks is dependent on security negotiation
taking place. The enabled security negotiation further sets the policy for these other features. Ta-
ble 3.2 shows how security features are resolved for client-daemon combinations of security feature
policy settings. Like Table 3.1, Yes means the feature will be utilized. No means it will not. Fail
implies incompatibility and the feature cannot be resolved.

The enabling of encryption and/or integrity checks is dependent on authentication taking place.
The authentication provides a key exchange. The key is needed for both encryption and integrity
checks.

SettingSEC_CLIENT_<feature> determines the policy for all outgoing commands. The
policy for incoming commands (the daemon side of the communication) takes a more fine-grained
approach that implements a set of access levels for the received command. For example, it is de-
sirable to have all incoming administrative requests require authentication. Inquiries on pool status
may not be so restrictive. To implement this, the administrator configures the policy:

Condor Version 7.7.6 Manual

3.6. Security 333

SEC_ADMINISTRATOR_AUTHENTICATION = REQUIRED
SEC_READ_AUTHENTICATION = OPTIONAL

TheDEFAULTvalue for<context> provides a way to set a policy for all access levels (READ,
WRITE, etc.) that do not have a specific configuration variable defined. In addition, some access lev-
els will default to the settings specified for other access levels. For example,ADVERTISE_STARTD
defaults toDAEMON, andDAEMONdefaults toWRITE, which then defaults to the generalDEFAULT
setting.

Configuration for Security Methods

Authentication and encryption can each be accomplished by avariety of methods or technologies.
Which method is utilized is determined during security negotiation.

The configuration macros that determine the methods to use for authentication and/or encryption
are

SEC_<context>_AUTHENTICATION_METHODS
SEC_<context>_CRYPTO_METHODS

These macros are defined by a comma or space delimited list of possible methods to use. Section
3.6.3 lists all implemented authentication methods. Section 3.6.5 lists all implemented encryption
methods.

3.6.3 Authentication

The client side of any communication uses one of two macros tospecify whether authentication is
to occur:

SEC_DEFAULT_AUTHENTICATION
SEC_CLIENT_AUTHENTICATION

For the daemon side, there are a larger number of macros to specify whether authentication is to
take place, based upon the necessary access level:

SEC_DEFAULT_AUTHENTICATION
SEC_READ_AUTHENTICATION
SEC_WRITE_AUTHENTICATION
SEC_ADMINISTRATOR_AUTHENTICATION
SEC_CONFIG_AUTHENTICATION
SEC_OWNER_AUTHENTICATION
SEC_DAEMON_AUTHENTICATION

Condor Version 7.7.6 Manual

3.6. Security 334

SEC_NEGOTIATOR_AUTHENTICATION
SEC_ADVERTISE_MASTER_AUTHENTICATION
SEC_ADVERTISE_STARTD_AUTHENTICATION
SEC_ADVERTISE_SCHEDD_AUTHENTICATION

As an example, the macro defined in the configuration file for a daemon as

SEC_WRITE_AUTHENTICATION = REQUIRED

signifies that the daemon must authenticate the client for any communication that requires the
WRITEaccess level. If the daemon’s configuration contains

SEC_DEFAULT_AUTHENTICATION = REQUIRED

and does not contain any other security configuration forAUTHENTICATION, then this default
defines the daemon’s needs for authentication over all access levels. Where a specific macro is
defined, the more specific value takes precedence over the default definition.

If authentication is to be done, then the communicating parties must negotiate a mutually ac-
ceptable method of authentication to be used. A list of acceptable methods may be provided by the
client, using the macros

SEC_DEFAULT_AUTHENTICATION_METHODS
SEC_CLIENT_AUTHENTICATION_METHODS

A list of acceptable methods may be provided by the daemon, using the macros

SEC_DEFAULT_AUTHENTICATION_METHODS
SEC_READ_AUTHENTICATION_METHODS
SEC_WRITE_AUTHENTICATION_METHODS
SEC_ADMINISTRATOR_AUTHENTICATION_METHODS
SEC_CONFIG_AUTHENTICATION_METHODS
SEC_OWNER_AUTHENTICATION_METHODS
SEC_DAEMON_AUTHENTICATION_METHODS
SEC_NEGOTIATOR_AUTHENTICATION_METHODS
SEC_ADVERTISE_MASTER_AUTHENTICATION_METHODS
SEC_ADVERTISE_STARTD_AUTHENTICATION_METHODS
SEC_ADVERTISE_SCHEDD_AUTHENTICATION_METHODS

The methods are given as a comma-separated list of acceptable values. These variables list the
authentication methods that are available to be used. The ordering of the list defines preference; the
first item in the list indicates the highest preference. Defined values are

GSI

Condor Version 7.7.6 Manual

3.6. Security 335

SSL
KERBEROS
PASSWORD
FS
FS_REMOTE
NTSSPI
CLAIMTOBE
ANONYMOUS

For example, a client may be configured with:

SEC_CLIENT_AUTHENTICATION_METHODS = FS, GSI

and a daemon the client is trying to contact with:

SEC_DEFAULT_AUTHENTICATION_METHODS = GSI

Security negotiation will determine that GSI authentication is the only compatible choice. If
there are multiple compatible authentication methods, security negotiation will make a list of ac-
ceptable methods and they will be tried in order until one succeeds.

As another example, the macro

SEC_DEFAULT_AUTHENTICATION_METHODS = KERBEROS, NTSSPI

indicates that either Kerberos or Windows authentication may be used, but Kerberos is preferred
over Windows. Note that if the client and daemon agree that multiple authentication methods may
be used, then they are tried in turn. For instance, if they both agree that Kerberos or NTSSPI may
be used, then Kerberos will be tried first, and if there is a failure for any reason, then NTSSPI will
be tried.

An additional specialized method of authentication existsfor communication between the
condor_scheddand condor_startd. It is especially useful when operating at large scale over
high latency networks or in situations where it is inconvenient to set up one of the other meth-
ods of strong authentication between the submit and executedaemons. See the description of
SEC_ENABLE_MATCH_PASSWORD_AUTHENTICATIONon 264 for details.

If the configuration for a machine does not define any variablefor
SEC_<access-level>_AUTHENTICATION , then Condor uses a default value ofOPTIONAL.
Authentication will be required for any operation which modifies the job queue, such ascon-
dor_qeditand condor_rm. If the configuration for a machine does not define any variable for
SEC_<access-level>_AUTHENTICATION_METHODS , the default value for a Unix machine
is FS, KERBEROS, GSI. This default value for a Windows machine isNTSSPI, KERBEROS, GSI.

Condor Version 7.7.6 Manual

3.6. Security 336

GSI Authentication

The GSI (Grid Security Infrastructure) protocol provides an avenue for Condor to do PKI-based
(Public Key Infrastructure) authentication using X.509 certificates. The basics of GSI are well-
documented elsewhere, such as http://www.globus.org/.

A simple introduction to this type of authentication definesCondor’s use of terminology, and
it illuminates the needed items that Condor must access to dothis authentication. Assume that A
authenticates to B. In this example, A is the client, and B is the daemon within their communica-
tion. This example’s one-way authentication implies that Bis verifying the identity of A, using the
certificate A provides, and utilizing B’s own set of trusted CAs (Certification Authorities). Client A
provides its certificate (or proxy) to daemon B. B does two things: B checks that the certificate is
valid, and B checks to see that the CA that signed A’s certificate is one that B trusts.

For the GSI authentication protocol, an X.509 certificate isrequired. Files with predetermined
names hold a certificate, a key, and optionally, a proxy. A separate directory has one or more files
that become the list of trusted CAs.

Allowing Condor to do this GSI authentication requires knowledge of the locations of the client
A’s certificate and the daemon B’s list of trusted CAs. When one side of the communication (as
either client A or daemon B) is a Condor daemon, these locations are determined by configuration
or by default locations. When one side of the communication (as a client A) is a user of Condor (the
process owner of a Condor tool, for examplecondor_submit), these locations are determined by the
pre-set values of environment variables or by default locations.

GSI certificate locations for Condor daemonsFor a Condor daemon, the certificate may be a sin-
gle host certificate, and all Condor daemons on the same machine may share the same certifi-
cate. In some cases, the certificate can also be copied to other machines, where local copies
are necessary. This may occur only in cases where a single host certificate can match multi-
ple host names, something that is beyond the scope of this manual. The certificates must be
protected by access rights to files, since the password file isnot encrypted.

The specification of the location of the necessary files through configuration uses the following
precedence.

1. Configuration variableGSI_DAEMON_DIRECTORYgives the complete path name to
the directory that contains the certificate, key, and directory with trusted CAs. Condor
uses this directory as follows in its construction of the following configuration variables:

GSI_DAEMON_CERT = $(GSI_DAEMON_DIRECTORY)/hostcert.pe m
GSI_DAEMON_KEY = $(GSI_DAEMON_DIRECTORY)/hostkey.pem
GSI_DAEMON_TRUSTED_CA_DIR = $(GSI_DAEMON_DIRECTORY)/certificates

Note that no proxy is assumed in this case.

2. If theGSI_DAEMON_DIRECTORYis not defined, or when defined, the location may be
overridden with specific configuration variables that specify the complete path and file
name of the certificate with

GSI_DAEMON_CERT

the key with

Condor Version 7.7.6 Manual

http://www.globus.org/

3.6. Security 337

GSI_DAEMON_KEY

a proxy with

GSI_DAEMON_PROXY

the complete path to the directory containing the list of trusted CAs with

GSI_DAEMON_TRUSTED_CA_DIR

3. The default location assumed is/etc/grid-security . Note that this implemented
by setting the value ofGSI_DAEMON_DIRECTORY.

When a daemon acts as the client within authentication, the daemon needs a listing of those
from which it will accept certificates. This is done withGSI_DAEMON_NAME. This name is
specified with the following format

GSI_DAEMON_NAME = /X.509/name/of/server/1,/X.509/name /of/server/2,...

Condor will also need a way to map an X.509 distinguished nameto a Condor user id. There
are two ways to accomplish this mapping. For a first way to specify the mapping, see sec-
tion 3.6.4 to use Condor’s unified map file. The second way to dothe mapping is within
an administrator-maintained GSI-specific file called an X.509 map file, mapping from X.509
Distinguished Name (DN) to Condor user id. It is similar to a Globus grid map file, except
that it is only used for mapping to a user id, not for authorization. If the user names in the map
file do not specify a domain for the user (specification would appear asuser@domain), then
the value ofUID_DOMAINis used. Entries (lines) in the file each contain two items. The first
item in an entry is the X.509 certificate subject name, and it is enclosed in double quote marks
(using the character"). The second item is the Condor user id. The two items in an entry are
separated by tab or space character(s). Here is an example ofan entry in an X.509 map file.
Entries must be on a single line; this example is broken onto two lines for formatting reasons.

"/C=US/O=Globus/O=University of Wisconsin/
OU=Computer Sciences Department/CN=Alice Smith" asmith

Condor finds the map file in one of three ways. If the configuration variableGRIDMAP is
defined, it gives the full path name to the map file. When not defined, Condor looks for the
map file in

$(GSI_DAEMON_DIRECTORY)/grid-mapfile

If GSI_DAEMON_DIRECTORYis not defined, then the third place Condor looks for the map
file is given by

/etc/grid-security/grid-mapfile

GSI certificate locations for Users The user specifies the location of a certificate, proxy, etc. in
one of two ways:

1. Environment variables give the location of necessary items.
X509_USER_PROXYgives the path and file name of the proxy. This proxy will have
been created using thegrid-proxy-initprogram, which will place the proxy in the/tmp
directory with the file name being determined by the format:

Condor Version 7.7.6 Manual

3.6. Security 338

/tmp/x509up_uXXXX

The specific file name is given by substituting theXXXXcharacters with the UID of
the user. Note that when a valid proxy is used, the certificateand key locations are not
needed.
X509_USER_CERTgives the path and file name of the certificate. It is also used if a
proxy location has been checked, but the proxy is no longer valid.
X509_USER_KEYgives the path and file name of the key. Note that most keys are
password encrypted, such that knowing the location could not lead to using the key.
X509_CERT_DIR gives the path to the directory containing the list of trusted CAs.

2. Without environment variables to give locations of necessary certificate information,
Condor uses a default directory for the user. This directoryis given by

$(HOME)/.globus

Example GSI Security Configuration Here is an example portion of the configuration file that
would enable and require GSI authentication, along with a minimal set of other variables to
make it work.

SEC_DEFAULT_AUTHENTICATION = REQUIRED
SEC_DEFAULT_AUTHENTICATION_METHODS = GSI
SEC_DEFAULT_INTEGRITY = REQUIRED
GSI_DAEMON_DIRECTORY = /etc/grid-security
GRIDMAP = /etc/grid-security/grid-mapfile

authorize based on user names produced by the map file
ALLOW_READ = *@cs.wisc.edu/*.cs.wisc.edu
ALLOW_DAEMON = condor@cs.wisc.edu/*.cs.wisc.edu
ALLOW_NEGOTIATOR = condor@cs.wisc.edu/condor.cs.wisc. edu, \

condor@cs.wisc.edu/condor2.cs.wisc.edu
ALLOW_ADMINISTRATOR = condor-admin@cs.wisc.edu/*.cs.w isc.edu

condor daemon certificate(s) trusted by condor tools and d aemons
when connecting to other condor daemons
GSI_DAEMON_NAME = /C=US/O=Condor/O=UW/OU=CS/CN=condor@cs.wisc.edu

clear out any host-based authorizations
(unnecessary if you leave authentication REQUIRED,
but useful if you make it optional and want to
allow some unauthenticated operations, such as
ALLOW_READ = */*.cs.wisc.edu)
HOSTALLOW_READ =
HOSTALLOW_WRITE =
HOSTALLOW_NEGOTIATOR =
HOSTALLOW_ADMINISTRATOR =

TheSEC_DEFAULT_AUTHENTICATIONmacro specifies that authentication is required for
all communications. This single macro covers all communications, but could be replaced with
a set of macros that require authentication for only specificcommunications.

The macroGSI_DAEMON_DIRECTORYis specified to give Condor a single place to find
the daemon’s certificate. This path may be a directory on a shared file system such as AFS.

Condor Version 7.7.6 Manual

3.6. Security 339

Alternatively, this path name can point to local copies of the certificate stored in a local file
system.

The macroGRIDMAPspecifies the file to use for mapping GSI names to user names within
Condor. For example, it might look like this:

"/C=US/O=Condor/O=UW/OU=CS/CN=condor@cs.wisc.edu" co ndor@cs.wisc.edu

Additional mappings would be needed for the users who submitjobs to the pool or who issue
administrative commands.

SSL Authentication

SSL authentication is similar to GSI authentication, but without GSI’s delegation (proxy) capabili-
ties. SSL utilizes X.509 certificates.

All SSL authentication is mutual authentication in Condor.This means that when SSL authen-
tication is used and when one process communicates with another, each process must be able to
verify the signature on the certificate presented by the other process. The process that initiates the
connection is the client, and the process that receives the connection is the server. For example,
when acondor_startddaemon authenticates with acondor_collectordaemon to provide a machine
ClassAd, thecondor_startddaemon initiates the connection and acts as the client, and the con-
dor_collectordaemon acts as the server.

The names and locations of keys and certificates for clients,servers, and the files used to specify
trusted certificate authorities (CAs) are defined by settings in the configuration files. The contents
of the files are identical in format and interpretation to those used by other systems which use SSL,
such as Apache httpd.

The configuration variables AUTH_SSL_CLIENT_CERTFILE and
AUTH_SSL_SERVER_CERTFILE specify the file location for the certificate file for the
initiator and recipient of connections, respectively. Similarly, the configuration variables
AUTH_SSL_CLIENT_KEYFILE and AUTH_SSL_SERVER_KEYFILEspecify the locations
for keys.

The configuration variables AUTH_SSL_SERVER_CAFILE and
AUTH_SSL_CLIENT_CAFILE each specify a path and file name, providing the location
of a file containing one or more certificates issued by trustedcertificate authorities. Similarly,
AUTH_SSL_SERVER_CADIRandAUTH_SSL_CLIENT_CADIR each specify a directory with
one or more files, each which may contain a single CA certificate. The directories must be prepared
using the OpenSSLc_rehash utility.

Kerberos Authentication

If Kerberos is used for authentication, then a mapping from aKerberos domain (called a realm) to
a Condor UID domain is necessary. There are two ways to accomplish this mapping. For a first

Condor Version 7.7.6 Manual

3.6. Security 340

way to specify the mapping, see section 3.6.4 to use Condor’sunified map file. A second way to
specify the mapping defines the configuration variableKERBEROS_MAP_FILEto define a path to
an administrator-maintained Kerberos-specific map file. The configuration syntax is

KERBEROS_MAP_FILE = /path/to/etc/condor.kmap

Lines within this map file have the syntax

KERB.REALM = UID.domain.name

Here are two lines from a map file to use as an example:

CS.WISC.EDU = cs.wisc.edu
ENGR.WISC.EDU = ee.wisc.edu

If a KERBEROS_MAP_FILEconfiguration variable is defined and set, then all permittedrealms
must be explicitly mapped. If no map file is specified, then Condor assumes that the Kerberos realm
is the same as the Condor UID domain.

The configuration variableKERBEROS_SERVER_PRINCIPALdefines the name of a Kerberos
principal. If KERBEROS_SERVER_PRINCIPALis not defined, then the default value used is
host . A principal specifies a unique name to which a set of credentials may be assigned.

Condor takes the specified (or default) principal and appends a slash character, the host name,
an ’@’ (at sign character), and the Kerberos realm. As an example, the configuration

KERBEROS_SERVER_PRINCIPAL = condor-daemon

results in Condor’s use of

condor-daemon/the.host.name@YOUR.KERB.REALM

as the server principal.

Here is an example of configuration settings that use Kerberos for authentication and require
authentication of all communications of the write or administrator access level.

SEC_WRITE_AUTHENTICATION = REQUIRED
SEC_WRITE_AUTHENTICATION_METHODS = KERBEROS
SEC_ADMINISTRATOR_AUTHENTICATION = REQUIRED
SEC_ADMINISTRATOR_AUTHENTICATION_METHODS = KERBEROS

Kerberos authentication on Unix platforms requires accessto various files that usually are only
accessible by the root user. At this time, the only supportedway to use KERBEROS authentication
on Unix platforms is to start daemons Condor as userroot .

Condor Version 7.7.6 Manual

3.6. Security 341

Password Authentication

The password method provides mutual authentication through the use of a shared secret. This is
often a good choice when strong security is desired, but an existing Kerberos or X.509 infrastructure
is not in place. Password authentication is available on both Unix and Windows. It currently can
only be used for daemon-to-daemon authentication. The shared secret in this context is referred to
as thepool password.

Before a daemon can use password authentication, the pool password must be stored on the
daemon’s local machine. On Unix, the password will be placedin a file defined by the configuration
variableSEC_PASSWORD_FILE. This file will be accessible only by the UID that Condor is started
as. On Windows, the same secure password store that is used for user passwords will be used for the
pool password (see section 6.2.3).

Under Unix, the password file can be generated by using the following command to write directly
to the password file:

condor_store_cred -f /path/to/password/file

Under Windows (or under Unix), storing the pool password is done with the-c option when
using tocondor_store_credadd. Running

condor_store_cred -c add

prompts for the pool password and store it on the local machine, making it available for daemons to
use in authentication. Thecondor_mastermust be running for this command to work.

In addition, storing the pool password to a given machine requiresCONFIG-level access. For
example, if the pool password should only be set locally, andonly by root, the following would be
placed in the global configuration file.

ALLOW_CONFIG = root@mydomain/$(IP_ADDRESS)

It is also possible to set the pool password remotely, but this is recommended only if it can
be done over an encrypted channel. This is possible on Windows, for example, in an environment
where common accounts exist across all the machines in the pool. In this case,ALLOW_CONFIG
can be set to allow the Condor administrator (who in this example has an accountcondor common
to all machines in the pool) to set the password from the central manager as follows.

ALLOW_CONFIG = condor@mydomain/$(CONDOR_HOST)

The Condor administrator then executes

condor_store_cred -c -n host.mydomain add

Condor Version 7.7.6 Manual

3.6. Security 342

from the central manager to store the password to a given machine. Since thecondor account ex-
ists on both the central manager andhost.mydomain , the NTSSPI authentication method can be
used to authenticate and encrypt the connection.condor_store_credwill warn and prompt for can-
cellation, if the channel is not encrypted for whatever reason (typically because common accounts
do not exist or Condor’s security is misconfigured).

When a daemon is authenticated using a pool password, its security principle is
condor_pool@$(UID_DOMAIN) , where$(UID_DOMAIN) is taken from the daemon’s con-
figuration. TheALLOW_DAEMONandALLOW_NEGOTIATORconfiguration variables for autho-
rization should restrict access using this name. For example,

ALLOW_DAEMON = condor_pool@mydomain/*, condor@mydomain /$(IP_ADDRESS)
ALLOW_NEGOTIATOR = condor_pool@mydomain/$(CONDOR_HOST)

This configuration allows remoteDAEMON-level andNEGOTIATOR-level access, if the pool pass-
word is known. Local daemons authenticated ascondor@mydomain are also allowed access.
This is done so local authentication can be done using another method such asFS.

Example Security Configuration Using Pool PasswordThe following example configuration
uses pool password authentication and network message integrity checking for all commu-
nication between Condor daemons.

SEC_PASSWORD_FILE = $(LOCK)/pool_password
SEC_DAEMON_AUTHENTICATION = REQUIRED
SEC_DAEMON_INTEGRITY = REQUIRED
SEC_DAEMON_AUTHENTICATION_METHODS = PASSWORD
SEC_NEGOTIATOR_AUTHENTICATION = REQUIRED
SEC_NEGOTIATOR_INTEGRITY = REQUIRED
SEC_NEGOTIATOR_AUTHENTICATION_METHODS = PASSWORD
SEC_CLIENT_AUTHENTICATION_METHODS = FS, PASSWORD, KERBEROS, GSI
ALLOW_DAEMON = condor_pool@$(UID_DOMAIN)/*.cs.wisc.ed u, \

condor@$(UID_DOMAIN)/$(IP_ADDRESS)
ALLOW_NEGOTIATOR = condor_pool@$(UID_DOMAIN)/negotiat or.machine.name

Example Using Pool Password forcondor_startdAdvertisement One problem with the pool
password method of authentication is that it involves a single, shared secret. This does not
scale well with the addition of remote users who flock to the local pool. However, the pool
password may still be used for authenticating portions of the local pool, while others (such as
the remotecondor_schedddaemons involved in flocking) are authenticated by other means.

In this example, only thecondor_startddaemons in the local pool are required to have the
pool password when they advertise themselves to thecondor_collectordaemon.

SEC_PASSWORD_FILE = $(LOCK)/pool_password
SEC_ADVERTISE_STARTD_AUTHENTICATION = REQUIRED
SEC_ADVERTISE_STARTD_INTEGRITY = REQUIRED

Condor Version 7.7.6 Manual

3.6. Security 343

SEC_ADVERTISE_STARTD_AUTHENTICATION_METHODS = PASSWORD
SEC_CLIENT_AUTHENTICATION_METHODS = FS, PASSWORD, KERBEROS, GSI
ALLOW_ADVERTISE_STARTD = condor_pool@$(UID_DOMAIN)/*. cs.wisc.edu

File System Authentication

This form of authentication utilizes the ownership of a file in the identity verification of a client.
A daemon authenticating a client requires the client to write a file in a specific location (/tmp).
The daemon then checks the ownership of the file. The file’s ownership verifies the identity of the
client. In this way, the file system becomes the trusted authority. This authentication method is only
appropriate for clients and daemons that are on the same computer.

File System Remote Authentication

Like file system authentication, this form of authentication utilizes the ownership of a file in the
identity verification of a client. In this case, a daemon authenticating a client requires the client to
write a file in a specific location, but the location is not restricted to/tmp . The location of the file
is specified by the configuration variableFS_REMOTE_DIR.

Windows Authentication

This authentication is done only among Windows machines using a proprietary method. The Win-
dows security interface SSPI is used to enforce NTLM (NT LAN Manager). The authentication is
based on challenge and response, using the user’s password as a key. This is similar to Kerberos. The
main difference is that Kerberos provides an access token that typically grants access to an entire
network, whereas NTLM authentication only verifies an identity to one machine at a time. NTSSPI
is best-used in a way similar to file system authentication inUnix, and probably should not be used
for authentication between two computers.

Claim To Be Authentication

Claim To Be authentication accepts any identity claimed by the client. As such, it does not au-
thenticate. It is included in Condor and in the list of authentication methods for testing purposes
only.

Anonymous Authentication

Anonymous authentication causes authentication to be skipped entirely. As such, it does not au-
thenticate. It is included in Condor and in the list of authentication methods for testing purposes
only.

Condor Version 7.7.6 Manual

3.6. Security 344

3.6.4 The Unified Map File for Authentication

Condor’s unified map file allows the mappings from authenticated names to a Condor canonical user
name to be specified as a single list within a single file. The location of the unified map file is defined
by the configuration variableCERTIFICATE_MAPFILE ; it specifies the path and file name of the
unified map file. Each mapping is on its own line of the unified map file. Each line contains 3 fields,
separated by white space (space or tab characters):

1. The name of the authentication method to which the mappingapplies.

2. A regular expression representing the authenticated name to be mapped.

3. The canonical Condor user name.

Allowable authentication method names are the same as used to define any of the configuration
variablesSEC_*_AUTHENTICATION_METHODS, as repeated here:

GSI
SSL
KERBEROS
PASSWORD
FS
FS_REMOTE
NTSSPI
CLAIMTOBE
ANONYMOUS

The fields that represent an authenticated name and the canonical Condor user name may utilize
regular expressions as defined by PCRE (Perl-Compatible Regular Expressions). Due to this, more
than one line (mapping) within the unified map file may match. Look ups are therefore defined to
use the first mapping that matches.

A regular expression may need to contain spaces, and in this case the entire expression can be
surrounded by double quote marks. If a double quote character also needs to appear in such an
expression, it is preceded by a backslash.

The default behavior of Condor when no map file is specified is to do the following mappings,
with some additional logic noted below:

FS (.*) \1
FS_REMOTE (.*) \1
GSI (.*) GSS_ASSIST_GRIDMAP
SSL (.*) ssl@unmapped
KERBEROS ([^/]*)/?[^@]*@(.*) \1@\2
NTSSPI (.*) \1
CLAIMTOBE (.*) \1
PASSWORD (.*) \1

Condor Version 7.7.6 Manual

3.6. Security 345

For GSI (or SSL), the special nameGSS_ASSIST_GRIDMAPinstructs Condor to use the GSI
grid map file (configured withGRIDMAP as shown in section 3.6.3) to do the mapping. If no
mapping can be found for GSI (with or without the use ofGSS_ASSIST_GRIDMAP), the user is
mapped togsi@unmapped .

For Kerberos, ifKERBEROS_MAP_FILEis specified, the domain portion of the name is ob-
tained by mapping the Kerberos realm to the value specified inthe map file, rather than just using
the realm verbatim as the domain portion of the condor user name. See section 3.6.3 for details.

If authentication did not happen or failed and was not required, then the user is given the name
unauthenticated@unmapped .

With the integration of VOMS for GSI authentication, the interpretation of the regular expression
representing the authenticated name may change. First, thefull serialized DN and FQAN are used
in attempting a match. If no match is found using the full DN and FQAN, then the DN is then used
on its own without the FQAN. Using this, roles or user names from the VOMS attributes may be
extracted to be used as the target for mapping. And, in this case the FQAN are verified, permitting
reliance on their authenticity.

3.6.5 Encryption

Encryption provides privacy support between two communicating parties. Through configuration
macros, both the client and the daemon can specify whether encryption is required for further com-
munication.

The client uses one of two macros to enable or disable encryption:

SEC_DEFAULT_ENCRYPTION
SEC_CLIENT_ENCRYPTION

For the daemon, there are seven macros to enable or disable encryption:

SEC_DEFAULT_ENCRYPTION
SEC_READ_ENCRYPTION
SEC_WRITE_ENCRYPTION
SEC_ADMINISTRATOR_ENCRYPTION
SEC_CONFIG_ENCRYPTION
SEC_OWNER_ENCRYPTION
SEC_DAEMON_ENCRYPTION
SEC_NEGOTIATOR_ENCRYPTION
SEC_ADVERTISE_MASTER_ENCRYPTION
SEC_ADVERTISE_STARTD_ENCRYPTION
SEC_ADVERTISE_SCHEDD_ENCRYPTION

As an example, the macro defined in the configuration file for a daemon as

Condor Version 7.7.6 Manual

3.6. Security 346

SEC_CONFIG_ENCRYPTION = REQUIRED

signifies that any communication that changes a daemon’s configuration must be encrypted. If a
daemon’s configuration contains

SEC_DEFAULT_ENCRYPTION = REQUIRED

and does not contain any other security configuration for ENCRYPTION, then this default defines
the daemon’s needs for encryption over all access levels. Where a specific macro is present, its value
takes precedence over any default given.

If encryption is to be done, then the communicating parties must find (negotiate) a mutually
acceptable method of encryption to be used. A list of acceptable methods may be provided by the
client, using the macros

SEC_DEFAULT_CRYPTO_METHODS
SEC_CLIENT_CRYPTO_METHODS

A list of acceptable methods may be provided by the daemon, using the macros

SEC_DEFAULT_CRYPTO_METHODS
SEC_READ_CRYPTO_METHODS
SEC_WRITE_CRYPTO_METHODS
SEC_ADMINISTRATOR_CRYPTO_METHODS
SEC_CONFIG_CRYPTO_METHODS
SEC_OWNER_CRYPTO_METHODS
SEC_DAEMON_CRYPTO_METHODS
SEC_NEGOTIATOR_CRYPTO_METHODS
SEC_ADVERTISE_MASTER_CRYPTO_METHODS
SEC_ADVERTISE_STARTD_CRYPTO_METHODS
SEC_ADVERTISE_SCHEDD_CRYPTO_METHODS

The methods are given as a comma-separated list of acceptable values. These variables list the
encryption methods that are available to be used. The ordering of the list gives preference; the first
item in the list indicates the highest preference. Possiblevalues are

3DES
BLOWFISH

3.6.6 Integrity

An integrity check assures that the messages between communicating parties have not been tampered
with. Any change, such as addition, modification, or deletion can be detected. Through configura-
tion macros, both the client and the daemon can specify whether an integrity check is required of
further communication.

Condor Version 7.7.6 Manual

3.6. Security 347

The client uses one of two macros to enable or disable an integrity check:

SEC_DEFAULT_INTEGRITY
SEC_CLIENT_INTEGRITY

For the daemon, there are seven macros to enable or disable anintegrity check:

SEC_DEFAULT_INTEGRITY
SEC_READ_INTEGRITY
SEC_WRITE_INTEGRITY
SEC_ADMINISTRATOR_INTEGRITY
SEC_CONFIG_INTEGRITY
SEC_OWNER_INTEGRITY
SEC_DAEMON_INTEGRITY
SEC_NEGOTIATOR_INTEGRITY
SEC_ADVERTISE_MASTER_INTEGRITY
SEC_ADVERTISE_STARTD_INTEGRITY
SEC_ADVERTISE_SCHEDD_INTEGRITY

As an example, the macro defined in the configuration file for a daemon as

SEC_CONFIG_INTEGRITY = REQUIRED

signifies that any communication that changes a daemon’s configuration must have its integrity as-
sured. If a daemon’s configuration contains

SEC_DEFAULT_INTEGRITY = REQUIRED

and does not contain any other security configuration forINTEGRITY, then this default defines the
daemon’s needs for integrity checks over all access levels.Where a specific macro is present, its
value takes precedence over any default given.

A signed MD5 check sum is currently the only available methodfor integrity checking. Its use
is implied whenever integrity checks occur. If more methodsare implemented, then there will be
further macros to allow both the client and the daemon to specify which methods are acceptable.

3.6.7 Authorization

Authorization protects resource usage by granting or denying access requests made to the resources.
It defines who is allowed to do what.

Authorization is defined in terms of users. An initial implementation provided authorization
based on hosts (machines), while the current implementation relies on user-based authorization.

Condor Version 7.7.6 Manual

3.6. Security 348

Section 3.6.9 on Setting Up IP/Host-Based Security in Condor describes the previous implementa-
tion. This IP/Host-Based security still exists, and it can be used, but significantly stronger and more
flexible security can be achieved with the newer authorization based on fully qualified user names.
This section discusses user-based authorization.

The authorization portion of the security of a Condor pool isbased on a set of configuration
macros. The macros list which user will be authorized to issue what request given a specific access
level. When a daemon is to be authorized, its user name is the login under which the daemon is
executed.

These configuration macros define a set of users that will be allowed to (or denied from) carrying
out various Condor commands. Each access level may have its own list of authorized users. A
complete list of the authorization macros:

ALLOW_READ
ALLOW_WRITE
ALLOW_ADMINISTRATOR
ALLOW_CONFIG
ALLOW_SOAP
ALLOW_OWNER
ALLOW_NEGOTIATOR
ALLOW_DAEMON
DENY_READ
DENY_WRITE
DENY_ADMINISTRATOR
DENY_SOAP
DENY_CONFIG
DENY_OWNER
DENY_NEGOTIATOR
DENY_DAEMON

In addition, the following are used to control authorization of specific types of Condor dae-
mons when advertising themselves to the pool. If unspecified, these default to the broader
ALLOW_DAEMONandDENY_DAEMONsettings.

ALLOW_ADVERTISE_MASTER
ALLOW_ADVERTISE_STARTD
ALLOW_ADVERTISE_SCHEDD
DENY_ADVERTISE_MASTER
DENY_ADVERTISE_STARTD
DENY_ADVERTISE_SCHEDD

Each client side of a connection may also specify its own listof trusted servers. This is done
using the following settings. Note that the FS and CLAIMTOBEauthentication methods are not
symmetric. The client is authenticated by the server, but the server is not authenticated by the client.

Condor Version 7.7.6 Manual

3.6. Security 349

When the server is not authenticated to the client, only the network address of the host may be
authorized and not the specific identity of the server.

ALLOW_CLIENT
DENY_CLIENT

The namesALLOW_CLIENTandDENY_CLIENTshould be thought of as “when I am acting as
a client, these are the servers I allow or deny.” It shouldnot be confused with the incorrect thought
“when I am the server, these are the clients I allow or deny.”

All authorization settings are defined by a comma-separatedlist of fully qualified users. Each
fully qualified user is described using the following format:

username@domain/hostname

The information to the left of the slash character describesa user within a domain. The information
to the right of the slash character describes one or more machines from which the user would be
issuing a command. This host name may take the form of either afully qualified host name of the
form

bird.cs.wisc.edu

or an IP address of the form

128.105.128.0

An example is

zmiller@cs.wisc.edu/bird.cs.wisc.edu

Within the format, wild card characters (the asterisk, *) are allowed. The use of wild cards is
limited to one wild card on either side of the slash character. A wild card character used in the host
name is further limited to come at the beginning of a fully qualified host name or at the end of an IP
address. For example,

*@cs.wisc.edu/bird.cs.wisc.edu

refers to any user that comes fromcs.wisc.edu , where the command is originating from the
machinebird.cs.wisc.edu . Another valid example,

zmiller@cs.wisc.edu/*.cs.wisc.edu

Condor Version 7.7.6 Manual

3.6. Security 350

refers to commands coming from any machine within thecs.wisc.edu domain, and issued by
zmiller . A third valid example,

@cs.wisc.edu/

refers to commands coming from any user within thecs.wisc.edu domain where the command
is issued from any machine. A fourth valid example,

@cs.wisc.edu/128.105.

refers to commands coming from any user within thecs.wisc.edu domain where the command
is issued from machines within the network that match the first two octets of the IP address.

If the set of machines is specified by an IP address, then further specification using a net mask
identifies a physical set (subnet) of machines. This physical set of machines is specified using the
form

network/netmask

Thenetwork is an IP address. The net mask takes one of two forms. It may be adecimal number
which refers to the number of leading bits of the IP address that are used in describing a subnet. Or,
the net mask may take the form of

a.b.c.d

wherea, b, c , andd are decimal numbers that each specify an 8-bit mask. An example net mask is

255.255.192.0

which specifies the bit mask

11111111.11111111.11000000.00000000

A single complete example of a configuration variable that uses a net mask is

ALLOW_WRITE = joesmith@cs.wisc.edu/128.105.128.0/17

Userjoesmith within thecs.wisc.edu domain is given write authorization when originating
from machines that match their leftmost 17 bits of the IP address.

This flexible set of configuration macros could used to define conflicting authorization. There-
fore, the following protocol defines the precedence of the configuration macros.

Condor Version 7.7.6 Manual

3.6. Security 351

1. DENY_* macros take precedence overALLOW_* macros where there is a conflict. This
implies that if a specific user is both denied and granted authorization, the conflict is resolved
by denying access.

2. If macros are omitted, the default behavior is to grant authorization for every user.

In addition, there are some hard-coded authorization rulesthat cannot be modified by configura-
tion.

1. Connections with a name matching*@unmappedare not allowed to do any job management
commands (e.g. submitting, removing, or modifying jobs). This prevents these operations
from being done by unauthenticated users and users who are authenticated but lacking a name
in the map file.

2. To simplify flocking, thecondor_scheddautomatically grants thecondor_startdREADac-
cess for the duration of a claim so that claim-related communications are possible. Thecon-
dor_shadowgrants thecondor_starterDAEMONaccess so that file transfers can be done. The
identity that is granted access in both these cases is the authenticated name (if available) and
IP address of thecondor_startdwhen thecondor_scheddinitially connects to it to request the
claim. It is important that only trustedcondor_startds are allowed to publish themselves to
the collector or that thecondor_schedd’s ALLOW_CLIENTsetting prevent it from allowing
connections tocondor_startds that it does not trust to run jobs.

3. When SEC_ENABLE_MATCH_PASSWORD_AUTHENTICATION is true,
execute-side@matchsession is automatically grantedREAD access to thecon-
dor_scheddandDAEMONaccess to thecondor_shadow.

Example of Authorization Security Configuration

An example of the configuration variables for the user-side authorization is derived from the neces-
sary access levels as described in Section 3.6.1.

ALLOW_READ = *@cs.wisc.edu/*
ALLOW_WRITE = *@cs.wisc.edu/*.cs.wisc.edu
ALLOW_ADMINISTRATOR = condor-admin@cs.wisc.edu/*.cs.w isc.edu
ALLOW_CONFIG = condor-admin@cs.wisc.edu/*.cs.wisc.edu
ALLOW_NEGOTIATOR = condor@cs.wisc.edu/condor.cs.wisc. edu, \

condor@cs.wisc.edu/condor2.cs.wisc.edu
ALLOW_DAEMON = condor@cs.wisc.edu/*.cs.wisc.edu

Clear out any old-style HOSTALLOW settings:
HOSTALLOW_READ =
HOSTALLOW_WRITE =
HOSTALLOW_DAEMON =
HOSTALLOW_NEGOTIATOR =
HOSTALLOW_ADMINISTRATOR =
HOSTALLOW_OWNER =

Condor Version 7.7.6 Manual

3.6. Security 352

This example configuration authorizes any authenticated user in thecs.wisc.edu domain
to carry out a request that requires theREADaccess level from any machine. Any user in the
cs.wisc.edu domain may carry out a request that requires theWRITEaccess level from any
machine in thecs.wisc.edu domain. Only the user calledcondor-admin may carry out a
request that requires theADMINISTRATORaccess level from any machine in thecs.wisc.edu
domain. The administrator, logged into any machine within thecs.wisc.edu domain is autho-
rized at theCONFIGaccess level. Only the negotiator daemon, running ascondor on the two
central managers are authorized with theNEGOTIATORaccess level. And, the last line of the ex-
ample presumes that there is a user called condor, and that the daemons have all been started up as
this user. It authorizes only programs (which will be the daemons) running ascondor to carry out
requests that require theDAEMONaccess level, where the commands originate from any machinein
thecs.wisc.edu domain.

In the local configuration file for each host, the host’s ownershould be authorized as the owner
of the machine. An example of the entry in the local configuration file:

ALLOW_OWNER = username@cs.wisc.edu/hostname.cs.wisc.e du

In this example the owner has a login ofusername , and the machine’s name is represented by
hostname .

Debugging Security Configuration

If the authorization policy denies a network request, an explanation of why the request was denied
is printed in the log file of the daemon that denied the request. The line in the log file contains the
wordsPERMISSION DENIED.

To get Condor to generate a similar explanation of why requests are accepted, addD_SECURITY
to the daemon’s debug options (and restart or reconfig the daemon). The line in the log file for these
cases will contain the wordsPERMISSION GRANTED. If you do not want to see a full explanation
but just want to see when requests are made, addD_COMMANDto the daemon’s debug options.

If the authorization policy makes use of host or domain names, then be aware that Condor de-
pends on DNS to map IP addresses to names. The security and accuracy of your DNS service is
therefore a requirement. Typos in DNS mappings are an occasional source of unexpected behavior.
If the authorization policy is not behaving as expected, carefully compare the names in the policy
with the host names Condor mentions in the explanations of why requests are granted or denied.

3.6.8 Security Sessions

To set up and configure secure communications in Condor, authentication, encryption, and integrity
checks can be used. However, these come at a cost: performingstrong authentication can take
a significant amount of time, and generating the cryptographic keys for encryption and integrity
checks can take a significant amount of processing power.

Condor Version 7.7.6 Manual

3.6. Security 353

The Condor system makes many network connections between different daemons. If each one
of these was to be authenticated, and new keys were generatedfor each connection, Condor would
not be able to scale well. Therefore, Condor uses the conceptof sessionsto cache relevant security
information for future use and greatly speed up the establishment of secure communications between
the various Condor daemons.

A new session is established the first time a connection is made from one daemon to another.
Each session has a fixed lifetime after which it will expire and a new session will need to be created
again. But while a valid session exists, it can be re-used as many times as needed, thereby pre-
venting the need to continuously re-establish secure connections. Each entity of a connection will
have access to asession keythat proves the identity of the other entity on the opposing side of the
connection. This session key is exchanged securely using a strong authentication method, such as
Kerberos or GSI. Other authentication methods, such asNTSSPI, FS_REMOTE, CLAIMTOBE, and
ANONYMOUS, do not support secure key exchange. An entity listening on the wire may be able to
impersonate the client or server in a session that does not use a strong authentication method.

Establishing a secure session requires that either the encryption or the integrity options be en-
abled. If the encryption capability is enabled, then the session will be restarted using the session
key as the encryption key. If integrity capability is enabled, then the check sum includes the session
key even though it is not transmitted. Without either of these two methods enabled, it is possible
for an attacker to use an open session to make a connection to adaemon and use that connection
for nefarious purposes. It is strongly recommended that ifyou have authentication turned on, you
should also turn on integrity and/or encryption.

The configuration parameterSEC_DEFAULT_NEGOTIATIONwill allow a user to set the de-
fault level of secure sessions in Condor. Like other security settings, the possible values for this pa-
rameter can beREQUIRED, PREFERRED, OPTIONAL, or NEVER. If you disable sessions and you
have authentication turned on, then most authentication (other than commands likecondor_submit)
will fail because Condor requires sessions when you have security turned on. On the other hand, if
you are not using strong security in Condor, but you are relying on the default host-based security,
turning off sessions may be useful in certain situations. These might include debugging problems
with the security session management or slightly decreasing the memory consumption of the dae-
mons, which keep track of the sessions in use.

Session lifetimes for specific daemons are already properlyconfigured in the default installation
of Condor. Condor tools such ascondor_qandcondor_statuscreate a session that expires after
one minute. Theoretically they should not create a session at all, because the session cannot be
reused between program invocations, but this is difficult todo in the general case. This allows a very
small window of time for any possible attack, and it helps keep the memory footprint of running
daemons down, because they are not keeping track of all of thesessions. The session durations may
be manually tuned by using macros in the configuration file, but this is not recommended.

3.6.9 Host-Based Security in Condor

This section describes the mechanisms for setting up Condor’s host-based security. This is now
an outdated form of implementing security levels for machine access. It remains available and

Condor Version 7.7.6 Manual

3.6. Security 354

documented for purposes of backward compatibility. If usedat the same time as the user-based
authorization, the two specifications are merged together.

The host-based security paradigm allows control over whichmachines can join a Condor pool,
which machines can find out information about your pool, and which machines within a pool can
perform administrative commands. By default, Condor is configured to allow anyone to view or join
a pool. It is recommended that this parameter is changed to only allow access from machines that
you trust.

This section discusses how the host-based security works inside Condor. It lists the different
levels of access and what parts of Condor use which levels. There is a description of how to configure
a pool to grant or deny certain levels of access to various machines. Configuration examples and the
settings of configuration variables using thecondor_config_valcommand complete this section.

Inside the Condor daemons or tools that use DaemonCore (see section 3.9 for details), most
tasks are accomplished by sending commands to another Condor daemon. These commands are
represented by an integer value to specify which command is being requested, followed by any
optional information that the protocol requires at that point (such as a ClassAd, capability string,
etc). When the daemons start up, they will register which commands they are willing to accept,
what to do with arriving commands, and the access level required for each command. When a
command request is received by a daemon, Condor identifies the access level required and checks the
IP address of the sender to verify that it satisfies the allow/deny settings from the configuration file.
If permission is granted, the command request is honored; otherwise, the request will be aborted.

Settings for the access levels in the global configuration file will affect all the machines in the
pool. Settings in a local configuration file will only affect the specific machine. The settings for a
given machine determine what other hosts can send commands to that machine. If a machine foo is
to be given administrator access on machine bar, place foo inbar’s configuration file access list (not
the other way around).

The following are the various access levels that commands within Condor can be registered with:

READ Machines withREADaccess can read information from the Condor daemons. For example,
they can view the status of the pool, see the job queue(s), andview user permissions.READ
access does not allow a machine to alter any information, anddoes not allow job submission.
A machine listed withREADpermission will be unable join a Condor pool; the machine can
only view information about the pool.

WRITE Machines withWRITEaccess can write information to the Condor daemons. Most impor-
tant for granting a machine with this access is that the machine will be able to join a pool
since they are allowed to send ClassAd updates to the centralmanager. The machine can talk
to the other machines in a pool in order to submit or run jobs. In addition, any machine with
WRITEaccess can request thecondor_startddaemon to perform periodic checkpoints on an
executing job. After the checkpoint is completed, the job will continue to execute and the
machine will still be claimed by the originalcondor_schedddaemon. This allows users on
the machines where they submitted their jobs to use thecondor_checkpointcommand to get
their jobs to periodically checkpoint, even if the users do not have an account on the machine
where the jobs execute.

Condor Version 7.7.6 Manual

3.6. Security 355

IMPORTANT: For a machine to join a Condor pool, the machine must have bothWRITE
permissionAND READpermission.WRITEpermission is not enough.

ADMINISTRATORMachines withADMINISTRATORaccess are granted additional Condor ad-
ministrator rights to the pool. This includes the ability tochange user priorities with the
commandcondor_userprio, and the ability to turn Condor on and off (with the command
condor_off <machine >). It is recommended that few machines be granted adminis-
trator access in a pool; typically these are the machines that are used by Condor and system
administrators as their primary workstations, or the machines running as the pool’s central
manager.

IMPORTANT: Giving ADMINISTRATORprivileges to a machine grants administrator ac-
cess for the pool toANY USER on that machine. This includes any users who can run Condor
jobs on that machine. It is recommended thatADMINISTRATORaccess is granted with due
diligence.

OWNER This level of access is required for commands that the owner of a machine (any local
user) should be able to use, in addition to the Condor administrators. For example, thecon-
dor_vacatecommand causes thecondor_startddaemon to vacate any running Condor job.
It requiresOWNERpermission, so that any user logged into a local machine can issue acon-
dor_vacatecommand.

NEGOTIATOR This access level is used specifically to verify that commands are sent by thecon-
dor_negotiatordaemon. Thecondor_negotiatordaemon runs on the central manager of the
pool. Commands requiring this access level are the ones thattell thecondor_schedddaemon
to begin negotiating, and those that tell an availablecondor_startddaemon that it has been
matched to acondor_scheddwith jobs to run.

CONFIG This access level is required to modify a daemon’s configuration using thecon-
dor_config_valcommand. By default, machines with this level of access are able to change
any configuration parameter, except those specified in thecondor_config.root con-
figuration file. Therefore, one should exercise extreme caution before granting this level of
host-wide access. Because of the implications caused byCONFIGprivileges, it is disabled by
default for all hosts.

DAEMON This access level is used for commands that are internal to the operation of Condor. An
example of this internal operation is when thecondor_startddaemon sends its ClassAd up-
dates to thecondor_collectordaemon (which may be more specifically controlled by the
ADVERTISE_STARTDaccess level). Authorization at this access level should only be given
to hosts that actually run Condor in your pool. TheDAEMONlevel of access implies both
READandWRITEaccess. Any setting for this access level that is not defined will default to
the corresponding setting in theWRITEaccess level.

ADVERTISE_MASTERThis access level is used specifically for commands used to advertise a
condor_masterdaemon to the collector. Any setting for this access level that is not defined
will default to the corresponding setting in theDAEMONaccess level.

ADVERTISE_STARTDThis access level is used specifically for commands used to advertise a
condor_startddaemon to the collector. Any setting for this access level that is not defined
will default to the corresponding setting in theDAEMONaccess level.

Condor Version 7.7.6 Manual

3.6. Security 356

ADVERTISE_SCHEDDThis access level is used specifically for commands used to advertise a
condor_schedddaemon to the collector. Any setting for this access level that is not defined
will default to the corresponding setting in theDAEMONaccess level.

CLIENT This access level is different from all the others. Whereas all of the other access levels
refer to the security policy for accepting connectionsfrom others, theCLIENT access level
applies when a Condor daemon or tool is connectingto some other Condor daemon. In other
words, it specifies the policy of the client that is initiating the operation, rather than the server
that is being contacted.

ADMINISTRATORandNEGOTIATORaccess default to the central manager machine.OWNER
access defaults to the local machine, as well as any machinesgiven withADMINISTRATORaccess.
CONFIGaccess is not granted to any machine as its default. These defaults are sufficient for most
pools, and should not be changed without a compelling reason. If machines other than the default
are to have to haveOWNERaccess, they probably should also haveADMINISTRATORaccess. By
granting machinesADMINISTRATORaccess, they will automatically haveOWNERaccess, given
howOWNERaccess is set within the configuration.

3.6.10 Examples of Security Configuration

Here is a sample security configuration:

ALLOW_ADMINISTRATOR = $(CONDOR_HOST)
ALLOW_OWNER = $(FULL_HOSTNAME), $(ALLOW_ADMINISTRATOR)
ALLOW_READ = *
ALLOW_WRITE = *
ALLOW_NEGOTIATOR = $(COLLECTOR_HOST)
ALLOW_NEGOTIATOR_SCHEDD = $(COLLECTOR_HOST), $(FLOCK_NEGOTIATOR_HOSTS)
ALLOW_WRITE_COLLECTOR = $(ALLOW_WRITE), $(FLOCK_FROM)
ALLOW_WRITE_STARTD = $(ALLOW_WRITE), $(FLOCK_FROM)
ALLOW_READ_COLLECTOR = $(ALLOW_READ), $(FLOCK_FROM)
ALLOW_READ_STARTD = $(ALLOW_READ), $(FLOCK_FROM)
ALLOW_CLIENT = *

This example configuration presumes that thecondor_collectorandcondor_negotiatordaemons
are running on the same machine.

For each access level, an ALLOW or a DENY may be added.

• If there is an ALLOW, it means "only allow these machines". No ALLOW means allow
anyone.

• If there is a DENY, it means "deny these machines". No DENY means deny nobody.

• If there is both an ALLOW and a DENY, it means allow the machines listed in ALLOW except
for the machines listed in DENY.

Condor Version 7.7.6 Manual

3.6. Security 357

• Exclusively for theCONFIGaccess, no ALLOW means allow no one. Note that this is dif-
ferent than the other ALLOW configurations. It is different to enable more stringent security
where older configurations are used, since older configuration files would not have aCONFIG
configuration entry.

Multiple machine entries in the configuration files may be separated by either a space or a
comma. The machines may be listed by

• Individual host names, for example:condor.cs.wisc.edu

• Individual IP address, for example:128.105.67.29

• IP subnets (use a trailing*), for example:144.105.*, 128.105.67.*

• Host names with a wild card* character (only one* is allowed per name), for example:
.cs.wisc.edu, sol.cs.wisc.edu

To resolve an entry that falls into both allow and deny: individual machines have a higher order of
precedence than wild card entries, and host names with a wildcard have a higher order of precedence
than IP subnets. Otherwise, DENY has a higher order of precedence than ALLOW. This is how most
people would intuitively expect it to work.

In addition, the above access levels may be specified on a per-daemon basis, instead of machine-
wide for all daemons. Do this with the subsystem string (described in section 3.3.1 on Subsystem
Names), which is one of:STARTD, SCHEDD, MASTER, NEGOTIATOR, or COLLECTOR. For ex-
ample, to grant different read access for thecondor_schedd:

ALLOW_READ_SCHEDD = <list of machines>

Here are more examples of configuration settings. Notice that ADMINISTRATORaccess is only
granted through anALLOWsetting to explicitly grant access to a small number of machines. We
recommend this.

• Let any machine join the pool. Only the central manager has administrative access.

ALLOW_ADMINISTRATOR = $(CONDOR_HOST)
ALLOW_OWNER = $(FULL_HOSTNAME), $(ALLOW_ADMINISTRATOR)

• Only allow machines at NCSA to join or view the pool. The central manager is the only
machine withADMINISTRATORaccess.

ALLOW_READ = *.ncsa.uiuc.edu
ALLOW_WRITE = *.ncsa.uiuc.edu
ALLOW_ADMINISTRATOR = $(CONDOR_HOST)
ALLOW_OWNER = $(FULL_HOSTNAME), $(ALLOW_ADMINISTRATOR)

• Only allow machines at NCSA and the U of I Math department join the pool,except do not
allow lab machines to do so. Also, do not allow the 177.55 subnet (perhaps this is the dial-in
subnet). Allow anyone to view pool statistics. The machine named bigcheese administers the
pool (not the central manager).

Condor Version 7.7.6 Manual

3.6. Security 358

ALLOW_WRITE = *.ncsa.uiuc.edu, *.math.uiuc.edu
DENY_WRITE = lab-*.edu, *.lab.uiuc.edu, 177.55.*
ALLOW_ADMINISTRATOR = bigcheese.ncsa.uiuc.edu
ALLOW_OWNER = $(FULL_HOSTNAME), $(ALLOW_ADMINISTRATOR)

• Only allow machines at NCSA and UW-Madison’s CS departmentto view the pool. Only
NCSA machines and the machine raven.cs.wisc.edu can join the pool. Note: the machine
raven.cs.wisc.edu has the read access it needs through the wild card setting inALLOW_READ).
This example also shows how to use the continuation character, \ , to continue a long list of
machines onto multiple lines, making it more readable. Thisworks for all configuration file
entries, not just host access entries.

ALLOW_READ = *.ncsa.uiuc.edu, *.cs.wisc.edu
ALLOW_WRITE = *.ncsa.uiuc.edu, raven.cs.wisc.edu
ALLOW_ADMINISTRATOR = $(CONDOR_HOST), bigcheese.ncsa.u iuc.edu, \

biggercheese.uiuc.edu
ALLOW_OWNER = $(FULL_HOSTNAME), $(ALLOW_ADMINISTRATOR)

• Allow anyone except the military to view the status of the pool, but only let machines at NCSA
view the job queues. Only NCSA machines can join the pool. Thecentral manager, bigcheese,
and biggercheese can perform most administrative functions. However, only biggercheese can
update user priorities.

DENY_READ = *.mil
ALLOW_READ_SCHEDD = *.ncsa.uiuc.edu
ALLOW_WRITE = *.ncsa.uiuc.edu
ALLOW_ADMINISTRATOR = $(CONDOR_HOST), bigcheese.ncsa.u iuc.edu, \

biggercheese.uiuc.edu
ALLOW_ADMINISTRATOR_NEGOTIATOR = biggercheese.uiuc.ed u
ALLOW_OWNER = $(FULL_HOSTNAME), $(ALLOW_ADMINISTRATOR)

3.6.11 Changing the Security Configuration

A new security feature introduced in Condor version 6.3.2 enables more fine-grained control over
the configuration settings that can be modified remotely withthecondor_config_valcommand. The
manual page forcondor_config_valon page 758 details how to usecondor_config_valto modify
configuration settings remotely. Since certain configuration attributes can have a large impact on the
functioning of the Condor system and the security of the machines in a Condor pool, it is important
to restrict the ability to change attributes remotely.

For each security access level described, the Condor administrator can define which configura-
tion settings a host at that access level is allowed to change. Optionally, the administrator can define
separate lists of settable attributes for each Condor daemon, or the administrator can define one list
that is used by all daemons.

For each command that requests a change in configuration setting, Condor searches all the differ-
ent possible security access levels to see which, if any, therequest satisfies. (Some hosts can qualify
for multiple access levels. For example, any host withADMINISTRATORpermission probably has
WRITEpermission also). Within the qualified access level, Condorsearches for the list of attributes
that may be modified. If the request is covered by the list, therequest will be granted. If not covered,
the request will be refused.

Condor Version 7.7.6 Manual

3.6. Security 359

The default configuration shipped with Condor is exceedingly restrictive. Condor users or ad-
ministrators cannot set configuration values from remote hosts withcondor_config_val. Enabling
this feature requires a change to the settings in the configuration file. Use this security feature care-
fully. Grant access only for attributes which you need to be able to modify in this manner, and grant
access only at the most restrictive security level possible.

The most secure use of this feature allows Condor users to setattributes in the configuration file
which are not used by Condor directly. These are custom attributes published by various Condor
daemons with the<SUBSYS>_ATTRSsetting described in section 3.3.5 on page 183. It is secure
to grant access only to modify attributes that are used by Condor to publish information. Granting
access to modify settings used to control the behavior of Condor is not secure. The goal is to ensure
no one can use the power to change configuration attributes tocompromise the security of your
Condor pool.

The control lists are defined by configuration settings that containSETTABLE_ATTRSin their
name. The name of the control lists have the following form:

<SUBSYS>.SETTABLE_ATTRS_<PERMISSION-LEVEL>

The two parts of this name that can vary are the<PERMISSION-LEVEL>and the<SUBSYS>.
The <PERMISSION-LEVEL> can be any of the security access levels described earlier inthis
section. Examples includeWRITE, OWNER, andCONFIG.

The <SUBSYS>is an optional portion of the name. It can be used to define separate rules
for which configuration attributes can be set for each kind ofCondor daemon (for example,
STARTD, SCHEDD, and MASTER). There are many configuration settings that can be defined
differently for each daemon that use this<SUBSYS>naming convention. See section 3.3.1 on
page 165 for a list. If there is no daemon-specific value for a given daemon, Condor will look for
SETTABLE_ATTRS_<PERMISSION-LEVEL>.

Each control list is defined by a comma-separated list of attribute names which should be allowed
to be modified. The lists can contain wild cards characters (*).

Some examples of valid definitions of control lists with explanations:

• SETTABLE_ATTRS_CONFIG = *

Grant unlimited access to modify configuration attributes to any request that came from a
machine in theCONFIGaccess level. This was the default behavior before Condor version
6.3.2.

• SETTABLE_ATTRS_ADMINISTRATOR = *_DEBUG, MAX_*_LOG

Grant access to change any configuration setting that ended with _DEBUG(for ex-
ample, STARTD_DEBUG) and any attribute that matchedMAX_*_LOG (for example,
MAX_SCHEDD_LOG) to any host withADMINISTRATORaccess.

• STARTD.SETTABLE_ATTRS_OWNER = HasDataSet

Condor Version 7.7.6 Manual

3.6. Security 360

Allows any request to modify theHasDataSet attribute that came from a host withOWNER
access. By default,OWNERcovers any request originating from the local host, plus anyma-
chines listed in theADMINISTRATORlevel. Therefore, any Condor job would qualify for
OWNER access to the machine where it is running. So, this setting would allow any process
running on a given host, including a Condor job, to modify theHasDataSet variable for
that host. HasDataSet is not used by Condor, it is an invented attribute included inthe
STARTD_ATTRSsetting in order for this example to make sense.

3.6.12 Using Condor w/ Firewalls, Private Networks, and NATs

This topic is now addressed in more detail in section 3.7, which explains network communication in
Condor.

3.6.13 User Accounts in Condor on Unix Platforms

On a Unix system, UIDs (User IDentification numbers) form part of an operating system’s tools for
maintaining access control. Each executing program has a UID, a unique identifier of a user execut-
ing the program. This is also called the real UID. A common situation has one user executing the
program owned by another user. Many system commands work this way, with a user (corresponding
to a person) executing a program belonging to (owned by)root . Since the program may require
privileges thatroot has which the user does not have, a special bit in the program’s protection
specification (a setuid bit) allows the program to run with the UID of the program’s owner, instead
of the user that executes the program. This UID of the program’s owner is called an effective UID.

Condor works most smoothly when its daemons run asroot . The daemons then have the ability
to switch their effective UIDs at will. When the daemons run as root , they normally leave their
effective UID and GID (Group IDentification) to be those of user and groupcondor . This allows
access to the log files without changing the ownership of the log files. It also allows access to these
files when the usercondor ’s home directory resides on an NFS server.root can not normally
access NFS files.

If there is nocondor user and group on the system, an administrator can specify which UID
and GID the Condor daemons should use when they do not need root privileges in two ways: either
with theCONDOR_IDSenvironment variable or theCONDOR_IDSconfiguration variable. In either
case, the value should be the UID integer, followed by a period, followed by the GID integer. For
example, if a Condor administrator does not want to create acondor user, and instead wants their
Condor daemons to run as thedaemon user (a common non-root user for system daemons to execute
as), thedaemon user’s UID was 2, and groupdaemon had a GID of 2, the corresponding setting
in the Condor configuration file would beCONDOR_IDS = 2.2.

On a machine where a job is submitted, thecondor_schedddaemon changes its effective UID
to root such that it has the capability to start up acondor_shadowdaemon for the job. Before a
condor_shadowdaemon is created, thecondor_schedddaemon switches back toroot , so that it
can start up thecondor_shadowdaemon with the (real) UID of the user who submitted the job. Since

Condor Version 7.7.6 Manual

3.6. Security 361

thecondor_shadowruns as the owner of the job, all remote system calls are performed under the
owner’s UID and GID. This ensures that as the job executes, itcan access only files that its owner
could access if the job were running locally, without Condor.

On the machine where the job executes, the job runs either as the submitting user or as user
nobody , to help ensure that the job cannot access local resources ordo harm. If theUID_DOMAIN
matches, and the user exists as the same UID in password files on both the submitting machine

and on the execute machine, the job will run as the submittinguser. If the user does not exist
in the execute machine’s password file andSOFT_UID_DOMAIN is True, then the job will run
under the submitting user’s UID anyway (as defined in the submitting machine’s password file).
If SOFT_UID_DOMAINis False, andUID_DOMAINmatches, and the user is not in the execute
machine’s password file, then the job execution attempt willbe aborted.

Running Condor as Non-Root

While we strongly recommend starting up the Condor daemons as root , we understand that it is
not always possible to do so. The main problems of not runningCondor daemons asroot appear
when one Condor installation is shared by many users on a single machine, or if machines are set up
to only execute Condor jobs. With a submit-only installation for a single user, there is no need for
or benefit from running asroot .

The effects of Condor of running both with and without root access are classified for each dae-
mon:

condor_startdA Condor machine set up to execute jobs where thecondor_startdis not started as
root relies on the good will of the Condor users to agree to the policy configured for the
condor_startdto enforce for starting, suspending, vacating, and killingCondor jobs. When
thecondor_startdis started asroot , however, these policies may be enforced regardless of
malicious users. By running asroot , the Condor daemons run with a different UID than the
Condor job. The user’s job is started as either the UID of the user who submitted it, or as user
nobody , depending on theUID_DOMAIN settings. Therefore, the Condor job cannot do
anything to the Condor daemons. Without starting the daemons asroot , all processes started
by Condor, including the user’s job, run with the same UID. Only root can switch UIDs.
Therefore, a user’s job could kill thecondor_startdandcondor_starter. By doing so, the
user’s job avoids getting suspended or vacated. This is nicefor the job, as it obtains unlimited
access to the machine, but it is awful for the machine owner oradministrator. If there is trust
of the users submitting jobs to Condor, this might not be a concern. However, to ensure that
the policy chosen is enforced by Condor, thecondor_startdshould be started asroot .

In addition, some system information cannot be obtained withoutroot access on some plat-
forms. As a result, when running withoutroot access, thecondor_startdmust call other
programs such asuptime, to get this information. This is much less efficient than getting
the information directly from the kernel, as is done when running asroot . On Linux, this
information is available without root access, so it is not a concern on those platforms.

If all of Condor cannot be run asroot , at least consider installing thecondor_startdas
setuid root. That would solve both problems. Barring that, install it as a setgid sys or kmem

Condor Version 7.7.6 Manual

3.6. Security 362

program, depending on whatever group has read access to/dev/kmem on the system. That
would solve the system information problem.

condor_scheddThe biggest problem with running thecondor_scheddwithout root access is that
the condor_shadowprocesses which it spawns are stuck with the same UID that thecon-
dor_scheddhas. This requires users to go out of their way to grant write access to user or
group that thecondor_scheddis run as for any files or directories their jobs write or create.
Similarly, read access must be granted to their input files.

Consider installingcondor_submitas a setgidcondor program so that at least thestdout ,
stderr and user log files get created with the right permissions. Ifcondor_submitis a setgid
program, it will automatically set its umask to 002 and create group-writable files. This way,
the simple case of a job that only writes tostdout andstderr will work. If users have
programs that open their own files, they will need to know and set the proper permissions on
the directories they submit from.

condor_masterThe condor_masterspawns both thecondor_startdand thecondor_schedd. To
have both running asroot , have thecondor_masterrun asroot . This happens automati-
cally if thecondor_masteris started from boot scripts.

condor_negotiatorand condor_collectorThere is no need to have either of these daemons running
asroot .

condor_kbddOn platforms that need thecondor_kbdd, the condor_kbddmust run asroot . If
it is started as any other user, it will not work. Consider installing this program as a setuid
root binary if thecondor_masterwill not be run asroot . Without thecondor_kbdd, the
condor_startdhas no way to monitor USB mouse or keyboard activity, although it will notice
keyboard activity on ttys such as xterms and remote logins.

If Condor is not run as root, then choose almost any user name.A common choice is to set up
and use thecondor user; this simplifies the setup, because Condor will look forits configuration
files in thecondor user’s directory. Ifcondor is not selected, then the configuration must be
placed properly such that Condor can find its configuration files.

If users will be submitting jobs as a user different than the user Condor is running as (perhaps
you are running as thecondor user and users are submitting as themselves), then users have to be
careful to only have file permissions properly set up to be accessible by the user Condor is using. In
practice, this means creating world-writable directoriesfor output from Condor jobs. This creates a
potential security risk, in that any user on the machine where the job is submitted can alter the data,
remove it, or do other undesirable things. It is only acceptable in an environment where users can
trust other users.

Normally, users withoutroot access who wish to use Condor on their machines create a
condor home directory somewhere within their own accounts and start up the daemons (to run
with the UID of the user). As in the case where the daemons run as usercondor , there is no ability
to switch UIDs or GIDs. The daemons run as the UID and GID of theuser who started them. On
a machine where jobs are submitted, thecondor_shadowdaemons all run as this same user. But, if
other users are using Condor on the machine in this environment, thecondor_shadowdaemons for

Condor Version 7.7.6 Manual

3.6. Security 363

these other users’ jobs execute with the UID of the user who started the daemons. This is a security
risk, since the Condor job of the other user has access to all the files and directories of the user who
started the daemons. Some installations have this level of trust, but others do not. Where this level
of trust does not exist, it is best to set up acondor account and group, or to have each user start up
their own Personal Condor submit installation.

When a machine is an execution site for a Condor job, the Condor job executes with the UID of
the user who started thecondor_startddaemon. This is also potentially a security risk, which is why
we do not recommend starting up the execution site daemons asa regular user. Use eitherroot or
a user such ascondor that exists only to run Condor jobs.

Running Jobs as the Nobody User

Under Unix, Condor runs jobs either as the user that submitted the jobs, or as the user called
nobody . Condor uses usernobody if the value of theUID_DOMAINconfiguration variable of
the submitting and executing machines are different or ifSTARTER_ALLOW_RUNAS_OWNERis
false or if the job ClassAd containsRunAsOwner=False. Under Windows, Condor by default runs
jobs under a dynamically created local account that exists for the duration of the job, but it can op-
tionally run the job as the user account that owns the job ifSTARTER_ALLOW_RUNAS_OWNERis
True and the job containsRunAsOwner=True.

When Condor cleans up after executing a vanilla universe job, it does the best that it can by
deleting all of the processes started by the job. During the life of the job, it also does its best to track
the CPU usage of all processes created by the job. There are a variety of mechanisms used by Condor
to detect all such processes, but, in general, the only foolproof mechanism is for the job to run under
a dedicated execution account (as it does under Windows by default). With all other mechanisms, it
is possible to fool Condor, and leave processes behind afterCondor has cleaned up. In the case of
a shared account, such as the Unix usernobody , it is possible for the job to leave a lurker process
lying in wait for the next job run asnobody . The lurker process may prey maliciously on the next
nobody user job, wreaking havoc.

Condor could prevent this problem by simply killing all processes run by thenobody user,
but this would annoy many system administrators. Thenobody user is often used for non-Condor
system processes. It may also be used by other Condor jobs running on the same machine, if it is a
multi-processor machine.

Condor provides a two-part solution to this difficulty. First, create user accounts specifically for
Condor to use instead of usernobody . These can be low-privilege accounts, as thenobody user
is. Create one of these accounts for each job execution slot per computer, so that distinct users can
be used for concurrent processes. This prevents malicious behavior between processes running on
distinct slots. Section 3.12.8 details slots. For a sample machine with two compute slots, create
two users that are intended only to be used by Condor. As an example, call themcndrusr1 and
cndrusr2 . Tell Condor about these users with theSLOT<N>_USERconfiguration variables,
where<N> is replaced with the slot number. In this example:

SLOT1_USER = cndrusr1

Condor Version 7.7.6 Manual

3.6. Security 364

SLOT2_USER = cndrusr2

Then tell Condor that these accounts are intended only to be used by Condor, so Condor can
kill all the processes belonging to these users upon job completion. The configuration variable
DEDICATED_EXECUTE_ACCOUNT_REGEXPis introduced and set to a regular expression that
matches the account names we have just created.

DEDICATED_EXECUTE_ACCOUNT_REGEXP = cndrusr[0-9]+

Finally, tell Condor not to run jobs as the job owner:

STARTER_ALLOW_RUNAS_OWNER = False

Notes:

1. Currently, none of these configuration settings apply to standard universe jobs. Normally,
standard universe jobs do not create additional processes.

2. On Windows,SLOT<N>_USERwill only work if the credential of the specified user is stored
on the execute machine usingcondor_store_cred. See thecondor_store_credmanual page
(in section 10) for details of this command. However, the default behavior in Windows is to
run jobs under a dynamically created dedicated execution account, so just using the default
behavior is sufficient to avoid problems with lurker processes.

3. You can tell if the starter is in fact treating the account as a dedicated account, because it will
print a line such as the following in its log file:

Tracking process family by login "cndrusr1"

Working Directories for Jobs

Every executing process has a notion of its current working directory. This is the directory that acts
as the base for all file system access. There are two current working directories for any Condor
job: one where the job is submitted and a second where the job executes. When a user submits a
job, the submit-side current working directory is the same as for the user when thecondor_submit
command is issued. Theinitialdir submit command may change this, thereby allowing different
jobs to have different working directories. This is useful when submitting large numbers of jobs.
This submit-side current working directory remains unchanged for the entire life of a job. The
submit-side current working directory is also the working directory of thecondor_shadowdaemon.
This is particularly relevant for standard universe jobs, since file system access for the job goes
through thecondor_shadowdaemon, and therefore all accesses behave as if they were executing
without Condor.

Condor Version 7.7.6 Manual

3.6. Security 365

There is also an execute-side current working directory. For standard universe jobs, it is set to
the execute subdirectory of Condor’s home directory. This directory isworld-writable, since a
Condor job usually runs as usernobody . Normally, standard universe jobs would never access this
directory, since all I/O system calls are passed back to thecondor_shadowdaemon on the submit
machine. In the event, however, that a job crashes and creates a core dump file, the execute-side
current working directory needs to be accessible by the job so that it can write the core file. The
core file is moved back to the submit machine, and thecondor_shadowdaemon is informed. The
condor_shadowdaemon sends e-mail to the job owner announcing the core file,and provides a
pointer to where the core file resides in the submit-side current working directory.

3.6.14 Privilege Separation

Section 3.6.13 discusses why, under most circumstances, itis beneficial to run the Condor daemons
asroot . In situations where multiple users are involved or where Condor is responsible for enforc-
ing a machine owner’s policy, running asroot is theonly way for Condor to do its job correctly
and securely.

Unfortunately, this requirement of running Condor asroot is at odds with a well-established
goal of security-conscious administrators: keeping the amount of software that runs with superuser
privileges to a minimum. Condor’s nature as a large distributed system that routinely communicates
with potentially untrusted components over the network further aggravates this goal.

The privilege separation (PrivSep) effort in Condor aims tominimize the amount of code that
needsroot -level access, while still giving Condor the tools it needs to work properly. Note that
PrivSep is currently only available for execute side functionality, and is not implemented on Win-
dows.

In the PrivSep model, all logic in Condor that requires superuser privilege is contained in a small
component called the PrivSep Kernel. The Condor daemons execute as an unprivileged account.
They explicitly request action from the PrivSep Kernel wheneverroot -level operations are needed.

The PrivSep model then prevents the following attack scenario. In the attack scenario, an attacker
has found an exploit in thecondor_startdthat allows for execution of arbitrary code on that daemon’s
behalf. This gives the attackerroot access and therefore control over any machine on which the
condor_startdis running asroot and the exploit can be exercised. Under the PrivSep model, the
condor_startdno longer runs asroot . This prevents the attacker from taking arbitrary action as
root . Further, limits on requested actions from the PrivSep Kernel contain and restrict the attacker’s
sphere of influence.

The following section describes the configuration necessary to enable PrivSep for an execute-
side Condor installation. After this is a detailed description of the services that the PrivSep Kernel
provides to Condor, and how it limits the allowedroot -level actions.

Condor Version 7.7.6 Manual

3.6. Security 366

PrivSep Configuration

The PrivSep Kernel is implemented as two programs: thecondor_root_switchboardand thecon-
dor_procd. Both are contained in thesbin directory of the Condor distribution. When Condor is
running in PrivSep mode, these are to be the only two Condor daemons that run withroot privilege.

Each of these binaries must be accessible on the file system via atrusted path. A trusted path
ensures that no user (other thanroot) can alter the binary or path to the binary referred to. To
ensure that the paths to these binaries are trusted, use onlyroot -owned directories, and set the
permissions on these directories to deny write access to allbut root . The binaries themselves
must also be owned byroot and not writable by any other. Thecondor_root_switchboardprogram
additionally is installed with the setuid bit set. The following command properly sets the permissions
on thecondor_root_switchboardbinary:

chmod 4755 /opt/condor/release/sbin/condor_root_switc hboard

The PrivSep Kernel has its own configuration file. This file must be
/etc/condor/privsep_config . The format of this file is different than a Condor
configuration file. It consists of lines with “key = value ” pairs. Lines with only white space or
lines with “#” as the first non-white space character are ignored.

In the PrivSep Kernel configuration file, some configuration settings are interpreted as single
values, while others are interpreted as lists. To populate alist with multiple values, use multiple
lines with the same key. For example, the following configures thevalid-dirs setting as a list
with two entries:

valid-dirs = /opt/condor/execute_1
valid-dirs = /opt/condor/execute_2

It is an error to have multiple lines with the same key for a setting that is not interpreted as a list.

Some PrivSep Kernel configuration file settings require a list of UIDs or GIDs, and these allow
for a more specialized syntax. User and group IDs can be specified either numerically or textually.
Multiple list entries may be given on a single line using the: (colon) character as a delimiter. In
addition, list entries may specify a range of IDs using a- (dash) character to separate the minimum
and maximum IDs included. The* (asterisk) character on the right-hand side of such a range indi-
cates that the range extends to the maximum possible ID. The following example builds a complex
list of IDs:

valid-target-uids = nobody : nfsuser1 : nfsuser2
valid-target-uids = condor_run_1 - condor_run_8
valid-target-uids = 800 - *

If condor_run_1 maps to UID 701, andcondor_run_8 maps to UID 708, then this range
specifies the 8 UIDs of 701 through 708 (inclusive).

Condor Version 7.7.6 Manual

3.6. Security 367

The following settings are required to configure the PrivSepKernel:

• valid-caller-uids andvalid-caller-gids . These lists specify users and groups
that will be allowed to request action from the PrivSep Kernel. The list typically will contain
the UID and primary GID that the Condor daemons will run as.

• valid-target-uids and valid-target-gids . These lists specify the users and
groups that Condor will be allowed to act on behalf of. The list will need to include IDs of all
users and groups that Condor jobs may use on the given executemachine.

• valid-dirs . This list specifies directories that Condor will be allowedto manage for
the use of temporary job files. Normally, this will only need to include the value of Con-
dor’s $(EXECUTE) directory. Any entry in this list must be a trusted path. Thismeans
that all components of the path must be directories that areroot -owned and only writable
by root . For many sites, this may require a change in ownership and permissions to the
$(LOCAL_DIR) and$(EXECUTE) directories. Note also that the PrivSep Kernel does not
have access to Condor’s configuration variables, and therefore may not refer to them in this
file.

• procd-executable . A (trusted) full path to thecondor_procdexecutable. Note that the
PrivSep Kernel does not have access to Condor’s configuration variables, and therefore may
not refer to them in this file.

Here is an example of a fullprivsep_config file. This file gives thecondor account
access to the PrivSep Kernel. Condor’s use of this execute machine will be restricted to a set of
eight dedicated accounts, along with theusers group. Condor’s$(EXECUTE) directory and the
condor_procdexecutable are also specified, as required.

valid-caller-uids = condor
valid-caller-gids = condor
valid-target-uids = condor_run_1 - condor_run_8
valid-target-gids = users : condor_run_1 - condor_run_8
valid-dirs = /opt/condor/local/execute
procd-executable = /opt/condor/release/sbin/condor_pr ocd

Once the PrivSep Kernel is properly installed and configured, Condor’s configuration must
be updated to specify that PrivSep should be used. The Condorconfiguration variable
PRIVSEP_ENABLED is a boolean flag serving this purpose. In addition, Condor must be told
where thecondor_root_switchboardbinary is located using thePRIVSEP_SWITCHBOARDset-
ting. The following example illustrates:

PRIVSEP_ENABLED = True
PRIVSEP_SWITCHBOARD = $(SBIN)/condor_root_switchboard

Finally, note that while thecondor_procdis in general an optional component of Condor, it
is required when PrivSep is in use. IfPRIVSEP_ENABLEDis True , the condor_procdwill be

Condor Version 7.7.6 Manual

3.6. Security 368

used regardless of theUSE_PROCDsetting. Details on these Condor configuration variables are in
section 3.3.27 for PrivSep variables and section 3.3.18 forcondor_procdvariables.

PrivSep Kernel Interface

This section describes theroot -enabled operations that the PrivSep Kernel makes available to
Condor. The PrivSep Kernel’s interface is designed to provide only operations needed by Condor
in order to function properly. Each operation is further restricted based on the PrivSep Kernel’s
configuration settings.

The following list describes each action that can be performed via the PrivSep Kernel, along
with the limitations enforced on how it may be used. The termsvalid target users, valid tar-
get groups, and valid directoriesrefer respectively to the settings forvalid-target-uids ,
valid-target-gids , andvalid-dirs from the PrivSep Kernel’s configuration.

• Make a directory as a user.This operation creates an empty directory, owned by a user. The
user must be a valid target user, and the new directory’s parent must be a valid directory.

• Change ownership of a directory tree.This operation involves recursively changing ownership
of all files and subdirectories contained in a given directory. The directory’s parent must be a
valid directory, and the new owner must either be a valid target user or the user invoking the
PrivSep Kernel.

• Remove a directory tree.This operation deletes a given directory, including everything con-
tained within. The directory’s parent must be a valid directory.

• Execute a program as a user.Condor can invoke the PrivSep kernel to execute a program as
a valid target user. The user’s primary group and any supplemental groups that it is a member
of must all be valid target groups. This operation may also include opening files for standard
input, output, and error before executing the program.

After launching a program as a valid target user, the PrivSepKernel allows Condor limited
control over its execution. The following operations are supported on a program executed via the
PrivSep Kernel:

• Get resource usage information.This allows Condor to gather usage statistics such as CPU
time and memory image size. This applies to the program’s initial process and any of its
descendants.

• Signal the program.Condor may ask that signals be sent to the program’s initial process as a
notification mechanism.

• Suspend and resume the program.These operations sendSIGSTOPor SIGCONTsignals to
all processes that make up the program.

• Kill the process and all descendants.Condor is allowed to terminate the execution of the
program or any processes left behind when the program completes.

Condor Version 7.7.6 Manual

3.7. Networking (includes sections on Port Usage and CCB) 369

By sufficiently constraining the valid target accounts and valid directories to which the PrivSep
Kernel allows access, the ability of a compromised Condor daemon to do damage can be consider-
ably reduced.

3.6.15 Support forglexec

glexecis a tool that provides a sudo-like capability in a grid environment.glexectakes an X.509
proxy and a command to run as inputs, and maps the proxy to a local identity (that is, a Unix
UID), which it then uses to execute the command. Like thecondor_root_switchboardcommand,
which provides similar functionality for Condor’s PrivSepmode (see section 3.6.14),glexecmust
be installed as a root-owned setuid program. See http://www.nikhef.nl/grid/lcaslcmaps/glexec/ for
more information aboutglexec.

Condor can interoperate withglexec, using it in a similar way to how thecon-
dor_root_switchboardis used when running Condor in PrivSep mode. Thecondor_starteruses
glexecwhen launching a job, in order to give the job a separate UID from that of the Condor dae-
mons. glexecis also used when performing maintenance actions such as cleaning up a job’s files
and processes, which cannot be done well directly under the Condor daemons’ UID due to permis-
sions. A consequence of this type of integration withglexecis that the execution of a single Condor
job results in severalglexecinvocations, and each must map the proxy to the same UID. It isthus
important to ensure thatglexecis configured to provide this guarantee.

Configuration for glexec support is straightforward. The boolean configuration variable
GLEXEC_JOBmust be setTrue on execute machines whereglexecis to be used. Condor also
must be given the full path to theglexecbinary using theGLEXECconfiguration variable. Note that
Condor must be started as a non-root user whenglexecis used. This is because when Condor runs as
root, it can perform actions as other UIDs arbitrarily, andglexec’s services are not needed. Finally,
for a job to execute properly in the mode utilizingglexec, the job must be submitted with a proxy
specified via thex509userproxycommand in its submit description file, since a proxy is needed as
input toglexec.

Earlier versions of Condor employed a different form ofglexec support, where thecon-
dor_starter daemon ran under the same UID as the job. This feature was enabled using the
GLEXEC_STARTERconfiguration variable. This configuration variable is no longer used, and
it is replaced by theGLEXEC_JOBconfiguration variable, to enable usage ofglexec.

3.7 Networking (includes sections on Port Usage and CCB)

This section on network communication in Condor discusses which network ports are used, how
Condor behaves on machines with multiple network interfaces and IP addresses, and how to facilitate
functionality in a pool that spans firewalls and private networks.

The security section of the manual contains some information that is relevant to the discussion
of network communication which will not be duplicated here,so please see section 3.6 as well.

Condor Version 7.7.6 Manual

http://www.nikhef.nl/grid/lcaslcmaps/glexec/

3.7. Networking (includes sections on Port Usage and CCB) 370

Firewalls, private networks, and network address translation (NAT) pose special problems for
Condor. There are currently two main mechanisms for dealingwith firewalls within Condor:

1. Restrict Condor to use a specific range of port numbers, andallow connections through the
firewall that use any port within the range.

2. UseCondor Connection Brokering(CCB).

Each method has its own advantages and disadvantages, as described below.

3.7.1 Port Usage in Condor

Default Port Usage

Every Condor daemon listens on a network port for incoming commands. (Usingcon-
dor_shared_port, this port may be shared between multiple daemons.) Most daemons listen on
a dynamically assigned port. In order to send a message, Condor daemons and tools locate the cor-
rect port to use by querying thecondor_collector, extracting the port number from the ClassAd. One
of the attributes included in every daemon’s ClassAd is the full IP address and port number upon
which the daemon is listening.

To access thecondor_collectoritself, all Condor daemons and tools must know the port number
where thecondor_collectoris listening. Thecondor_collectoris the only daemon with a well-
known, fixed port. By default, Condor uses port 9618 for thecondor_collectordaemon. However,
this port number can be changed (see below).

As an optimization for daemons and tools communicating withanother daemon that is running
on the same host, each Condor daemon can be configured to writeits IP address and port num-
ber into a well-known file. The file names are controlled usingthe<SUBSYS>_ADDRESS_FILE
configuration variables, as described in section 3.3.5 on page 183.

NOTE: In the 6.6 stable series, and Condor versions earlier than 6.7.5, thecondor_negotiator
also listened on a fixed, well-known port (the default was 9614). However, beginning with version
6.7.5, thecondor_negotiatorbehaves like all other Condor daemons, and publishes its ownClassAd
to thecondor_collectorwhich includes the dynamically assigned port thecondor_negotiatoris lis-
tening on. All Condor tools and daemons that need to communicate with thecondor_negotiator
will either use theNEGOTIATOR_ADDRESS_FILEor will query thecondor_collectorfor the
condor_negotiator’s ClassAd.

Sites that configure any checkpoint servers will introduce other fixed ports into their network.
Eachcondor_ckpt_serverwill listen to 4 fixed ports: 5651, 5652, 5653, and 5654. Thereis currently
no way to configure alternative values for any of these ports.

Condor Version 7.7.6 Manual

3.7. Networking (includes sections on Port Usage and CCB) 371

Using a Non Standard, Fixed Port for thecondor_collector

By default, Condor uses port 9618 for thecondor_collectordaemon. To use a different port num-
ber for this daemon, the configuration variables that tell Condor these communication details are
modified. Instead of

CONDOR_HOST = machX.cs.wisc.edu
COLLECTOR_HOST = $(CONDOR_HOST)

the configuration might be

CONDOR_HOST = machX.cs.wisc.edu
COLLECTOR_HOST = $(CONDOR_HOST):9650

If a non standard port is defined, the same value ofCOLLECTOR_HOST(including the port)
must be used for all machines in the Condor pool. Therefore, this setting should be modified in
the global configuration file (condor_config file), or the value must be duplicated across all
configuration files in the pool if a single configuration file isnot being shared.

When querying thecondor_collectorfor a remote pool that is running on a non standard port,
any Condor tool that accepts the-poolargument can optionally be given a port number. For example:

% condor_status -pool foo.bar.org:1234

Using a Dynamically Assigned Port for thecondor_collector

On single machine pools, it is permitted to configure thecondor_collectordaemon to use a dynam-
ically assigned port, as given out by the operating system. This prevents port conflicts with other
services on the same machine. However, a dynamically assigned port is only to be used on single
machine Condor pools, and only if theCOLLECTOR_ADDRESS_FILEconfiguration variable has
also been defined. This mechanism allows all of the Condor daemons and tools running on the same
machine to find the port upon which thecondor_collectordaemon is listening, even when this port
is not defined in the configuration file and is not known in advance.

To enable thecondor_collectordaemon to use a dynamically assigned port, the port number is
set to 0 in theCOLLECTOR_HOSTvariable. TheCOLLECTOR_ADDRESS_FILEconfiguration
variable must also be defined, as it provides a known file wherethe IP address and port information
will be stored. All Condor clients know to look at the information stored in this file. For example:

COLLECTOR_HOST = $(CONDOR_HOST):0
COLLECTOR_ADDRESS_FILE = $(LOG)/.collector_address

NOTE: Using a port of 0 for the condor_collector and specifying a
COLLECTOR_ADDRESS_FILEonly works in Condor version 6.6.8 or later in the 6.6 stable
series, and in version 6.7.4 or later in the 6.7 development series. Do not attempt to do this with
older versions of Condor.

Condor Version 7.7.6 Manual

3.7. Networking (includes sections on Port Usage and CCB) 372

Configuration definition ofCOLLECTOR_ADDRESS_FILEis in section 3.3.5 on page 183, and
COLLECTOR_HOSTis in section 3.3.3 on page 168.

Restricting Port Usage to Operate with Firewalls

If a Condor pool is completely behind a firewall, then no special consideration or port usage is
needed. However, if there is a firewall between the machines within a Condor pool, then config-
uration variables may be set to force the usage of specific ports, and to utilize a specific range of
ports.

By default, Condor uses port 9618 for thecondor_collectordaemon, and dynamic (apparently
random) ports for everything else. See section 3.7.1, if a dynamically assigned port is desired for
thecondor_collectordaemon.

All of the Condor daemons on a machine may be configured to share a single port. See sec-
tion 3.3.34 for more information.

The configuration variablesHIGHPORTandLOWPORTfacilitate setting a restricted range of
ports that Condor will use. This may be useful when some machines are behind a firewall. The
configuration macrosHIGHPORTandLOWPORTwill restrict dynamic ports to the range specified.
The configuration variables are fully defined in section 3.3.6. All of these ports must be greater than
0 and less than 65,536. Note that bothHIGHPORTandLOWPORTmust be at least 1024 for Condor
version 6.6.8. In general, use ports greater than 1024, in order to avoid port conflicts with standard
services on the machine. Another reason for using ports greater than 1024 is that daemons and tools
are often not run asroot , and onlyroot may listen to a port lower than 1024. Also, the range
must include enough ports that are not in use, or Condor cannot work.

The range of ports assigned may be restricted based on incoming (listening) and outgoing (con-
nect) ports with the configuration variablesIN_HIGHPORT, IN_LOWPORT, OUT_HIGHPORT,
andOUT_LOWPORT. See section 3.3.6 for complete definitions of these configuration variables. A
range of ports lower than 1024 for daemons running asroot is appropriate for incoming ports, but
not for outgoing ports. The use of ports below 1024 (versus above 1024) has security implications;
therefore, it is inappropriate to assign a range that crosses the 1024 boundary.

NOTE: SettingHIGHPORTandLOWPORTwill not automatically force thecondor_collectorto
bind to a port within the range. The only way to control what port thecondor_collectoruses is by
setting theCOLLECTOR_HOST(as described above).

The total number of ports needed depends on the size of the pool, the usage of the machines
within the pool (which machines run which daemons), and the number of jobs that may execute at
one time. Here we discuss how many ports are used by each participant in the system. This assumes
thatcondor_shared_portis not being used. If itis being used, then all daemons can share a single
incoming port.

The central manager of the pool needs5 + NEGOTIATOR_SOCKET_CACHE_SIZEports for
daemon communication, whereNEGOTIATOR_SOCKET_CACHE_SIZEis specified in the con-
figuration or defaults to the value 16.

Condor Version 7.7.6 Manual

3.7. Networking (includes sections on Port Usage and CCB) 373

Each execute machine (those machines running acondor_startddaemon) requires5 + (5 *
number of slots advertised by that machine) ports. By default, the number of
slots advertised will equal the number of physical CPUs in that machine.

Submit machines (those machines running acondor_schedddaemon) require 5 + (5 *
MAX_JOBS_RUNNING)ports. The configuration variableMAX_JOBS_RUNNINGlimits (on a
per-machine basis, if desired) the maximum number of jobs. Without this configuration macro, the
maximum number of jobs that could be simultaneously executing at one time is a function of the
number of reachable execute machines.

Also be aware thatHIGHPORTandLOWPORTonly impact dynamic port selection used by the
Condor system, and they do not impact port selection used by jobs submitted to Condor. Thus,
jobs submitted to Condor that may create network connections may not work in a port restricted
environment. For this reason, specifyingHIGHPORTandLOWPORTis not going to produce the
expected results if a user submits MPI applications to be executed under the parallel universe.

Where desired, a local configuration for machinesnot behind a firewall can override the usage
of HIGHPORTandLOWPORT, such that the ports used for these machines are not restricted. This
can be accomplished by adding the following to the local configuration file of those machinesnot
behind a firewall:

HIGHPORT = UNDEFINED
LOWPORT = UNDEFINED

If the maximum number of ports allocated usingHIGHPORTandLOWPORTis too few, socket
binding errors of the form

failed to bind any port within <$LOWPORT> - <$HIGHPORT>

are likely to appear repeatedly in log files.

Multiple Collectors

This section has not yet been written

Port Conflicts

This section has not yet been written

3.7.2 Reducing Port Usage with thecondor_shared_portDaemon

Thecondor_shared_portis an optional daemon responsible for creating a TCP listener port shared
by all of the Condor daemons for which the configuration variableUSE_SHARED_PORTis True .
Thecondor_masterwill invoke thecondor_shared_portdaemon if it is listed inDAEMON_LIST.

Condor Version 7.7.6 Manual

3.7. Networking (includes sections on Port Usage and CCB) 374

The main purpose of thecondor_shared_portdaemon is to reduce the number of ports that must
be opened when Condor needs to be accessible through a firewall. This has a greater security benefit
than simply reducing the number of open ports. Without thecondor_shared_portdaemon, one can
configure Condor to use a range of ports, but since some Condordaemons are created dynamically,
this full range of ports will not be in use by Condor at all times. This implies that other non-Condor
processes not intended to be exposed to the outside network could unintentionally bind to ports in
the range intended for Condor, unless additional steps are taken to control access to those ports.
While thecondor_shared_portdaemon is running, it is exclusively bound to its port, whichmeans
that other non-Condor processes cannot accidentally bind to that port.

A secondary benefit of thecondor_shared_portdaemon is that it helps address the scalability
issues of a submit machine. Without thecondor_shared_portdaemon, approximately 2.1 ephemeral
ports per running job are required, and possibly more, depending on the rate of job completion.
There are only 64K ports in total, and most standard Unix installations only allocate a subset of
these as ephemeral ports. In practice, with long running jobs, and with between 11K and 14K
simultaneously running jobs, port exhaustion has been observed in typical Linux installations. After
increasing the ephemeral port range as to as many as possible, port exhaustion occurred between 20K
and 25K running jobs. Using thecondor_shared_portdaemon, each running job requires fewer,
approximately 1.1 ephemeral ports on the submit node, if Condor on the submit node connects
directly to Condor on the execute node. If the submit node connects via CCB to the execute node,
noports are required per running job; only the one port allocated to thecondor_shared_portdaemon
is used.

When CCB is utilized via setting the configuration variableCCB_ADDRESS, the con-
dor_shared_portdaemon registers with the CCB server on behalf of all daemonssharing the port.
This means that it is not possible to individually enable or disable CCB connectivity to daemons that
are using the shared port; they all effectively share the same setting, and thecondor_shared_port
daemon handles all CCB connection requests on their behalf.

Condor’s authentication and authorization steps are unchanged by the use of a shared port. Each
Condor daemon continues to operate according to its configured policy. Requests for connections
to the shared port are not authenticated or restricted by thecondor_shared_portdaemon. They are
simply passed to the requested daemon, which is then responsible for enforcing the security policy.

When thecondor_masteris configured to use the shared port by setting the configuration vari-
able

USE_SHARED_PORT = True

thecondor_shared_portdaemon is treated specially. A command such ascondor_off, which shuts
down all daemons except for thecondor_master, will also leave thecondor_shared_portrunning.
This prevents thecondor_masterfrom getting into a state where it can no longer receive commands.

Thecondor_collectordaemon typically has its own port; it uses 9618 by default. However, it
can be configured to use a shared port. Since the address of thecondor_collectormust be set in the
configuration file, it is necessary to specify the shared portsocket name of thecondor_collector, so
that connections to the shared port that are intended for thecondor_collectorcan be forwarded to

Condor Version 7.7.6 Manual

3.7. Networking (includes sections on Port Usage and CCB) 375

it. If the shared port number is 11000, acondor_collectoraddress using this shared port could be
configured:

COLLECTOR_HOST = collector.host.name:11000?sock=colle ctor

This configuration assumes that the socket name used by thecondor_collectoris collector .
The condor_collectorthat runs oncollector.host.name will automatically choose this
socket name ifCOLLECTOR_HOSTis configured as in the example above. If multiplecon-
dor_collectordaemons are started on the same machine, the socket name can be explicitly set in
the daemon arguments, as in the example:

COLLECTOR_ARGS = -sock collector

When thecondor_collectoraddress is a shared port, TCP updates will be automatically used
instead of UDP. Under Unix, this means that thecondor_collectordaemon should be configured to
have enough file descriptors. See section 3.7.4 for more information on using TCP within Condor.

SOAP commands cannot be sent over a shared port. However, a daemon may be config-
ured to open a fixed, non-shared port, in addition to using a shared port. This is done both
by settingUSE_SHARED_PORT = Trueand by specifying a fixed port for the daemon using
<SUBSYS>_ARGS = -p <portnum>.

The TCP connections required to manage standard universe jobs do not make use of shared ports.

3.7.3 Configuring Condor for Machines With Multiple Network Interfaces

Condor can run on machines with multiple network interfaces. Starting with Condor version
6.7.13 (and therefore all Condor 6.8 and more recent versions), new functionality is avail-
able that allows even better support for multi-homed machines, using the configuration variable
BIND_ALL_INTERFACES. A multi-homed machine is one that has more than one NIC (Network
Interface Card). Further improvements to this new functionality will remove the need for any spe-
cial configuration in the common case. For now, care must still be given to machines with multiple
NICs, even when using this new configuration variable.

Using BIND_ALL_INTERFACES

Machines can be configured such that whenever Condor daemonsor tools callbind() , the dae-
mons or tools use all network interfaces on the machine. Thismeans that outbound connections will
always use the appropriate network interface to connect to aremote host, instead of being forced
to use an interface that might not have a route to the given destination. Furthermore, sockets upon
which a daemon listens for incoming connections will be bound to all network interfaces on the
machine. This means that so long as remote clients know the right port, they can use any IP address
on the machine and still contact a given Condor daemon.

Condor Version 7.7.6 Manual

3.7. Networking (includes sections on Port Usage and CCB) 376

This functionality is on by default. To disable this functionality, the boolean configuration vari-
ableBIND_ALL_INTERFACESis defined and set toFalse :

BIND_ALL_INTERFACES = FALSE

This functionality has limitations. Here are descriptionsof the limitations.

Using all network interfaces does not work with Kerberos. Every Kerberos ticket contains a
specific IP address within it. Authentication over a socket (using Kerberos) requires the socket
to also specify that same specific IP address. Use ofBIND_ALL_INTERFACEScauses out-
bound connections from a multi-homed machine to originate over any of the interfaces. There-
fore, the IP address of the outbound connection and the IP address in the Kerberos ticket will
not necessarily match, causing the authentication to fail.Sites using Kerberos authentication
on multi-homed machines are strongly encouraged not to enableBIND_ALL_INTERFACES,
at least until Condor’s Kerberos functionality supports using multiple Kerberos tickets to-
gether with finding the right one to match the IP address a given socket is bound to.

There is a potential security risk. Consider the following example of a security risk. A multi-
homed machine is at a network boundary. One interface is on the public Internet, while
the other connects to a private network. Both the multi-homed machine and the pri-
vate network machines comprise a Condor pool. If the multi-homed machine enables
BIND_ALL_INTERFACES, then it is at risk from hackers trying to compromise the security
of the pool. Should this multi-homed machine be compromised, the entire pool is vulnerable.
Most sites in this situation would run ansshdon the multi-homed machine so that remote
users who wanted to access the pool could log in securely and use the Condor tools directly.
In this case, remote clients do not need to use Condor tools running on machines in the public
network to access the Condor daemons on the multi-homed machine. Therefore, there is no
reason to have Condor daemons listening on ports on the public Internet, causing a potential
security threat.

Up to two IP addresses will be advertised.At present, even though a given Condor daemon will
be listening to ports on multiple interfaces, each with their own IP address, there is currently
no mechanism for that daemon to advertise all of the possibleIP addresses where it can be
contacted. Therefore, Condor clients (other Condor daemons or tools) will not necessarily
able to locate and communicate with a given daemon running ona multi-homed machine
whereBIND_ALL_INTERFACEShas been enabled.

Currently, Condor daemons can only advertise two IP addresses in the ClassAd they send to
their condor_collector. One is the public IP address and the other is the private IP address.
Condor tools and other daemons that wish to connect to the daemon will use the private IP
address if they are configured with the same private network name, and they will use the public
IP address otherwise. So, even if the daemon is listening on 3or more different interfaces,
each with a separate IP, the daemon must choose which two IP addresses to advertise so that
other daemons and tools can connect to it.

By default, Condor advertises the IP address of the network interface used to contact the
condor_collectoras its public address, since this is the most likely to be accessible to other

Condor Version 7.7.6 Manual

3.7. Networking (includes sections on Port Usage and CCB) 377

processes that query the samecondor_collector. The NETWORK_INTERFACEconfigu-
ration variable can be used to specify the public IP address Condor should advertise, and
PRIVATE_NETWORK_INTERFACE, along withPRIVATE_NETWORK_NAMEcan be used
to specify the private IP address to advertise.

Sites that make heavy use of private networks and multi-homed machines should consider if
using the Condor Connection Broker, CCB, is right for them. More information about CCB and
Condor can be found in section??on page??.

Central Manager with Two or More NICs

Often users of Condor wish to set up compute farms where thereis one machine with two network
interface cards (one for the public Internet, and one for theprivate net). It is convenient to set up the
head node as a central manager in most cases and so here are theinstructions required to do so.

Setting up the central manager on a machine with more than oneNIC can be a little confusing
because there are a few external variables that could make the process difficult. One of the biggest
mistakes in getting this to work is that either one of the separate interfaces is not active, or the
host/domain names associated with the interfaces are incorrectly configured.

Given that the interfaces are up and functioning, and they have good host/domain names associ-
ated with them here is how to configure Condor:

In this example,farm-server.farm.org maps to the private interface. In the central man-
ager’s global (to the cluster) configuration file:

CONDOR_HOST = farm-server.farm.org

In the central manager’s local configuration file:

NETWORK_INTERFACE = <IP address of farm-server.farm.org>
NEGOTIATOR = $(SBIN)/condor_negotiator
COLLECTOR = $(SBIN)/condor_collector
DAEMON_LIST = MASTER, COLLECTOR, NEGOTIATOR, SCHEDD, STARTD

If the central manager and farm machines are all NT, then onlyvanilla universe will work now.
However, if this is set up for Unix, then at this point, standard universe jobs should be able to
function in the pool. But, ifUID_DOMAIN is not configured to be homogeneous across the farm
machines, the standard universe jobs will run asnobody on the farm machines.

In order to get vanilla jobs and file server load balancing forstandard universe jobs working
(under Unix), do some more work both in the cluster you have put together and in Condor to make
everything work. First, you need a file server (which could also be the central manager) to serve
files to all of the farm machines. This could be NFS or AFS, and it does not really matter to Condor.
The mount point of the directories you wish your users to use must be the same across all of the

Condor Version 7.7.6 Manual

3.7. Networking (includes sections on Port Usage and CCB) 378

farm machines. Now, configureUID_DOMAIN andFILESYSTEM_DOMAINto be homogeneous
across the farm machines and the central manager. Inform Condor that an NFS or AFS file system
exists and that is done in this manner. In the global (to the farm) configuration file:

If you have NFS
USE_NFS = True
If you have AFS
HAS_AFS = True
USE_AFS = True
if you want both NFS and AFS, then enable both sets above

Now, if the cluster is set up so that it is possible for a machine name to never have a domain
name (for example, there is machine name but no fully qualified domain name in/etc/hosts),
configureDEFAULT_DOMAIN_NAMEto be the domain that is to be added on to the end of the host
name.

A Client Machine with Multiple Interfaces

If client machine has two or more NICs, then there might be a specific network interface on which
the client machine desires to communicate with the rest of the Condor pool. In this case, the local
configuration file for the client should have

NETWORK_INTERFACE = <IP address of desired interface>

A Checkpoint Server on a Machine with Multiple NICs

If a checkpoint server is on a machine with multiple interfaces, then 2 items must be correct to get
things to work:

1. The different interfaces have different host names associated with them.

2. In the global configuration file, set configuration variable CKPT_SERVER_HOSTto the
host name that corresponds with the IP address desired for the pool. Configuration vari-
ableNETWORK_INTERFACEmust still be specified in the local configuration file for the
checkpoint server.

3.7.4 Using TCP to Send Updates to thecondor_collector

TCP sockets are reliable, connection-based sockets that guarantee the delivery of any data sent.
However, TCP sockets are fairly expensive to establish, andthere is more network overhead involved
in sending and receiving messages.

Condor Version 7.7.6 Manual

3.8. The Checkpoint Server 379

UDP sockets are datagrams, and are not reliable. There is very little overhead in establishing or
using a UDP socket, but there is also no guarantee that the data will be delivered. Typically, the lack
of guaranteed delivery for UDP does not cause problems for Condor.

Condor can be configured to use TCP sockets to send updates to thecondor_collectorinstead
of UDP datagrams. This feature is intended for sites where UDP updates are lost because of the
underlying network. An example where this may happen is if the pool is comprised of machines
across a wide area network (WAN) where UDP packets are observed to be frequently dropped.

To enable the use of TCP sockets, the following configurationsetting is used:

UPDATE_COLLECTOR_WITH_TCPWhen set toTrue , the Condor daemons to use TCP to up-
date thecondor_collector, instead of the default UDP. Defaults toFalse .

When there are sufficient file descriptors, thecondor_collectorleaves established TCP sockets
open, facilitating better performance. Subsequent updates can reuse an already open socket.

Each Condor daemon will have 1 socket open to thecondor_collector. So, in a pool with N
machines, each of them running acondor_master, condor_schedd, and condor_startd, the con-
dor_collectorwould need at least 3*N file descriptors. If thecondor_collectoris also acting as a
CCB server, it will require an additional file descriptor foreach registered daemon. In typical Unix
installations, the default number of file descriptors available to thecondor_collectoris only 1024.
This can be modified with a configuration setting such as the following:

COLLECTOR_MAX_FILE_DESCRIPTORS = 1600

If there are not sufficient file descriptors for all of the daemons sending updates to thecon-
dor_collector, a warning will be printed in thecondor_collectorlog file. Look for the stringfile
descriptor safety level exceeded .

NOTE: At this time, UPDATE_COLLECTOR_WITH_TCPonly affects the maincon-
dor_collectorfor the site, not any sites that acondor_scheddmight flock to.

3.8 The Checkpoint Server

A Checkpoint Server maintains a repository for checkpoint files. Within Condor, checkpoints may
be produced only for standard universe jobs. Using checkpoint servers reduces the disk requirements
of submitting machines in the pool, since the submitting machines no longer need to store checkpoint
files locally. Checkpoint server machines should have a large amount of disk space available, and
they should have a fast connection to machines in the Condor pool.

If the spool directories are on a network file system, then checkpoint files will make two trips
over the network: one between the submitting machine and theexecution machine, and a second
between the submitting machine and the network file server. Acheckpoint server configured to use

Condor Version 7.7.6 Manual

3.8. The Checkpoint Server 380

the server’s local disk means that the checkpoint file will travel only once over the network, between
the execution machine and the checkpoint server. The pool may also obtain checkpointing network
performance benefits by using multiple checkpoint servers,as discussed below.

Note that it is a good idea to pick very stable machines for thecheckpoint servers. If individual
checkpoint servers crash, the Condor system will continue to operate, although poorly. While the
Condor system will recover from a checkpoint server crash asbest it can, there are two problems
that can and will occur:

1. A checkpoint cannot be sent to a checkpoint server that is not functioning. Jobs will keep
trying to contact the checkpoint server, backing off exponentially in the time they wait between
attempts. Normally, jobs only have a limited time to checkpoint before they are kicked off the
machine. So, if the checkpoint server is down for a long period of time, chances are that a lot
of work will be lost by jobs being killed without writing a checkpoint.

2. If a checkpoint is not available from the checkpoint server, a job cannot be retrieved, and it will
either have to be restarted from the beginning, or the job will wait for the server to come back
on line. This behavior is controlled with theMAX_DISCARDED_RUN_TIMEconfiguration
variable. This variable represents the maximum amount of CPU time the job is willing to
discard, by starting a job over from its beginning if the checkpoint server is not responding to
requests.

3.8.1 Preparing to Install a Checkpoint Server

The location of checkpoint files changes upon the installation of a checkpoint server. A configuration
change will cause currently queued jobs with checkpoints tonot be able to find their checkpoints.
This results in the jobs with checkpoints remaining indefinitely queued, due to the lack of finding
their checkpoints. It is therefore best to either remove jobs from the queues or let them complete
before installing a checkpoint server. It is advisable to shut the pool down before doing any main-
tenance on the checkpoint server. See section 3.10 on page 387 for details on shutting down the
pool.

A graduated installation of the checkpoint server may be accomplished by configuring submit
machines as their queues empty.

3.8.2 Installing the Checkpoint Server Module

The files relevant to a checkpoint server are

sbin/condor_ckpt_server
etc/examples/condor_config.local.ckpt.server

condor_ckpt_server is the checkpoint server binary.
condor_condor_config.local.ckpt.server is an example configuration for a

Condor Version 7.7.6 Manual

3.8. The Checkpoint Server 381

checkpoint server. The settings embodied in this file must becustomized with site-specific
information.

There are three steps necessary towards running a checkpoint server:

1. Configure the checkpoint server.

2. Start the checkpoint server.

3. Configure the pool to use the checkpoint server.

Configure the Checkpoint Server Place settings in the local configuration file of the checkpoint
server. The fileetc/examples/condor_config.local.ckpt.server contains a
template for the needed configuration. Insert these into thelocal configuration file of the
checkpoint server machine.

The value ofCKPT_SERVER_DIRmust be customized. This variable defines the location
of checkpoint files. It is better if this location is within a very fast local file system, and
preferably a RAID. The speed of this file system will have a direct impact on the speed at
which checkpoint files can be retrieved from the remote machines.

The other optional variables are:

DAEMON_LIST Described in section 3.3.9. To have the checkpoint server managed by
the condor_master, the DAEMON_LISTvariable’s value must list bothMASTERand
CKPT_SERVER. Also addSTARTDto allow jobs to run on the checkpoint server ma-
chine. Similarly, addSCHEDDto permit the submission of jobs from the checkpoint
server machine.

The remainder of these variables are the checkpoint server-specific versions of the Condor
logging entries, as described in section 3.3.4 on page 176.

CKPT_SERVER_LOG The location of the checkpoint server log.

MAX_CKPT_SERVER_LOG Sets the maximum size of the checkpoint server log, before it
is saved and the log file restarted.

CKPT_SERVER_DEBUG Regulates the amount of information printed in the log file. Cur-
rently, the only debug level supported isD_ALWAYS.

Start the Checkpoint Server To start the newly configured checkpoint server, restart Condor on
that host to enable thecondor_masterto notice the new configuration. Do this by sending
a condor_restartcommand from any machine with administrator access to the pool. See
section 3.6.9 on page 353 for full details about IP/host-based security in Condor.

Note that when thecondor_ckpt_serverstarts up, it will immediately inspect any checkpoint
files in the location described by theCKPT_SERVER_DIRvariable, and determine if any of
them are stale. Stale checkpoint files will be removed.

Configure the Pool to Use the Checkpoint ServerAfter the checkpoint server is running, modify
a few configuration variables to let the other machines in thepool know about the new server:

Condor Version 7.7.6 Manual

3.8. The Checkpoint Server 382

USE_CKPT_SERVER A boolean value that should be set toTrue to enable the use of the
checkpoint server.

CKPT_SERVER_HOST Provides the full host name of the machine that is now runningthe
checkpoint server.

It is most convenient to set these variables in the pool’s global configuration file, so that
they affect all submission machines. However, it is permitted to configure each submis-
sion machine separately (using local configuration files), for example if it is desired that
not all submission machines begin using the checkpoint server at one time. If the variable
USE_CKPT_SERVERis set toFalse , the submission machine will not use a checkpoint
server.

Once these variables are in place, send the commandcondor_reconfigto all machines in the
pool, so the changes take effect. This is described in section 3.10.3 on page 391.

3.8.3 Configuring the Pool to Use Multiple Checkpoint Servers

A Condor pool may use multiple checkpoint servers. The deployment of checkpoint servers across
the network improves the performance of checkpoint production. In this case, Condor machines are
configured to send checkpoints to thenearestcheckpoint server. There are two main performance
benefits to deploying multiple checkpoint servers:

• Checkpoint-related network traffic is localized by intelligent placement of checkpoint servers.

• Better performance implies that jobs spend less time dealing with checkpoints, and more time
doing useful work, leading to jobs having a higher success rate before returning a machine to
its owner, and workstation owners see Condor jobs leave their machines quicker.

With multiple checkpoint servers running in the pool, the following configuration changes are
required to make them active.

Set USE_CKPT_SERVERto True (the default) on all submitting machines where Condor
jobs should use a checkpoint server. Additionally, variableSTARTER_CHOOSES_CKPT_SERVER
should be set toTrue (the default) on these submitting machines. WhenTrue , this variable

specifies that the checkpoint server specified by the machinerunning the job should be used instead
of the checkpoint server specified by the submitting machine. See section 3.3.8 on page 193 for
more details. This allows the job to use the checkpoint server closest to the machine on which
it is running, instead of the server closest to the submitting machine. For convenience, set these
parameters in the global configuration file.

Second, setCKPT_SERVER_HOSTon each machine. This identifies the full host name of the
checkpoint server machine, and should be the host name of thenearest server to the machine. In the
case of multiple checkpoint servers, set this in the local configuration file.

Third, send acondor_reconfigcommand to all machines in the pool, so that the changes take
effect. This is described in section 3.10.3 on page 391.

Condor Version 7.7.6 Manual

3.8. The Checkpoint Server 383

After completing these three steps, the jobs in the pool willsend their checkpoints to the nearest
checkpoint server. On restart, a job will remember where itscheckpoint was stored and retrieve it
from the appropriate server. After a job successfully writes a checkpoint to a new server, it will
remove any previous checkpoints left on other servers.

Note that if the configured checkpoint server is unavailable, the job will keep trying to contact
that server. It will not use alternate checkpoint servers. This may change in future versions of
Condor.

3.8.4 Checkpoint Server Domains

The configuration described in the previous section ensuresthat jobs will always write checkpoints
to their nearest checkpoint server. In some circumstances,it is also useful to configure Condor to
localize checkpoint read transfers, which occur when the job restarts from its last checkpoint on a
new machine. To localize these transfers, it is desired to schedule the job on a machine which is
near the checkpoint server on which the job’s checkpoint is stored.

In terminology, all of the machines configured to use checkpoint serverA are incheckpoint server
domain A. To localize checkpoint transfers, jobs which run on machines in a given checkpoint server
domain should continue running on machines in that domain, thereby transferring checkpoint files
in a single local area of the network. There are two possible configurations which specify what a job
should do when there are no available machines in its checkpoint server domain:

• The job can remain idle until a workstation in its checkpoint server domain becomes available.

• The job can try to immediately begin executing on a machine in another checkpoint server
domain. In this case, the job transfers to a new checkpoint server domain.

These two configurations are described below.

The first step in implementing checkpoint server domains is to include the name of the near-
est checkpoint server in the machine ClassAd, so this information can be used in job scheduling
decisions. To do this, add the following configuration to each machine:

CkptServer = "$(CKPT_SERVER_HOST)"
STARTD_ATTRS = $(STARTD_ATTRS), CkptServer

For convenience, set these variables in the global configuration file. Note that this example assumes
that STARTD_ATTRSis previously defined in the configuration. If not, then use the following
configuration instead:

CkptServer = "$(CKPT_SERVER_HOST)"
STARTD_ATTRS = CkptServer

Condor Version 7.7.6 Manual

3.9. DaemonCore 384

With this configuration, all machine ClassAds will include aCkptServer attribute, which is the
name of the checkpoint server closest to this machine. So, the CkptServer attribute defines the
checkpoint server domain of each machine.

To restrict jobs to one checkpoint server domain, modify thejobs’ Requirements expression
as follows:

Requirements = ((LastCkptServer == TARGET.CkptServer) || (LastCkptServer =?= UNDEFINED))

This Requirements expression uses theLastCkptServer attribute in the job’s ClassAd,
which specifies where the job last wrote a checkpoint, and theCkptServer attribute in the ma-
chine ClassAd, which specifies the checkpoint server domain. If the job has not yet written a check-
point, theLastCkptServer attribute will beUndefined , and the job will be able to execute in
any checkpoint server domain. However, once the job performs a checkpoint,LastCkptServer
will be defined and the job will be restricted to the checkpoint server domain where it started run-
ning.

To instead allow jobs to transfer to other checkpoint serverdomains when there are no available
machines in the current checkpoint server domain, modify the jobs’Rank expression as follows:

Rank = ((LastCkptServer == TARGET.CkptServer) || (LastCkp tServer =?= UNDEFINED))

This Rank expression will evaluate to 1 for machines in the job’s checkpoint server domain and 0
for other machines. So, the job will prefer to run on machinesin its checkpoint server domain, but
if no such machines are available, the job will run in a new checkpoint server domain.

The checkpoint server domainRequirements or Rank expressions can be automatically
appended to all standard universe jobs submitted in the poolusing the configuration variables
APPEND_REQ_STANDARDor APPEND_RANK_STANDARD. See section 3.3.14 on page 232 for
more details.

3.9 DaemonCore

This section is a brief description ofDaemonCore. DaemonCore is a library that is shared among
most of the Condor daemons which provides common functionality. Currently, the following dae-
mons use DaemonCore:

• condor_master

• condor_startd

• condor_schedd

• condor_collector

• condor_negotiator

Condor Version 7.7.6 Manual

3.9. DaemonCore 385

• condor_kbdd

• condor_quill

• condor_dbmsd

• condor_gridmanager

• condor_credd

• condor_had

• condor_replication

• condor_transferer

• condor_job_router

• condor_lease_manager

• condor_rooster

• condor_shared_port

• condor_defrag

Most of DaemonCore’s details are not interesting for administrators. However, DaemonCore
does provide a uniform interface for the daemons to various Unix signals, and provides a common
set of command-line options that can be used to start up each daemon.

3.9.1 DaemonCore and Unix signals

One of the most visible features that DaemonCore provides for administrators is that all daemons
which use it behave the same way on certain Unix signals. The signals and the behavior Daemon-
Core provides are listed below:

SIGHUP Causes the daemon to reconfigure itself.

SIGTERM Causes the daemon to gracefully shutdown.

SIGQUIT Causes the daemon to quickly shutdown.

Exactly what gracefully and quickly means varies from daemon to daemon. For daemons with
little or no state (thecondor_kbdd, condor_collectorandcondor_negotiator) there is no difference,
and bothSIGTERMandSIGQUIT signals result in the daemon shutting itself down quickly. For the
condor_master, a graceful shutdown causes thecondor_masterto ask all of its children to perform
their own graceful shutdown methods. The quick shutdown causes thecondor_masterto ask all
of its children to perform their own quick shutdown methods.In both cases, thecondor_master

Condor Version 7.7.6 Manual

3.9. DaemonCore 386

exits after all its children have exited. In thecondor_startd, if the machine is not claimed and
running a job, both theSIGTERMandSIGQUIT signals result in an immediate exit. However, if
thecondor_startdis running a job, a graceful shutdown results in that job writing a checkpoint, while
a fast shutdown does not. In thecondor_schedd, if there are no jobs currently running, there will
be nocondor_shadowprocesses, and both signals result in an immediate exit. However, with jobs
running, a graceful shutdown causes thecondor_scheddto ask eachcondor_shadowto gracefully
vacate the job it is serving, while a quick shutdown results in a hard kill of everycondor_shadow,
with no chance to write a checkpoint.

For all daemons, a reconfigure results in the daemon re-reading its configuration file(s), causing
any settings that have changed to take effect. See section 3.3 on page 159, Configuring Condor for
full details on what settings are in the configuration files and what they do.

3.9.2 DaemonCore and Command-line Arguments

The second visible feature that DaemonCore provides to administrators is a common set of
command-line arguments that all daemons understand. Thesearguments and what they do are de-
scribed below:

-a string Append a period character ('.') concatenated withstring to the file name of the log for
this daemon, as specified in the configuration file.

-b Causes the daemon to start up in the background. When a DaemonCore process starts up with
this option, it disassociates itself from the terminal and forks itself, so that it runs in the
background. This is the default behavior for Condor daemons.

-c filename Causes the daemon to use the specifiedfilename as a full path and file name as its
global configuration file. This overrides theCONDOR_CONFIGenvironment variable and the
regular locations that Condor checks for its configuration file.

-d Use dynamic directories. The$(LOG) , $(SPOOL) , and$(EXECUTE) directories are all cre-
ated by the daemon at run time, and they are named by appendingthe parent’s IP address
and PID to the value in the configuration file. These values arethen inherited by all children
of the daemon invoked with this-d argument. For thecondor_master, all Condor processes
will use the new directories. If acondor_scheddis invoked with the-d argument, then only
thecondor_schedddaemon and anycondor_shadowdaemons it spawns will use the dynamic
directories (named with thecondor_schedddaemon’s PID).

Note that by using a dynamically-created spool directory named by the IP address and PID,
upon restarting daemons, jobs submitted to the originalcondor_schedddaemon that were
stored in the old spool directory will not be noticed by the new condor_schedddaemon, unless
you manually specify the old, dynamically-generatedSPOOLdirectory path in the configura-
tion of the newcondor_schedddaemon.

-f Causes the daemon to start up in the foreground. Instead of forking, the daemon runs in the
foreground.

Condor Version 7.7.6 Manual

3.10. Pool Management 387

NOTE: When thecondor_masterstarts up daemons, it does so with the-f option, as it has
already forked a process for the new daemon. There will be a-f in the argument list for all
Condor daemons that thecondor_masterspawns.

-k filename For non-Windows operating systems, causes the daemon to read out a PID from the
specifiedfilename, and send a SIGTERM to that process. The daemon started with this
optional argument waits until the daemon it is attempting tokill has exited.

-l directory Overrides the value ofLOG as specified in the configuration files. Primarily, this
option is used with thecondor_kbddwhen it needs to run as the individual user logged into
the machine, instead of running as root. Regular users wouldnot normally have permission
to write files into Condor’s log directory. Using this option, they can override the value of
LOGand have thecondor_kbddwrite its log file into a directory that the user has permission
to write to.

-local-name nameSpecify a local name for this instance of the daemon. This local name will be
used to look up configuration parameters. Section 3.3.1 contains details on how this local
name will be used in the configuration.

-p port Causes the daemon to bind to the specified port as its command socket. Thecondor_master
daemon uses this option to ensure that thecondor_collectorandcondor_negotiatorstart up
using well-known ports that the rest of Condor depends upon them using.

-pidfile filename Causes the daemon to write out its PID (process id number) to the specified
filename. This file can be used to help shutdown the daemon without firstsearching through
the output of the Unixpscommand.

Since daemons run with their current working directory set to the value ofLOG, if you don’t
specify a full path (one that begins with a “/”), the file will be placed in theLOGdirectory.

-q Quiet output; write less verbose error messages tostderr when something goes wrong, and
before regular logging can be initialized.

-r minutes Causes the daemon to set a timer, upon expiration of which, itsends itself a SIGTERM
for graceful shutdown.

-t Causes the daemon to print out its error message tostderr instead of its specified log file. This
option forces the-f option.

-v Causes the daemon to print out version information and exit.

3.10 Pool Management

Condor provides administrative tools to help with pool management. This section describes some
of these tasks.

Condor Version 7.7.6 Manual

3.10. Pool Management 388

All of the commands described in this section are subject to the security policy chosen for the
Condor pool. As such, the commands must be either run from a machine that has the proper autho-
rization, or run by a user that is authorized to issue the commands. Section 3.6 on page 325 details
the implementation of security in Condor.

3.10.1 Upgrading – Installing a New Version on an Existing Pool

An upgrade changes the running version of Condor from the current installation to a newer version.
The safe method to install and start running a newer version of Condor in essence is: shut down
the current installation of Condor, install the newer version, and then restart Condor using the newer
version. To allow for falling back to the current version, place the new version in a separate directory.
Copy the existing configuration files, and modify the copy to point to and use the new version, as
well as incorporate any configuration variables that are newor changed in the new version. Set the
CONDOR_CONFIGenvironment variable to point to the new copy of the configuration, so the new
version of Condor will use the new configuration when restarted.

When upgrading from a version of Condor earlier than 6.8 to more recent version, note that the
configuration settings must be modified for security reasons. Specifically, theHOSTALLOW_WRITE
configuration variable must be explicitly changed, or no jobs may be submitted, and error messages
will be issued by Condor tools.

Another way to upgrade leaves Condor running. Condor will automatically restart itself if the
condor_masterbinary is updated, and this method takes advantage of this. Download the newer
version, placing it such that it does not overwrite the currently running version. With the download
will be a new set of configuration files; update this new set with any specializations implemented
in the currently running version of Condor. Then, modify thecurrently running installation by
changing its configuration such that the path to binaries points instead to the new binaries. One
way to do that (under Unix) is to use a symbolic link that points to the current Condor installation
directory (for example,/opt/condor). Change the symbolic link to point to the new directory.
If Condor is configured to locate its binaries via the symbolic link, then after the symbolic link
changes, thecondor_masterdaemon notices the new binaries and restarts itself. How frequently
it checks is controlled by the configuration variableMASTER_CHECK_NEW_EXEC_INTERVAL,
which defaults 5 minutes.

When thecondor_masternotices new binaries, it begins a graceful restart. On an execute ma-
chine, a graceful restart means that running jobs are preempted. Standard universe jobs will attempt
to take a checkpoint. This could be a bottleneck if all machines in a large pool attempt to do this
at the same time. If they do not complete within the cutoff time specified by theKILL policy ex-
pression (defaults to 10 minutes), then the jobs are killed without producing a checkpoint. It may be
appropriate to increase this cutoff time, and a better approach may be to upgrade the pool in stages
rather than all at once.

For universes other than the standard universe, jobs are preempted. If jobs have been guaranteed
a certain amount of uninterrupted run time withMaxJobRetirementTime , then the job is not
killed until the specified amount of retirement time has beenexceeded (which is 0 by default). The
first step of killing the job is a soft kill signal, which can beintercepted by the job so that it can exit

Condor Version 7.7.6 Manual

3.10. Pool Management 389

gracefully, perhaps saving its state. If the job has not goneaway once theKILL expression fires
(10 minutes by default), then the job is forcibly hard-killed. Since the graceful shutdown of jobs
may rely on shared resources such as disks where state is saved, the same reasoning applies as for
the standard universe: it may be appropriate to increase thecutoff time for large pools, and a better
approach may be to upgrade the pool in stages to avoid jobs running out of time.

Another time limit to be aware of is the configuration variable
SHUTDOWN_GRACEFUL_TIMEOUT. This defaults to 30 minutes. If the graceful restart is
not completed within this time, a fast restart ensues. This causes jobs to be hard-killed.

3.10.2 Shutting Down and Restarting a Condor Pool

Shutting Down Condor There are a variety of ways to shut down all or parts of a Condorpool. All
utilize thecondor_offtool.

To stop a single execute machine from running jobs, thecondor_offcommand specifies the
machine by host name.

condor_off -startd <hostname>

A runningstandard universe job will be allowed to take a checkpoint before the job is killed.
A running job under another universe will be killed. If it is instead desired that the machine
stops running jobs only after the currently executing job completes, the command is

condor_off -startd -peaceful <hostname>

Note that this waits indefinitely for the running job to finish, before thecondor_startddaemon
exits.

Th shut down all execution machines within the pool,

condor_off -all -startd

To wait indefinitely for each machine in the pool to finish its current Condor job, shutting
down all of the execute machines as they no longer have a running job,

condor_off -all -startd -peaceful

To shut down Condor on a machine from which jobs are submitted,

condor_off -schedd <hostname>

If it is instead desired that the submit machine shuts down only after all jobs that are currently
in the queue are finished, first disable new submissions to thequeue by setting the configura-
tion variable

MAX_JOBS_SUBMITTED = 0

Condor Version 7.7.6 Manual

3.10. Pool Management 390

See instructions below in section 3.10.3 for how to reconfigure a pool. After the reconfigu-
ration, the command to wait for all jobs to complete and shut down the submission of jobs
is

condor_off -schedd -peaceful <hostname>

Substitute the option-all for the host name, if all submit machines in the pool are to be shut
down.

Restarting Condor, If Condor Daemons Are Not Running If Condor is not running, perhaps be-
cause one of thecondor_off commands was used, then starting Condor daemons back up
depends on which part of Condor is currently not running.

If no Condor daemons are running, then starting Condor is a matter of executing thecon-
dor_masterdaemon. Thecondor_masterdaemon will then invoke all other specified dae-
mons on that machine. Thecondor_masterdaemon executes on every machine that is to run
Condor.

If a specific daemon needs to be started up, and thecondor_masterdaemon is already running,
then issue the command on the specific machine with

condor_on -subsystem <subsystemname>

where<subsystemname> is replaced by the daemon’s subsystem name. Or, this command
might be issued from another machine in the pool (which has administrative authority) with

condor_on <hostname> -subsystem <subsystemname>

where <subsystemname> is replaced by the daemon’s subsystem name, and
<hostname> is replaced by the host name of the machine where thiscondor_oncommand
is to be directed.

Restarting Condor, If Condor Daemons Are Running If Condor daemons are currently running,
but need to be killed and newly invoked, thecondor_restarttool does this. This would be the
case for a new value of a configuration variable for which usingcondor_reconfigis inadequate.

To restart all daemons on all machines in the pool,

condor_restart -all

To restart all daemons on a single machine in the pool,

condor_restart <hostname>

where<hostname> is replaced by the host name of the machine to be restarted.

Condor Version 7.7.6 Manual

3.11. The High Availability of Daemons 391

3.10.3 Reconfiguring a Condor Pool

To change a global configuration variable and have all the machines start to use the new setting,
change the value within the file, and send acondor_reconfigcommand to each host. Do this with a
singlecommand,

condor_reconfig -all

If the global configuration file is not shared among all the machines, as it will be if using a shared
file system, the change must be made to each copy of the global configuration file before issuing the
condor_reconfigcommand.

Issuing acondor_reconfigcommand is inadequate for some configuration variables. Forthose,
a restart of Condor is required. Those configuration variables that require a restart are listed in
section 3.3.1 on page 164. The manual page forcondor_restartis at 10.

3.11 The High Availability of Daemons

In the case that a key machine no longer functions, Condor canbe configured such that another
machine takes on the key functions. This is calledHigh Availability. While high availability is
generally applicable, there are currently two specializedcases for its use: when the central manager
(running thecondor_negotiatorandcondor_collectordaemons) becomes unavailable, and when the
machine running thecondor_schedddaemon (maintaining the job queue) becomes unavailable.

3.11.1 High Availability of the Job Queue

For a pool where all jobs are submitted through a single machine in the pool, and there are lots
of jobs, this machine becoming nonfunctional means that jobs stop running. Thecondor_schedd
daemon maintains the job queue. No job queue due to having a nonfunctional machine implies
that no jobs can be run. This situation is worsened by using one machine as the single submission
point. For each Condor job (taken from the queue) that is executed, acondor_shadowprocess
runs on the machine where submitted to handle input/output functionality. If this machine becomes
nonfunctional, none of the jobs can continue. The entire pool stops running jobs.

The goal ofHigh Availability in this special case is to transfer thecondor_schedddaemon to
run on another designated machine. Jobs caused to stop without finishing can be restarted from the
beginning, or can continue execution using the most recent checkpoint. New jobs can enter the job
queue. WithoutHigh Availability, the job queue would remain intact, but further progress on jobs
would wait until the machine running thecondor_schedddaemon became available (after fixing
whatever caused it to become unavailable).

Condor uses its flexible configuration mechanisms to allow the transfer of thecondor_schedd
daemon from one machine to another. The configuration specifies which machines are chosen to run

Condor Version 7.7.6 Manual

3.11. The High Availability of Daemons 392

thecondor_schedddaemon. To prevent multiplecondor_schedddaemons from running at the same
time, a lock (semaphore-like) is held over the job queue. This synchronizes the situation in which
control is transferred to a secondary machine, and the primary machine returns to functionality.
Configuration variables also determine time intervals at which the lock expires, and periods of time
that pass between polling to check for expired locks.

To specify a single machine that would take over, if the machine running thecondor_schedd
daemon stops working, the following additions are made to the local configuration of any and all
machines that are able to run thecondor_schedddaemon (becoming the single pool submission
point):

MASTER_HA_LIST = SCHEDD
SPOOL = /share/spool
HA_LOCK_URL = file:/share/spool
VALID_SPOOL_FILES = $(VALID_SPOOL_FILES), SCHEDD.lock

Configuration macroMASTER_HA_LIST identifies thecondor_schedddaemon as the daemon
that is to be watched to make sure that it is running. Each machine with this configuration must
have access to the lock (the job queue) which synchronizes which single machine does run the
condor_schedddaemon. This lock and the job queue must both be located in a shared file space, and
is currently specified only with a file URL. The configuration specifies the shared space (SPOOL),
and the URL of the lock.condor_preenis not currently aware of the lock file and will delete it if it
is placed in theSPOOLdirectory, so be sure to add SCHEDD.lock toVALID_SPOOL_FILES .

As Condor starts on machines that are configured to run the single condor_schedddaemon, the
condor_masterdaemon of the first machine that looks at (polls) the lock and notices that no lock is
held. This implies that nocondor_schedddaemon is running. Thiscondor_masterdaemon acquires
the lock and runs thecondor_schedddaemon. Other machines with this same capability to run the
condor_schedddaemon look at (poll) the lock, but do not run the daemon, as the lock is held. The
machine running thecondor_schedddaemon renews the lock periodically.

If the machine running thecondor_schedddaemon fails to renew the lock (because the machine
is not functioning), the lock times out (becomes stale). Thelock is released by thecondor_master
daemon ifcondor_offor condor_off -scheddis executed, or when thecondor_masterdaemon knows
that thecondor_schedddaemon is no longer running. As other machines capable of running the
condor_schedddaemon look at the lock (poll), one machine will be the first tonotice that the lock has
timed out or been released. This machine (correctly) interprets this situation as thecondor_schedd
daemon is no longer running. This machine’scondor_masterdaemon then acquires the lock and
runs thecondor_schedddaemon.

See section 3.3.9, in the section oncondor_masterConfiguration File Macros for details relating
to the configuration variables used to set timing and pollingintervals.

Condor Version 7.7.6 Manual

3.11. The High Availability of Daemons 393

Working with Remote Job Submission

Remote job submission requires identification of the job queue, submitting with a command similar
to:

% condor_submit -remote condor@example.com myjob.submit

This implies the identification of a singlecondor_schedddaemon, running on a single machine.
With the high availability of the job queue, there are multiple condor_schedddaemons, of which
only one at a time is acting as the single submission point. Tomake remote submission of jobs work
properly, set the configuration variableSCHEDD_NAMEin the local configuration to have the same
value for each potentially runningcondor_schedddaemon. In addition, the value chosen for the
variableSCHEDD_NAMEwill need to include the at symbol (@), such that Condor will not modify
the value set for this variable. See the description ofMASTER_NAMEin section 3.3.9 on page 200
for defaults and composition of valid values forSCHEDD_NAME. As an example, include in each
local configuration a value similar to:

SCHEDD_NAME = had-schedd@

Then, with this sample configuration, the submit command appears as:

% condor_submit -remote had-schedd@ myjob.submit

3.11.2 High Availability of the Central Manager

Interaction with Flocking

The Condor high availability mechanisms discussed in this section currently do not work well in
configurations involving flocking. The individual problemslisted listed below interact to make the
situation worse. Because of these problems, we advise against the use of flocking to pools with high
availability mechanisms enabled.

• Thecondor_scheddhas a hard configured list ofcondor_collectorandcondor_negotiatordae-
mons, and does not query redundant collectors to get the currentcondor_negotiator, as it does
when communicating with its local pool. As a result, if the default condor_negotiatorfails,
thecondor_schedddoes not learn of the failure, and thus, talk to the newcondor_negotiator.

• When thecondor_negotiatoris unable to communicate with acondor_collector, it utilizes the
nextcondor_collectorwithin the list. Unfortunately, it does not start over at thetop of the list.
When combined with the previous problem, a backupcondor_negotiatorwill never get jobs
from a flockedcondor_schedd.

Introduction

The condor_negotiatorandcondor_collectordaemons are the heart of the Condor matchmaking
system. The availability of these daemons is critical to a Condor pool’s functionality. Both daemons

Condor Version 7.7.6 Manual

3.11. The High Availability of Daemons 394

usually run on the same machine, most often known as the central manager. The failure of a central
manager machine prevents Condor from matching new jobs and allocating new resources. High
availability of thecondor_negotiatorandcondor_collectordaemons eliminates this problem.

Configuration allows one of multiple machines within the pool to function as the central man-
ager. While there are may be many activecondor_collectordaemons, only a single, activecon-
dor_negotiatordaemon will be running. The machine with thecondor_negotiatordaemon running
is the active central manager. The other potential central managers each have acondor_collector
daemon running; these are the idle central managers.

All submit and execute machines are configured to report to all potential central manager ma-
chines.

Each potential central manager machine runs the high availability daemon,condor_had. These
daemons communicate with each other, constantly monitoring the pool to ensure that one active
central manager is available. If the active central managermachine crashes or is shut down, these
daemons detect the failure, and they agree on which of the idle central managers is to become the
active one. A protocol determines this.

In the case of a network partition, idlecondor_haddaemons within each partition detect (by the
lack of communication) a partitioning, and then use the protocol to chose an active central manager.
As long as the partition remains, and there exists an idle central manager within the partition, there
will be one active central manager within each partition. When the network is repaired, the protocol
returns to having one central manager.

Through configuration, a specific central manager machine may act as the primary central man-
ager. While this machine is up and running, it functions as the central manager. After a failure of this
primary central manager, another idle central manager becomes the active one. When the primary
recovers, it again becomes the central manager. This is a recommended configuration, if one of the
central managers is a reliable machine, which is expected tohave very short periods of instability.
An alternative configuration allows the promoted active central manager (in the case that the central
manager fails) to stay active after the failed central manager machine returns.

This high availability mechanism operates by monitoring communication between machines.
Note that there is a significant difference in communications between machines when

1. a machine is down

2. a specific daemon (thecondor_haddaemon in this case) is not running, yet the machine is
functioning

The high availability mechanism distinguishes between these two, and it operates based only on
first (when a central manager machine is down). A lack of executing daemons doesnot cause the
protocol to choose or use a new active central manager.

The central manager machine contains state information, and this includes information about
user priorities. The information is kept in a single file, andis used by the central manager machine.
Should the primary central manager fail, a pool with high availability enabled would lose this infor-
mation (and continue operation, but with re-initialized priorities). Therefore, thecondor_replication

Condor Version 7.7.6 Manual

3.11. The High Availability of Daemons 395

daemon exists to replicate this file on all potential centralmanager machines. This daemon promul-
gates the file in a way that is safe from error, and more secure than dependence on a shared file
system copy.

Thecondor_replicationdaemon runs on each potential central manager machine as well as on
the active central manager machine. There is a unidirectional communication between thecon-
dor_haddaemon and thecondor_replicationdaemon on each machine. To properly do its job,
thecondor_replicationdaemon must transfer state files. When it needs to transfer a file, thecon-
dor_replicationdaemons at both the sending and receiving ends of the transfer invoke thecon-
dor_transfererdaemon. These short lived daemons do the task of file transferand then exit. Do
not placeTRANSFERERinto DAEMON_LIST, as it is not a daemon that thecondor_mastershould
invoke or watch over.

Configuration

The high availability of central manager machines is enabled through configuration. It is disabled
by default. All machines in a pool must be configured appropriately in order to make the high
availability mechanism work. See section 3.3.29, for definitions of these configuration variables.

The stabilization period is the time it takes for thecondor_haddaemons to detect a change in
the pool state such as an active central manager failure or network partition, and recover from this
change. It may be computed using the following formula:

stabilization period = 12 * (number of central managers) *
$(HAD_CONNECTION_TIMEOUT)

To disable the high availability of central managers mechanism, it is sufficient to removeHAD,
REPLICATION, andNEGOTIATORfrom theDAEMON_LISTconfiguration variable on all ma-
chines, leaving only onecondor_negotiatorin the pool.

To shut down a currently operating high availability mechanism, follow the given steps. All
commands must be invoked from a host which has administrative permissions on all central
managers. The first three commands kill allcondor_had, condor_replication, and all running
condor_negotiatordaemons. The last command is invoked on the host where the single con-
dor_negotiatordaemon is to run.

1. condor_off -all -neg

2. condor_off -all -subsystem -replication

3. condor_off -all -subsystem -had

4. condor_on -neg

When configuringcondor_hadto control thecondor_negotiator, if the default backoff constant
value is too small, it can result in a churning of thecondor_negotiator, especially in cases in which
the primary negotiator is unable to run due to misconfiguration. In these cases, thecondor_master

Condor Version 7.7.6 Manual

3.11. The High Availability of Daemons 396

will kill the condor_hadafter thecondor_negotiatorexists, wait a short period, then restartcon-
dor_had. Thecondor_hadwill then win the election, so the secondarycondor_negotiatorwill be
killed, and the primary will be restarted, only to exit again. If this happens too quickly, neither
condor_negotiatorwill run long enough to complete a negotiation cycle, resulting in no jobs getting
started. Increasing this value viaMASTER_HAD_BACKOFF_CONSTANTto be larger than a typical
negotiation cycle can help solve this problem.

To run a high availability pool without the replication feature, do the following operations:

1. Set theHAD_USE_REPLICATIONconfiguration variable toFalse , and thus disable the
replication on configuration level.

2. RemoveREPLICATION from bothDAEMON_LISTandDC_DAEMON_LISTin the config-
uration file.

Sample Configuration

This section provides sample configurations for high availability. The two parts to this are the
configuration for the potential central manager machines, and the configuration for the machines
within the pool that willnot be central managers.

This is a sample configuration relating to the high availability of central managers. This is for
the potential central manager machines.

#######################
A sample configuration file for central managers, to enabl e the
the high availability mechanism.
#######################

unset this macro
CONDOR_HOST=

######################
THE FOLLOWING MUST BE IDENTICAL ON ALL POTENTIAL CENTRAL MANAGERS.
######################
For simplicity in writing other expressions, define a var iable
for each potential central manager in the pool.
These are samples.
CENTRAL_MANAGER1 = cm1.domain.name
CENTRAL_MANAGER2 = cm2.domain.name
A list of all potential central managers in the pool.
COLLECTOR_HOST = $(CENTRAL_MANAGER1),$(CENTRAL_MANAGER2)

Define the port number on which the condor_had daemon will
listen. The port must match the port number used
for when defining HAD_LIST. This port number is
arbitrary; make sure that there is no port number collisio n
with other applications.
HAD_PORT = 51450
HAD_ARGS = -p $(HAD_PORT)

Condor Version 7.7.6 Manual

3.11. The High Availability of Daemons 397

The following macro defines the port number condor_repli cation will listen
on on this machine. This port should match the port number s pecified
for that replication daemon in the REPLICATION_LIST
Port number is arbitrary (make sure no collision with othe r applications)
This is a sample port number
REPLICATION_PORT = 41450
REPLICATION_ARGS = -p $(REPLICATION_PORT)

The following list must contain the same addresses
as HAD_LIST. In addition, for each hostname, it should spe cify
the port number of condor_replication daemon running on t hat host.
This parameter is mandatory and has no default value
REPLICATION_LIST = \
$(CENTRAL_MANAGER1):$(REPLICATION_PORT), \
$(CENTRAL_MANAGER2):$(REPLICATION_PORT)

The following list must contain the same addresses in the s ame order
as COLLECTOR_HOST. In addition, for each hostname, it sho uld specify
the port number of condor_had daemon running on that host.
The first machine in the list will be the PRIMARY central ma nager
machine, in case HAD_USE_PRIMARY is set to true.
HAD_LIST = \
$(CENTRAL_MANAGER1):$(HAD_PORT), \
$(CENTRAL_MANAGER2):$(HAD_PORT)

HAD connection time.
Recommended value is 2 if the central managers are on the sa me subnet.
Recommended value is 5 if Condor security is enabled.
Recommended value is 10 if the network is very slow, or
to reduce the sensitivity of HA daemons to network failure s.
HAD_CONNECTION_TIMEOUT = 2

##If true, the first central manager in HAD_LIST is a primary .
HAD_USE_PRIMARY = true

##--- -------------------
Host/IP access levels
##--- -------------------

What machines have administrative rights for your pool? T his
defaults to your central manager. You should set it to the
machine(s) where whoever is the condor administrator(s) works
(assuming you trust all the users who log into that/those
machine(s), since this is machine-wide access you're gra nting).
HOSTALLOW_ADMINISTRATOR = $(COLLECTOR_HOST)

Negotiator access. Machines listed here are trusted cent ral
managers. You should normally not have to change this.
HOSTALLOW_NEGOTIATOR = $(COLLECTOR_HOST)

################
THE PARAMETERS BELOW ARE ALLOWED TO BE DIFFERENT ON EACH
CENTRAL MANAGERS
THESE ARE MASTER SPECIFIC PARAMETERS
################

Condor Version 7.7.6 Manual

3.11. The High Availability of Daemons 398

The location of executable files
HAD = $(SBIN)/condor_had
REPLICATION = $(SBIN)/condor_replication
TRANSFERER = $(SBIN)/condor_transferer

the master should start at least these five daemons
DAEMON_LIST = MASTER, COLLECTOR, NEGOTIATOR, HAD, REPLICATION
DC_Daemon list should contain at least these five
DC_DAEMON_LIST = +HAD, REPLICATION

Enables/disables the replication feature of HAD daemon
Default: no
HAD_USE_REPLICATION = true

Name of the file from the SPOOL directory that will be repli cated
Default: $(SPOOL)/Accountantnew.log
STATE_FILE = $(SPOOL)/Accountantnew.log

Period of time between two successive awakenings of the re plication daemon
Default: 300
REPLICATION_INTERVAL = 300

Period of time, in which transferer daemons have to accompl ish the
downloading/uploading process
Default: 300
MAX_TRANSFERER_LIFETIME = 300

Period of time between two successive sends of ClassAds to the collector by HAD
Default: 300
HAD_UPDATE_INTERVAL = 300

The HAD controls the negotiator, and should have a larger
backoff constant
MASTER_NEGOTIATOR_CONTROLLER = HAD
MASTER_HAD_BACKOFF_CONSTANT = 360

The size of the log file
MAX_HAD_LOG = 640000
debug level
HAD_DEBUG = D_COMMAND
location of the condor_had log file
HAD_LOG = $(LOG)/HADLog

The size of replication log file
MAX_REPLICATION_LOG = 640000
Replication debug level
REPLICATION_DEBUG = D_COMMAND
Replication log file
REPLICATION_LOG = $(LOG)/ReplicationLog

The size of transferer log file
MAX_TRANSFERER_LOG = 640000
Replication debug level
TRANSFERER_DEBUG = D_COMMAND
Replication log file
TRANSFERER_LOG = $(LOG)/TransferLog

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 399

Machines that are not potential central managers also require configuration. The following is a
sample configuration relating to high availability for machines that willnot be central managers.

#######################
Sample configuration relating to high availability for ma chines
that DO NOT run the condor_had daemon.
#######################

#unset this variable
CONDOR_HOST =

For simplicity define a variable for each potential centr al manager
in the pool.
CENTRAL_MANAGER1 = cm1.cs.technion.ac.il
CENTRAL_MANAGER2 = cm2.cs.technion.ac.il
List of all potential central managers in the pool
COLLECTOR_HOST = $(CENTRAL_MANAGER1),$(CENTRAL_MANAGER2)

##--- -------------------
Host/IP access levels
##--- -------------------

Negotiator access. Machines listed here are trusted cent ral
managers. You should normally not need to change this.
HOSTALLOW_NEGOTIATOR = $(COLLECTOR_HOST)

Now, with flocking (and HA) we need to let the SCHEDD trust t he other
negotiators we are flocking with as well. You should norma lly
not need to change this.
HOSTALLOW_NEGOTIATOR_SCHEDD = $(COLLECTOR_HOST)

3.12 Setting Up for Special Environments

The following sections describe how to set up Condor for use in special environments or configura-
tions.

3.12.1 Using Condor with AFS

Configuration variables that allow machines to interact with and use a shared file system are given
at section 3.3.7.

Limitations with AFS occur because Condor does not currently have a way to authenticate itself
to AFS. This is true of the Condor daemons that would like to authenticate as the AFS usercondor ,
and of thecondor_shadowwhich would like to authenticate as the user who submitted the job it is
serving. Since neither of these things can happen yet, thereare special things to do when interacting
with AFS. Some of this must be done by the administrator(s) installing Condor. Other things must
be done by Condor users who submit jobs.

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 400

AFS and Condor for Administrators

The largest result from the lack of authentication with AFS is that the directory defined by the
configuration variableLOCAL_DIRand its subdirectorieslog andspool on each machine must
be either writable to unauthenticated users, or must not be on AFS. Making these directories writable
averybad security hole, so it isnot a viable solution. PlacingLOCAL_DIRonto NFS is acceptable.
To avoid AFS, place the directory defined forLOCAL_DIRon a local partition on each machine in
the pool. This implies runningcondor_configureto install the release directory and configure the
pool, setting theLOCAL_DIR variable to a local partition. When that is complete, log into each
machine in the pool, and runcondor_initto set up the local Condor directory.

The directory defined byRELEASE_DIR, which holds all the Condor binaries, libraries, and
scripts, can be on AFS. None of the Condor daemons need to write to these files. They only need to
read them. So, the directory defined byRELEASE_DIRonly needs to be world readable in order to
let Condor function. This makes it easier to upgrade the binaries to a newer version at a later date,
and means that users can find the Condor tools in a consistent location on all the machines in the
pool. Also, the Condor configuration files may be placed in a centralized location. This is what we
do for the UW-Madison’s CS department Condor pool, and it works quite well.

Finally, consider setting up some targeted AFS groups to help users deal with Condor and AFS
better. This is discussed in the following manual subsection. In short, create an AFS group that
contains all users, authenticated or not, but which is restricted to a given host or subnet. These
should be made as host-based ACLs with AFS, but here at UW-Madison, we have had some trouble
getting that working. Instead, we have a special group for all machines in our department. The users
here are required to make their output directories on AFS writable to any process running on any of
our machines, instead of any process on any machine with AFS on the Internet.

AFS and Condor for Users

The condor_shadowdaemon runs on the machine where jobs are submitted. It performs all file
system access on behalf of the jobs. Because thecondor_shadowdaemon is not authenticated to
AFS as the user who submitted the job, thecondor_shadowdaemon will not normally be able to
write any output. Therefore the directories in which the jobwill be creating output files will need
to be world writable; they need to be writable by non-authenticated AFS users. In addition, the
program’sstdout , stderr , log file, and any file the program explicitly opens will need to be in
a directory that is world-writable.

An administrator may be able to set up special AFS groups thatcan make unauthenticated access
to the program’s files less scary. For example, there is supposed to be a way for AFS to grant access
to any unauthenticated process on a given host. If set up, write access need only be granted to
unauthenticated processes on the submit machine, as opposed to any unauthenticated process on the
Internet. Similarly, unauthenticated read access could begranted only to processes running on the
submit machine.

A solution to this problem is to not use AFS for output files. Ifdisk space on the submit machine
is available in a partition not on AFS, submit the jobs from there. While thecondor_shadowdaemon

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 401

is not authenticated to AFS, it does run with the effective UID of the user who submitted the jobs.
So, on a local (or NFS) file system, thecondor_shadowdaemon will be able to access the files,
and no special permissions need be granted to anyone other than the job submitter. If the Condor
daemons are not invoked as root however, thecondor_shadowdaemon will not be able to run with
the submitter’s effective UID, leading to a similar problemas with files on AFS.

3.12.2 Enabling the Transfer of Files Specified by a URL

Because staging data on the submit machine is not always efficient, Condor permits input files to
be transferred from a location specified by a URL; likewise, output files may be transferred to a
location specified by a URL. All transfers (both input and output) are accomplished by invoking a
plug-in, an executable or shell script that handles the task of file transfer.

For transferring input files, URL specification is limited tojobs running under the vanilla uni-
verse and to a vm universe VM image file. The execute machine retrieves the files. This differs
from the normal file transfer mechanism, in which transfers are from the machine where the job is
submitted to the machine where the job is executed. Each file to be transferred by specifying a URL,
causing a plug-in to be invoked, is specified separately in the job submit description file with the
commandtransfer_input_files; see section 2.5.4 for details.

For transferring output files, either the entire output sandbox, which are all files produced or
modified by the job as it executes, or a subset of these files, asspecified by the submit descrip-
tion file commandtransfer_output_filesare transferred to the directory specified by the URL. The
URL itself is specified in the separate submit description file commandoutput_destination; see
section 2.5.4 for details. The plug-in is invoked once for each output file to be transferred.

Configuration identifies the availability of the one or more plug-in(s). The plug-ins must be
installed and available on every execute machine that may run a job which might specify a URL,
either for input or for output.

URL transfers are enabled by default in the configuration of execute machines. Disabling URL
transfers is accomplished by setting

ENABLE_URL_TRANSFERS = FALSE

A comma separated list giving the absolute path and name of all available plug-ins is specified
as in the example:

FILETRANSFER_PLUGINS = /opt/condor/plugins/wget-plugi n, \
/opt/condor/plugins/hdfs-plugin, \
/opt/condor/plugins/custom-plugin

Thecondor_starterinvokes all listed plug-ins to determine their capabilities. Each may handle
one or more protocols (scheme names). The plug-in’s response to invocation identifies which proto-
cols it can handle. When a URL transfer is specified by a job, thecondor_starterinvokes the proper
one to do the transfer. If more than one plugin is capable of handling a particular protocol, then the
last one within the list given byFILETRANSFER_PLUGINSis used.

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 402

Condor assumes that all plug-ins will respond in specific ways. To determine the capabilities
of the plug-ins as to which protocols they handle, thecondor_starterdaemon invokes each plug-in
giving it the command line argument-classad. In response to invocation with this command line
argument, the plug-in must respond with an output of three ClassAd attributes. The first two are
fixed:

PluginVersion = "0.1"
PluginType = "FileTransfer"

The third ClassAd attribute isSupportedMethods . This attribute is a string containing a
comma separated list of the protocols that the plug-in handles. So, for example

SupportedMethods = "http,ftp,file"

would identify that the three protocols described byhttp , ftp , andfile are supported. These
strings will match the protocol specification as given within a URL in atransfer_input_files com-
mand or within a URL in anoutput_destinationcommand in a submit description file for a job.

When a job specifies a URL transfer, the plug-in is invoked, without the command line argument
-classad. It will instead be given two other command line arguments. For the transfer of input file(s),
the first will be the URL of the file to retrieve and the second will be the absolute path identifying
where to place the transferred file. For the transfer of output file(s), the first will be the absolute path
on the local machine of the file to transfer, and the second will be the URL of the directory and file
name at the destination.

The plug-in is expected to do the transfer, exiting with status 0 if the transfer was successful, and
a non-zero status if the transfer wasnot successful. Whennot successful, the job is placed on hold,
and the job ClassAd attributeHoldReason will be set as appropriate for the job. The job ClassAd
attributeHoldReasonSubCode will be set to the exit status of the plug-in.

As an example of the transfer of a subset of output files, assume that the submit description file
contains

output_destination = url://server/some/directory/
transfer_output_files = foo, bar, qux

Condor invokes the plug-in that handles theurl protocol three times. The directory delimiter (/ on
Unix, and\ on Windows) is appended to the destination URL, such that thethree (Unix) invocations
of the plug-in will appear similar to

url_plugin /path/to/local/copy/of/foo url://server/so me/directory//foo
url_plugin /path/to/local/copy/of/bar url://server/so me/directory//bar
url_plugin /path/to/local/copy/of/qux url://server/so me/directory//qux

Note that this functionality is not limited to a predefined set of protocols. New ones can be
invented. As an invented example, thezkm transfer type writes random bytes to a file. The plug-in
that handleszkm transfers would respond to invocation with the-classadcommand line argument
with:

PluginVersion = "0.1"
PluginType = "FileTransfer"
SupportedMethods = "zkm"

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 403

And, then when a job requested that this plug-in be invoked, for the invented example:

transfer_input_files = zkm://128/r-data

the plug-in will be invoked with a first command line argumentof zkm://128/r-data and a
second command line argument giving the full path along withthe file namer-data as the location
for the plug-in to write 128 bytes of random data.

The transfer of output files in this manner was introduced in Condor version 7.6.0. Incompatibil-
ity and inability to function will result if the executablesfor thecondor_starterandcondor_shadow
are versions earlier than Condor version 7.6.0. Here is the expected behavior for these cases that
cannot be backward compatible.

• If the condor_starterversion is earlier than 7.6.0, then regardless of thecondor_shadowver-
sion, transfer of output files, as identified in the submit description file with the command
output_destination is ignored. The files are transferred back to the submit machine.

• If the condor_starterversion is 7.6.0 or later, but thecondor_shadowversion is earlier than
7.6.0, then thecondor_starterwill attempt to send the command to thecondor_shadow, but
thecondor_shadowwill ignore the command. No files will be transferred, and thejob will be
placed on hold.

3.12.3 Configuring Condor for Multiple Platforms

A single, global configuration file may be used for all platforms in a Condor pool, with only
platform-specific settings placed in separate files. This greatly simplifies administration of a het-
erogeneous pool by allowing changes of platform-independent, global settings in one place, instead
of separately for each platform. This is made possible by treating theLOCAL_CONFIG_FILE
configuration variable as a list of files, instead of a single file. Of course, this only helps when using
a shared file system for the machines in the pool, so that multiple machines can actually share a
single set of configuration files.

With multiple platforms, put all platform-independentsettings (the vast majority) into the regular
condor_config file, which would be shared by all platforms. This global file would be the one
that is found with theCONDOR_CONFIGenvironment variable, the usercondor ’s home directory,
or /etc/condor/condor_config .

Then set theLOCAL_CONFIG_FILEconfiguration variable from that global configuration file
to specify both a platform-specific configuration file and optionally, a local, machine-specific con-
figuration file (this parameter is described in section 3.3.3on “Condor-wide Configuration File En-
tries”).

The order of file specification in theLOCAL_CONFIG_FILEconfiguration variable is impor-
tant, because settings in files at the beginning of the list are overridden if the same settings occur in
files later within the list. So, if specifying the platform-specific file and then the machine-specific
file, settings in the machine-specific file would override those in the platform-specific file (as is
likely desired).

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 404

Utilizing a Platform-Specific Configuration File

The name of platform-specific configuration files may be specified by using theARCHandOPSYS
configuration variables, as are defined automatically by Condor. For example, for 32-bit Intel Win-
dows 7 machines and 64-bit Intel Linux machines, the files ought to be named:

condor_config.INTEL.WINDOWS
condor_config.X86_64.LINUX

Then, assuming these files are in the directory defined by theETC configuration macro, and
machine-specific configuration files are in the same directory, named by each machine’s host name,
theLOCAL_CONFIG_FILE configuration macro should be:

LOCAL_CONFIG_FILE = $(ETC)/condor_config.$(ARCH).$(OP SYS), \
$(ETC)/$(HOSTNAME).local

Alternatively, when using AFS, an “@sys link” may be used to specify the platform-specific
configuration file, and let AFS resolve this link differentlyon different systems. For example, con-
sider a soft link namedcondor_config.platform that points tocondor_config.@sys .
In this case, the files might be named:

condor_config.i386_linux2
condor_config.platform -> condor_config.@sys

and theLOCAL_CONFIG_FILEconfiguration variable would be set to:

LOCAL_CONFIG_FILE = $(ETC)/condor_config.platform, \
$(ETC)/$(HOSTNAME).local

Platform-Specific Configuration File Settings

The configuration variables that are truly platform-specific are:

RELEASE_DIR Full path to to the installed Condor binaries. While the configuration files may
be shared among different platforms, the binaries certainly cannot. Therefore, maintain sep-
arate release directories for each platform in the pool. Seesection 3.3.3 on “Condor-wide
Configuration File Entries” for details.

MAIL The full path to the mail program. See section 3.3.3 on “Condor-wide Configuration File
Entries” for details.

CONSOLE_DEVICES Which devices in/dev should be treated as console devices. See sec-
tion 3.3.10 on “condor_startd Configuration File Entries” for details.

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 405

DAEMON_LIST Which daemons thecondor_mastershould start up. The reason this setting is
platform-specific is to distinguish thecondor_kbdd. It is needed on many Linux and Windows
machines, and it is not needed on other platforms. See section 3.3.9 on for details.

Reasonable defaults for all of these configuration variables will be found in the default con-
figuration files inside a given platform’s binary distribution (except theRELEASE_DIR, since
the location of the Condor binaries and libraries is installation specific). With multiple plat-
forms, use one of thecondor_config files from either runningcondor_configureor from
the<release_dir >/etc/examples/condor_config.generic file, take these settings
out, save them into a platform-specific file, and install the resulting platform-independent file as
the global configuration file. Then, find the same settings from the configuration files for any
other platforms to be set up, and put them in their own platform-specific files. Finally, set the
LOCAL_CONFIG_FILEconfiguration variable to point to the appropriate platform-specific file, as
described above.

Not even all of these configuration variables are necessarily going to be different. For example, if
an installed mail program understands the-soption in/usr/local/bin/mail on all platforms,
theMAIL macro may be set to that in the global configuration file, and not define it anywhere else.
For a pool with only Linux or Windows machines, theDAEMON_LISTwill be the same for each,
so there is no reason not to put that in the global configuration file.

Other Uses for Platform-Specific Configuration Files

It is certainly possible that an installation may want otherconfiguration variables to be platform-
specific as well. Perhaps a different policy is desired for one of the platforms. Perhaps different
people should get the e-mail about problems with the different platforms. There is nothing hard-
coded about any of this. What is shared and what should not shared is entirely configurable.

Since theLOCAL_CONFIG_FILE macro can be an arbitrary list of files, an installation can
even break up the global, platform-independent settings into separate files. In fact, the global config-
uration file might only contain a definition forLOCAL_CONFIG_FILE, and all other configuration
variables would be placed in separate files.

Different people may be given different permissions to change different Condor settings. For
example, if a user is to be able to change certain settings, but nothing else, those settings may
be placed in a file which was early in theLOCAL_CONFIG_FILE list, to give that user write
permission on that file, then include all the other files afterthat one. In this way, if the user was
trying to change settings she/he should not, they would simply be overridden.

This mechanism is quite flexible and powerful. For very specific configuration needs, they can
probably be met by using file permissions, theLOCAL_CONFIG_FILEconfiguration variable, and
imagination.

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 406

3.12.4 Full Installation of condor_compile

In order to take advantage of two major Condor features: checkpointing and remote system calls,
users of the Condor system need to relink their binaries. Programs that are not relinked for Condor
can run in Condor’s “vanilla” universe just fine, however, they cannot checkpoint and migrate, or
run on machines without a shared filesystem.

To relink your programs with Condor, we provide a special tool, condor_compile. As installed
by default,condor_compileworks with the following commands:gcc, g++ , g77, cc, acc, c89, CC,
f77, fort77, ld. On Solaris and Digital Unix,f90 is also supported. See thecondor_compile(1) man
page for details on usingcondor_compile.

However, you can makecondor_compilework transparently with all commands on your system
whatsoever, includingmake.

The basic idea here is to replace the system linker (ld) with the Condor linker. Then, when a
program is to be linked, the condor linker figures out whetherthis binary will be for Condor, or
for a normal binary. If it is to be a normal compile, the oldld is called. If this binary is to be
linked for condor, the script performs the necessary operations in order to prepare a binary that can
be used with condor. In order to differentiate between normal builds and condor builds, the user
simply placescondor_compilebefore their build command, which sets the appropriate environment
variable that lets the condor linker script know it needs to do its magic.

In order to perform this full installation ofcondor_compile, the following steps need to be taken:

1. Rename the system linker from ld to ld.real.

2. Copy the condor linker to the location of the previous ld.

3. Set the owner of the linker to root.

4. Set the permissions on the new linker to 755.

The actual commands that you must execute depend upon the system that you are on. The
location of the system linker (ld), is as follows:

Operating System Location of ld (ld-path)
Linux /usr/bin
Solaris 2.X /usr/ccs/bin
OSF/1 (Digital Unix) /usr/lib/cmplrs/cc

On these platforms, issue the following commands (as root),whereld-path is replaced by the
path to your system’sld.

mv /[ld-path]/ld /[ld-path]/ld.real
cp /usr/local/condor/lib/ld /[ld-path]/ld
chown root /[ld-path]/ld
chmod 755 /[ld-path]/ld

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 407

If you remove Condor from your system latter on, linking willcontinue to work, since the condor
linker will always default to compiling normal binaries andsimply call the real ld. In the interest of
simplicity, it is recommended that you reverse the above changes by moving your ld.real linker back
to it’s former position as ld, overwriting the condor linker.

NOTE: If you ever upgrade your operating system after performinga full installation ofcon-
dor_compile, you will probably have to re-do all the steps outlined above. Generally speaking, new
versions or patches of an operating system might replace thesystem ld binary, which would undo
the full installation ofcondor_compile.

3.12.5 Thecondor_kbdd

The Condor keyboard daemon (condor_kbdd) monitors X events on machines where the operating
system does not provide a way of monitoring the idle time of the keyboard or mouse. On UNIX
platforms, it is needed to detect USB keyboard activity but otherwise is not needed. On Windows
thecondor_kbddis the primary method of monitoring both keyboard and mouse idleness.

With the move of user sessions out of session 0 on Windows Vista, thecondor_startdservice is
no longer able to listen to keyboard and mouse events as all services run in session 0. As such, any
execute node will requirecondor_kbddto accurately monitor and report system idle time. This is
achieved by auto-starting thecondor_kbddwhenever a user logs into the system. The daemon will
run in an invisible window and should not be noticeable by theuser except for a listing in the task
manager. When the user logs out, the program is terminated byWindows. This change has been
made even to pre-Vista Windows versions because it adds the capability of monitoring keyboard
activity from multiple users.

To achieve the auto-start with user login, the Condor installer adds acondor_kbddentry to
the registry key at HKLM\Software\Microsoft\Windows\CurrentVersion\Run .
On 64bit versions of Vista and higher, the entry is actually placed in
HKLM\Software\Wow6432Node\Microsoft\Windows\Current Version\Run .
In instances where thecondor_kbddis unable to connect to thecondor_startdon Windows XP SP2
or higher, it is likely because an exception was not properlyadded to the Windows firewall.

On UNIX, great measures have been taken to make this daemon asrobust as possible, but the X
window system was not designed to facilitate such a need, andthus is less then optimal on machines
where many users log in and out on the console frequently.

In order to work with X authority, the system by which X authorizes processes to connect to X
servers, thecondor_kbddneeds to run with super user privileges. Currently, the daemon assumes
that X uses theHOMEenvironment variable in order to locate a file named.Xauthority , which
contains keys necessary to connect to an X server. The keyboard daemon attempts to set this envi-
ronment variable to various users home directories in orderto gain a connection to the X server and
monitor events. This may fail to work on your system, if you are using a non-standard approach.
If the keyboard daemon is not allowed to attach to the X server, the state of a machine may be
incorrectly set to idle when a user is, in fact, using the machine.

In some environments, thecondor_kbddwill not be able to connect to the X server because

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 408

the user currently logged into the system keeps their authentication token for using the X server
in a place that no local user on the current machine can get to.This may be the case for AFS
where the user’s.Xauthority file is in an AFS home directory. There may also be cases where
the condor_kbddmay not be run with super user privileges because of political reasons, but it is
still desired to be able to monitor X activity. In these cases, change the XDM configuration in
order to start up thecondor_kbddwith the permissions of the currently logging in user. Although
your situation may differ, if you are running X11R6.3, you will probably want to edit the files in
/usr/X11R6/lib/X11/xdm . The.xsession file should have the keyboard daemon start up
at the end, and the.Xreset file should have the keyboard daemon shut down. The-l option can
be used to write the daemon’s log file to a place where the user running the daemon has permission
to write a file. We recommend something akin to$HOME/.kbdd.log , since this is a place where
every user can write, and it will not get in the way. The-pidfile and-k options allow for easy shut
down of the daemon by storing the process id in a file. It will benecessary to add lines to the XDM
configuration that look something like:

condor_kbdd -l $HOME/.kbdd.log -pidfile $HOME/.kbdd.pid

This will start thecondor_kbddas the user who is currently logging in and write the log to a
file in the directory$HOME/.kbdd.log/ . Also, this will save the process id of the daemon to
˜/.kbdd.pid , so that when the user logs out, XDM can do:

condor_kbdd -k $HOME/.kbdd.pid

This will shut down the process recorded in˜/.kbdd.pid and exit.

To see how well the keyboard daemon is working, review the logfor the daemon and look for
successful connections to the X server. If there are none, the condor_kbddis unable to connect to
the machine’s X server.

3.12.6 Configuring The CondorView Server

The CondorView server is an alternate use of thecondor_collectorthat logs information on disk,
providing a persistent, historical database of pool state.This includes machine state, as well as the
state of jobs submitted by users.

An existingcondor_collectormay act as the CondorView collector through configuration. This
is the simplest situation, because the only change needed isto turn on the logging of historical infor-
mation. The alternative of configuring a newcondor_collectorto act as the CondorView collector
is slightly more complicated, while it offers the advantagethat the same CondorView collector may
be used for several pools as desired, to aggregate information into one place.

The following sections describe how to configure a machine torun a CondorView server and to
configure a pool to send updates to it.

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 409

Configuring a Machine to be a CondorView Server

To configure the CondorView collector, a few configuration variables are added or modified for
thecondor_collectorchosen to act as the CondorView collector. These configuration variables are
described in section 3.3.16 on page 235. Here are brief explanations of the entries that must be
customized:

POOL_HISTORY_DIR The directory where historical data will be stored. This directory must be
writable by whatever user the CondorView collector is running as (usually the usercondor).
There is a configurable limit to the maximum space required for all the files created by the
CondorView server called (POOL_HISTORY_MAX_STORAGE).

NOTE: This directory should be separate and different from thespool or log directories
already set up for Condor. There are a few problems putting these files into either of those
directories.

KEEP_POOL_HISTORY A boolean value that determines if the CondorView collectorshould
store the historical information. It isFalse by default, and must be specified asTrue in
the local configuration file to enable data collection.

Once these settings are in place in the configuration file for the CondorView server host, create
the directory specified inPOOL_HISTORY_DIRand make it writable by the user the CondorView
collector is running as. This is the same user that owns theCollectorLog file in the log direc-
tory. The user is usuallycondor .

If using the existingcondor_collectoras the CondorView collector, no further configuration is
needed. To run a differentcondor_collectorto act as the CondorView collector, configure Condor
to automatically start it.

If using a separate host for the CondorView collector, to start it, add the valueCOLLECTORto
DAEMON_LIST, and restart Condor on that host. To run the CondorView collector on the same host
as anothercondor_collector, ensure that the twocondor_collectordaemons use different network
ports. Here is an example configuration in which the maincondor_collectorand the CondorView
collector are started up by the samecondor_masterdaemon on the same machine. In this example,
the CondorView collector uses port 12345.

VIEW_SERVER = $(COLLECTOR)
VIEW_SERVER_ARGS = -f -p 12345
VIEW_SERVER_ENVIRONMENT = "_CONDOR_COLLECTOR_LOG=$(LOG)/ViewServerLog"
DAEMON_LIST = MASTER, NEGOTIATOR, COLLECTOR, VIEW_SERVER

For this change to take effect, restart thecondor_masteron this host. This may be accomplished
with thecondor_restartcommand, if the command is run with administrator access to the pool.

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 410

Configuring a Pool to Report to the CondorView Server

For the CondorView server to function, configure the existing collector to forward ClassAd updates
to it. This configuration is only necessary if the CondorViewcollector is a different collector from
the existingcondor_collectorfor the pool. All the Condor daemons in the pool send their ClassAd
updates to the regularcondor_collector, which in turn will forward them on to the CondorView
server.

Define the following configuration variable:

CONDOR_VIEW_HOST = full.hostname[:portnumber]

wherefull.hostname is the full host name of the machine running the CondorView collector.
The full host name is optionally followed by a colon and port number. This is only necessary if the
CondorView collector is configured to use a port number otherthan the default.

Place this setting in the configuration file used by the existingcondor_collector. It is acceptable
to place it in the global configuration file. The CondorView collector will ignore this setting (as it
should) as it notices that it is being asked to forward ClassAds to itself.

Once the CondorView server is running with this change, senda condor_reconfigcommand to
the maincondor_collectorfor the change to take effect, so it will begin forwarding updates. A query
to the CondorView collector will verify that it is working. Aquery example:

condor_status -pool condor.view.host[:portnumber]

A condor_collectormay also be configured to report to multiple CondorView servers. The con-
figuration variableCONDOR_VIEW_HOSTcan be given as a list of CondorView servers separated
by commas and/or spaces.

The following demonstrates an example configuration for twoCondorView servers, where
both CondorView servers (and thecondor_collector) are running on the same machine, local-
host.localdomain:

VIEWSERV01 = $(COLLECTOR)
VIEWSERV01_ARGS = -f -p 12345 -local-name VIEWSERV01
VIEWSERV01_ENVIRONMENT = "_CONDOR_COLLECTOR_LOG=$(LOG)/ViewServerLog01"
VIEWSERV01.POOL_HISTORY_DIR = $(LOCAL_DIR)/poolhist01
VIEWSERV01.KEEP_POOL_HISTORY = TRUE
VIEWSERV01.CONDOR_VIEW_HOST =

VIEWSERV02 = $(COLLECTOR)
VIEWSERV02_ARGS = -f -p 24680 -local-name VIEWSERV02
VIEWSERV02_ENVIRONMENT = "_CONDOR_COLLECTOR_LOG=$(LOG)/ViewServerLog02"
VIEWSERV02.POOL_HISTORY_DIR = $(LOCAL_DIR)/poolhist02
VIEWSERV02.KEEP_POOL_HISTORY = TRUE
VIEWSERV02.CONDOR_VIEW_HOST =

CONDOR_VIEW_HOST = localhost.localdomain:12345 localho st.localdomain:24680
DAEMON_LIST = $(DAEMON_LIST) VIEWSERV01 VIEWSERV02

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 411

Note that the value ofCONDOR_VIEW_HOSTfor VIEWSERV01 and VIEWSERV02 is unset,
to prevent them from inheriting the global value ofCONDOR_VIEW_HOSTand attempting to report
to themselves or each other. If the CondorView servers are running on different machines where
there is no global value forCONDOR_VIEW_HOST, this precaution is not required.

3.12.7 Running Condor Jobs within a Virtual Machine

Condor jobs are formed from executables that are compiled toexecute on specific platforms. This in
turn restricts the machines within a Condor pool where a job may be executed. A Condor job may
now be executed on a virtual machine system running VMware, Xen, or KVM. This allows Windows
executables to run on a Linux machine, and Linux executablesto run on a Windows machine.

In older versions of Condor, other parts of the system were also referred to asvirtual machines,
but in all cases, those are now known asslots. A virtual machine here describes the environment in
which the outside operating system (called the host) emulates an inner operating system (called the
inner virtual machine), such that an executable appears to run directly on the inner virtual machine.
In other parts of Condor, aslot (formerly known asvirtual machine) refers to the multiple CPUs of
an SMP machine. Also, be careful not to confuse the virtual machines discussed here with the Java
Virtual Machine (JVM) referenced in other parts of this manual.

Condor has the flexibility to run a job on either the host or theinner virtual machine, hence
two platforms appear to exist on a single machine. Since two platforms are an illusion, Condor
understands the illusion, allowing a Condor job to be execute on only one at a time.

Installation and Configuration

Condor must be separately installed, separately configured, and separately running on both the host
and the inner virtual machine.

The configuration for the host specifiesVMP_VM_LIST. This specifies host names or IP ad-
dresses of all inner virtual machines running on this host. An example configuration on the host
machine:

VMP_VM_LIST = vmware1.domain.com, vmware2.domain.com

The configuration for each separate inner virtual machine specifiesVMP_HOST_MACHINE.
This specifies the host for the inner virtual machine. An example configuration on an inner virtual
machine:

VMP_HOST_MACHINE = host.domain.com

Given this configuration, as well as communication between Condor daemons running on the
host and on the inner virtual machine, the policy for when jobs may execute is set by Condor. While

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 412

the host is executing a Condor job, theSTARTpolicy on the inner virtual machine is overridden
with False , so no Condor jobs will be started on the inner virtual machine. Conversely, while the
inner virtual machine is executing a Condor job, theSTARTpolicy on the host is overridden with
False , so no Condor jobs will be started on the host.

The inner virtual machine is further provided with a new syntax for referring to the machine
ClassAd attributes of its host. Any machine ClassAd attribute with a prefix of the stringHOST_
explicitly refers to the host’s ClassAd attributes. TheSTARTpolicy on the inner virtual machine
ought to use this syntax to avoid starting jobs when its host is too busy processing other items. An
example configuration forSTARTon an inner virtual machine:

START = ((KeyboardIdle > 150) && (HOST_KeyboardIdle > 150) \
&& (LoadAvg <= 0.3) && (HOST_TotalLoadAvg <= 0.3))

3.12.8 Configuring Thecondor_startdfor SMP Machines

This section describes how to configure thecondor_startdfor SMP (Symmetric Multi-Processor)
machines. Machines with more than one CPU may be configured torun more than one job at a time.
As always, owners of the resources have great flexibility in defining the policy under which multiple
jobs may run, suspend, vacate, etc.

How Shared Resources are Represented to Condor

The way SMP machines are represented to the Condor system is that the shared resources are broken
up into individualslots. Each slot can be matched and claimed by users. Each slot is represented
by an individual ClassAd (see the ClassAd reference, section 4.1, for details). In this way, each
SMP machine will appear to the Condor system as a collection of separate slots. As an example, an
SMP machine named vulture.cs.wisc.edu would appear to Condor as the multiple machines, named
slot1@vulture.cs.wisc.edu, slot2@vulture.cs.wisc.edu, slot3@vulture.cs.wisc.edu, and so on.

The way that thecondor_startdbreaks up the shared system resources into the different slots
is configurable. All shared system resources (like RAM, diskspace, swap space, etc.) can either
be divided evenly among all the slots, with each CPU getting its own slot, or you can define your
ownslot types, so that resources can be unevenly partitioned. Regardlessof the partitioning scheme
used, it is important to remember the goal is to create a representative slot ClassAd, to be used for
matchmaking with jobs. Condor does not directly enforce slot shared resource allocations, and jobs
are free to oversubscribe to shared resources.

Consider an example where two slots are each defined with 50%of available RAM. The resultant
ClassAd for each slot will advertise one half the available RAM. Users may submit jobs with RAM
requirements that match these slots. However, jobs run on either slot are free to consume more than
50%of available RAM. Condor will not directly enforce a RAM utilization limit on either slot. If
a shared resource enforcement capability is needed, it is possible to write a Startd policy that will
evict a job that oversubscribes to shared resources, see section 3.12.8.

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 413

The following section gives details on how to configure Condor to divide the resources on an
SMP machine into separate slots.

Dividing System Resources in SMP Machines

This section describes the settings that allow you to define your own slot types and to control how
many slots of each type are reported to Condor.

There are two main ways to go about partitioning an SMP machine:

Define your own slot types.By defining your own types, you can specify what fraction of shared
system resources (CPU, RAM, swap space and disk space) go to each slot. Once you define
your own types, you can control how many of each type are reported at any given time.

Evenly divide all resources. If you do not define your own types, thecondor_startdwill automat-
ically partition your machine into slots for you. It will do so by placing a single CPU in each
slot, and evenly dividing all shared resources among the slots. With this default partitioning,
you only specify how many slots are reported at a time. By default, all slots are reported to
Condor.

The number of each type being reported can be changed at run-time, by issuing a reconfiguration
command to thecondor_startddaemon (sending a SIGHUP or usingcondor_reconfig). However,
the definitions for the types themselves cannot be changed with reconfiguration. If you change any
slot type definitions, you must usecondor_restart

condor_restart -startd

for that change to take effect.

Defining Slot Types

To define your own slot types, add configuration file parameters that list how much of each system
resource you want in the given slot type. Do this by defining configuration variables of the form
SLOT_TYPE_<N>. The<N> represents an integer (for example,SLOT_TYPE_1), which specifies
the slot type defined. Note that there may be multiple slots ofeach type. The number created is
configured withNUM_SLOTS_TYPE_<N>as described later in this section.

A type describes what share of the total system resources a given slot has available to it.

The type can be defined by:

• A simple fraction, such as 1/4

• A simple percentage, such as 25%

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 414

• A comma-separated list of attributes, with a percentage, fraction, numerical value, orauto
for each one.

• A comma-separated list including a blanket value that serves as a default for any resources
not explicitly specified in the list.

A simple fraction or percentage causes an allocation of the total system resources. This includes the
number of CPUs. A comma-separated list allows a fine-tuning of the amounts for specific attributes.

The attributes that specify the number of CPUs and the total amount of RAM in the SMP ma-
chine do not change. For these attributes, specify either absolute values or percentages of the total
available amount (orauto). For example, in a machine with 128 Mbytes of RAM, all the following
definitions result in the same allocation amount.

mem=64
mem=1/2
mem=50%
mem=auto

Other attributes are dynamic, such as disk space and swap space. For these, specify a percentage
or fraction of the total value that is allocated to each slot,instead of specifying absolute values. As
the total values of these resources change on your machine, each slot will take its fraction of the
total and report that as its available amount.

The disk space allocated to each slot is taken from the disk partition containing the slots execute
directory (configured withEXECUTE or SLOT<N>_EXECUTE). If every slot is in a different
partition, then each one may be defined with up to 100%for its disk share. If some slots are in the
same partition, then their total is not allowed to exceed 100%.

The four attribute names are case insensitive when defining slot types. The first letter of the
attribute name distinguishes between the attributes. The four attributes, with several examples of
acceptable names for each are

• Cpus, C, c, cpu

• ram, RAM, MEMORY, memory, Mem, R, r, M, m

• disk, Disk, D, d

• swap, SWAP, S, s, VirtualMemory, V, v

As an example, consider a host of 4 CPUs and 256 megs of RAM. Here are valid example slot
type definitions. Types 1-3 are all equivalent to each other,as are types 4-6. Note that in a real
configuration, you would not use all of these slot types together because they add up to more than
100%of the various system resources. Also note that in a realconfiguration, you would need to also
defineNUM_SLOTS_TYPE_<N>for each slot type.

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 415

SLOT_TYPE_1 = cpus=2, ram=128, swap=25%, disk=1/2

SLOT_TYPE_2 = cpus=1/2, memory=128, virt=25%, disk=50%

SLOT_TYPE_3 = c=1/2, m=50%, v=1/4, disk=1/2

SLOT_TYPE_4 = c=25%, m=64, v=1/4, d=25%

SLOT_TYPE_5 = 25%

SLOT_TYPE_6 = 1/4

The default value for each resource share isauto . The share may also be explicitly set toauto .
All slots with the valueauto for a given type of resource will evenly divide whatever remains after
subtracting out whatever was explicitly allocated in otherslot definitions. For example, if one slot
is defined to use 10%of the memory and the rest define it asauto (or leave it undefined), then the
rest of the slots will evenly divide 90%of the memory betweenthemselves.

In both of the following examples, the disk share is set toauto , cpus is 1, and everything else
is 50%:

SLOT_TYPE_1 = cpus=1, ram=1/2, swap=50%

SLOT_TYPE_1 = cpus=1, disk=auto, 50%

The number of slots of each type is set with the configuration variableNUM_SLOTS_TYPE_<N>
, where N is the type as given in theSLOT_TYPE_<N>variable.

Note that it is possible to set the configuration variables such that they specify an impossible
configuration. If this occurs, thecondor_startddaemon fails after writing a message to its log
attempting to indicate the configuration requirements thatit could not implement.

Evenly Divided Resources

If you are not defining your own slot types, then all resourcesare divided equally among the slots.
The number of slots within the SMP machine is the only attribute that needs to be defined. Its
definition is accomplished by setting the configuration variableNUM_SLOTSto the integer number
of slots desired. If variableNUM_SLOTSis not defined, it defaults to the number of CPUs within
the SMP machine. You cannot useNUM_SLOTSto make Condor advertise more slots than there are
CPUs on the machine. To do that, useNUM_CPUS.

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 416

Configuring Startd Policy for SMP Machines

Section 3.5 details the Startd Policy Configuration. This section continues the discussion with re-
spect to SMP machines.

Each slot within an SMP machine is treated as an independent machine, each with its own view
of its machine state. There is a single set of policy expressions for the SMP machine as a whole.
This policy may consider the slot state(s) in its expressions. This makes some policies easy to set,
but it makes other policies difficult or impossible to set.

An easy policy to set configures how many of the slots notice console or tty activity on the
SMP as a whole. Slots that are not configured to notice any activity will report ConsoleIdle and
KeyboardIdle times from when thecondor_startddaemon was started, (plus a configurable number
of seconds). With this, you can set up a multiple CPU machine with the default policy settings plus
add that the keyboard and console noticed by only one slot. Assuming a reasonable load average
(see section 3.12.8 below on “Load Average for SMP Machines”), only the one slot will suspend
or vacate its job when the owner starts typing at their machine again. The rest of the slots could be
matched with jobs and leave them running, even while the userwas interactively using the machine.
If the default policy is used, all slots notice tty and console activity and currently running jobs would
suspend or preempt.

This example policy is controlled with the following configuration variables.

• SLOTS_CONNECTED_TO_CONSOLE

• SLOTS_CONNECTED_TO_KEYBOARD

• DISCONNECTED_KEYBOARD_IDLE_BOOST

These configuration variables are fully described in section 3.3.10 on page 201 which lists all
the configuration file settings for thecondor_startd.

The configuration of slots allows each slot to advertise its own machine ClassAd. Yet, there is
only one set of policy expressions for the SMP machine as a whole. This makes the implementation
of certain types of policies impossible. While evaluating the state of one slot (within the SMP
machine), the state of other slots (again within the SMP machine) are not available. Decisions for
one slot cannot be based on what other machines within the SMPare doing.

Specifically, the evaluation of a slot policy expression works in the following way.

1. The configuration file specifies policy expressions that are shared among all of the slots on the
SMP machine.

2. Each slot reads the configuration file and sets up its own machine ClassAd.

3. Each slot is now separate from the others. It has a different state, a different machine ClassAd,
and if there is a job running, a separate job ad. Each slot periodically evaluates the policy
expressions, changing its own state as necessary. This occurs independently of the other

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 417

slots on the machine. So, if thecondor_startddaemon is evaluating a policy expression on a
specific slot, and the policy expression refers toProcID , Owner, or any attribute from a job
ad, italwaysrefers to the ClassAd of the job running on the specific slot.

To set a different policy for the slots within an SMP machine,a (SUSPEND) policy will be of
the form

SUSPEND = ((SlotID == 1) && (PolicyForSlot1)) || \
((SlotID == 2) && (PolicyForSlot2))

where(PolicyForSlot1) and(PolicyForSlot2) are the desired expressions for each slot.

Load Average for SMP Machines

Most operating systems define the load average for an SMP machine as the total load on all CPUs.
For example, if you have a 4-CPU machine with 3 CPU-bound processes running at the same time,
the load would be 3.0 In Condor, we maintain this view of the total load average and publish it in all
resource ClassAds asTotalLoadAvg .

Condor also provides a per-CPU load average for SMP machines. This nicely represents the
model that each node on an SMP is a slot, separate from the other nodes. All of the default, single-
CPU policy expressions can be used directly on SMP machines,without modification, since the
LoadAvg andCondorLoadAvg attributes are the per-slot versions, not the total, SMP-wide ver-
sions.

The per-CPU load average on SMP machines is a Condor invention. No system call exists to
ask the operating system for this value. Condor already computes the load average generated by
Condor on each slot. It does this by close monitoring of all processes spawned by any of the Condor
daemons, even ones that are orphaned and then inherited byinit. This Condor load average per
slot is reported as the attributeCondorLoadAvg in all resource ClassAds, and the total Condor
load average for the entire machine is reported asTotalCondorLoadAvg . The total, system-
wide load average for the entire machine is reported asTotalLoadAvg . Basically, Condor walks
through all the slots and assigns out portions of the total load average to each one. First, Condor
assigns the known Condor load average to each node that is generating load. If there’s any load
average left in the total system load, it is considered an owner load. Any slots Condor believes are in
the Owner state (like ones that have keyboard activity), arethe first to get assigned this owner load.
Condor hands out owner load in increments of at most 1.0, so generally speaking, no slot has a load
average above 1.0. If Condor runs out of total load average before it runs out of virtual machines,
all the remaining machines believe that they have no load average at all. If, instead, Condor runs out
of slots and it still has owner load remaining, Condor startsassigning that load to Condor nodes as
well, giving individual nodes with a load average higher than 1.0.

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 418

Debug logging in the SMP Startd

This section describes how thecondor_startddaemon handles its debugging messages for SMP
machines. In general, a given log message will either be something that is machine-wide (like
reporting the total system load average), or it will be specific to a given slot. Any log entrees
specific to a slot have an extra header printed out in the entry: slot#: . So, for example, here’s the
output about system resources that are being gathered (withD_FULLDEBUGandD_LOADturned
on) on a 2-CPU machine with no Condor activity, and the keyboard connected to both slots:

11/25 18:15 Swap space: 131064
11/25 18:15 number of Kbytes available for (/home/condor/e xecute): 1345063
11/25 18:15 Looking up RESERVED_DISK parameter
11/25 18:15 Reserving 5120 Kbytes for file system
11/25 18:15 Disk space: 1339943
11/25 18:15 Load avg: 0.340000 0.800000 1.170000
11/25 18:15 Idle Time: user= 0 , console= 4 seconds
11/25 18:15 SystemLoad: 0.340 TotalCondorLoad: 0.000 Tota lOwnerLoad: 0.340
11/25 18:15 slot1: Idle time: Keyboard: 0 Console: 4
11/25 18:15 slot1: SystemLoad: 0.340 CondorLoad: 0.000 Own erLoad: 0.340
11/25 18:15 slot2: Idle time: Keyboard: 0 Console: 4
11/25 18:15 slot2: SystemLoad: 0.000 CondorLoad: 0.000 Own erLoad: 0.000
11/25 18:15 slot1: State: Owner Activity: Idle
11/25 18:15 slot2: State: Owner Activity: Idle

If, on the other hand, this machine only had one slot connected to the keyboard and console, and
the other slot was running a job, it might look something likethis:

11/25 18:19 Load avg: 1.250000 0.910000 1.090000
11/25 18:19 Idle Time: user= 0 , console= 0 seconds
11/25 18:19 SystemLoad: 1.250 TotalCondorLoad: 0.996 Tota lOwnerLoad: 0.254
11/25 18:19 slot1: Idle time: Keyboard: 0 Console: 0
11/25 18:19 slot1: SystemLoad: 0.254 CondorLoad: 0.000 Own erLoad: 0.254
11/25 18:19 slot2: Idle time: Keyboard: 1496 Console: 1496
11/25 18:19 slot2: SystemLoad: 0.996 CondorLoad: 0.996 Own erLoad: 0.000
11/25 18:19 slot1: State: Owner Activity: Idle
11/25 18:19 slot2: State: Claimed Activity: Busy

As you can see, shared system resources are printed without the header (like total swap space),
and slot-specific messages (like the load average or state ofeach slot) get the special header ap-
pended.

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 419

Configuring STARTD_ATTRS on a per-slot basis

TheSTARTD_ATTRS(and legacySTARTD_EXPRS) settings can be configured on a per-slot basis.
Thecondor_startddaemon builds the list of items to advertise by combining thelists in this order:

1. STARTD_ATTRS

2. STARTD_EXPRS

3. SLOT<N>_STARTD_ATTRS

4. SLOT<N>_STARTD_EXPRS

For example, consider the following configuration:

STARTD_ATTRS = favorite_color, favorite_season
SLOT1_STARTD_ATTRS = favorite_movie
SLOT2_STARTD_ATTRS = favorite_song

This will result in thecondor_startdClassAd for slot1 defining values forfavorite_color ,
favorite_season , andfavorite_movie . slot2 will have values forfavorite_color ,
favorite_season , andfavorite_song .

Attributes themselves in theSTARTD_ATTRSlist can also be defined on a per-slot basis. Here
is another example:

favorite_color = "blue"
favorite_season = "spring"
STARTD_ATTRS = favorite_color, favorite_season
SLOT2_favorite_color = "green"
SLOT3_favorite_season = "summer"

For this example, thecondor_startdClassAds are

slot1:

favorite_color = "blue"
favorite_season = "spring"

slot2:

favorite_color = "green"
favorite_season = "spring"

slot3:

favorite_color = "blue"
favorite_season = "summer"

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 420

Dynamic condor_startdProvisioning: Dynamic Slots

Dynamic provisioning, also referred to as a partitionablecondor_startdor as dynamic slots, allows
users to mark slots as partitionable. This means that more than one job can occupy a single slot at
any one time. Typically, slots have a fixed set of resources, including the CPUs, memory and disk
space. By partitioning the slot, these resources become more flexible and able to be better utilized.

Dynamic provisioning provides powerful configuration possibilities, and so should be used with
care. Specifically, while preemption occurs for each individual dynamic slot, it cannot occur directly
for the partitionable slot, or for groups of dynamic slots. For example, for a large number of jobs
requiring 1GB of memory, a pool might be split up into 1GB dynamic slots. In this instance a job
requiring 2GB of memory will be starved and unable to run. A partial solution to this problem is
provided bycondor_defrag, which is discussed in section 3.12.8.

Here is an example that demonstrates how more than one job canbe matched to a single slot
using dynamic provisioning. In this example, slot1 has the following resources:

cpu=10

memory=10240

disk=BIG

Assume that JobA is allocated to this slot. JobA includes thefollowing requirements:

cpu=3

memory=1024

disk=10240

The portion of the slot that is utilized is referred to as Slot1.1, and after allocation, the slot advertises
that it has the following resources still available:

cpu=7

memory=9216

disk=BIG-10240

As each new job is allocated to Slot1, it breaks into Slot1.1,Slot1.2, etc., until the entire set of
available resources have been consumed by jobs.

To enable dynamic provisioning, set theSLOT_TYPE_<N>_PARTITIONABLEconfiguration
variable toTrue . The stringNwithin the configuration variable name is the slot number.

In a pool using dynamic provisioning, jobs can have extra, and desired, resources specified in
the submit description file:

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 421

request_cpus

request_memory

request_disk (in kilobytes)

This example shows a portion of the job submit description file for use when submitting a job to
a pool with dynamic provisioning.

universe = vanilla

request_cpus = 3
request_memory = 1024
request_disk = 10240

queue

For each type of slot, the original, partitionable slot and the new smaller, dynamic slots, an
attribute is added to identify it. The original slot, as defined at page 976, will have an attribute
stating

PartitionableSlot = True

and the dynamic slots will have an attribute, as defined at page 971,

DynamicSlot = True

These attributes may be used in aSTARTexpression for the purposes of creating detailed policies.

A partitionable slot will always appear as though it is not running a job. It will eventually show as
having no available resources, which will prevent further matching to new jobs. Because it has been
effectively broken up into smaller slots, these will show asrunning jobs directly. These dynamic
slots can also be preempted in the same way as nonpartitionedslots.

Defragmenting Dynamic Slots

When partitionable slots are used, some attention must be given to the problem of the starvation
of large jobs due to the fragmentation of resources. The problem is that over time the machine
resources may become partitioned into slots suitable for running small jobs. If a sufficient number
of these slots do not happen to become idle at the same time on amachine, then a large job will not
be able to claim that machine, even if the large job has a better priority than the small jobs.

One way of addressing the partitionable slot fragmentationproblem is to periodically drain all
jobs from fragmented machines so that they become defragmented. Thecondor_defragdaemon

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 422

implements a configurable policy for doing that. To use this daemon,DEFRAGmust be added to
DAEMON_LIST, and the defragmentation policy must be configured. Typically, only one instance
of the condor_defragdaemon would be run per pool. It is a lightweight daemon that should not
require a lot of system resources.

Here is an example configuration that puts thecondor_defragdaemon to work:

DAEMON_LIST = $(DAEMON_LIST) DEFRAG
DEFRAG_INTERVAL = 3600
DEFRAG_DRAINING_MACHINES_PER_HOUR = 1.0
DEFRAG_MAX_WHOLE_MACHINES = 20
DEFRAG_MAX_CONCURRENT_DRAINING = 10

This example policy tellscondor_defragto initiate draining jobs from 1 machine per hour, but to
avoid initiating new draining if there are 20 completely defragmented machines or 10 machines in a
draining state. A full description of each configuration variable used by thecondor_defragdaemon
may be found in section 3.3.37.

By default, when a machine is drained, existing jobs are gracefully evicted. This means that
each job will be allowed to use the remaining time promised toit by MaxJobRetirementTime .
If the job has not finished when the retirement time runs out, the job will be killed with a soft kill
signal, so that it has an opportunity to save a checkpoint (ifthe job supports this). No new jobs will
be allowed to start while the machine is draining. To reduce unused time on the machine caused
by some jobs having longer retirement time than others, the eviction of jobs with shorter retirement
time is delayed until the job with the longest retirement time needs to be evicted.

There is a trade off between reduced starvation and throughput. Frequent draining of machines
reduces the chance of starvation of large jobs. However, frequent draining reduces total throughput.
Some of the machine’s resources may go unused during draining, if some jobs finish before others.
If jobs that cannot produce checkpoints are killed because they run past the end of their retirement
time during draining, this also adds to the cost of draining.

To help gauge the costs of draining, thecondor_startdadvertises the accumulated time that
was unused due to draining and the time spent by jobs that werekilled due to draining. These
are advertised respectively in the attributesTotalMachineDrainingUnclaimedTime and
TotalMachineDrainingBadput . The condor_defragdaemon averages these values across
the pool and advertises the result in its daemon ClassAd in the attributesAvgDrainingBadput
andAvgDrainingUnclaimed . Details of all attributes published by thecondor_defragdaemon
are described in section 11.

The following command may be used to view thecondor_defragdaemon ClassAd:

condor_status -l -any -constraint 'MyType == "Defrag"'

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 423

3.12.9 Condor’s Dedicated Scheduling

The dedicated scheduler is a part of thecondor_scheddthat handles the scheduling of parallel jobs
that require more than one machine concurrently running perjob. MPI applications are a common
use for the dedicated scheduler, but parallel applicationswhich do not require MPI can also be run
with the dedicated scheduler. All jobs which use the parallel universe are routed to the dedicated
scheduler within thecondor_scheddthey were submitted to. A default Condor installation does
not configure a dedicated scheduler; the administrator mustdesignate one or morecondor_schedd
daemons to perform as dedicated scheduler.

Selecting and Setting Up a Dedicated Scheduler

We recommend that you select a single machine within a Condorpool to act as the dedicated sched-
uler. This becomes the machine from upon which all users submit their parallel universe jobs. The
perfect choice for the dedicated scheduler is the single, front-end machine for a dedicated cluster of
compute nodes. For the pool without an obvious choice for a submit machine, choose a machine that
all users can log into, as well as one that is likely to be up andrunning all the time. All of Condor’s
other resource requirements for a submit machine apply to this machine, such as having enough disk
space in the spool directory to hold jobs. See section 3.2.2 on page 136 for details on these issues.

Configuration Examples for Dedicated Resources

Each machine may have its own policy for the execution of jobs. This policy is set by configuration.
Each machine with aspects of its configuration that are dedicated identifies the dedicated scheduler.
And, the ClassAd representing a job to be executed on one or more of these dedicated machines
includes an identifying attribute. An example configuration file with the following various policy
settings is/etc/condor_config.local.dedicated.resource .

Each dedicated machine defines the configuration variableDedicatedScheduler , which
identifies the dedicated scheduler it is managed by. The local configuration file for any dedicated
resource contains a modified form of

DedicatedScheduler = "DedicatedScheduler@full.host.na me"
STARTD_ATTRS = $(STARTD_ATTRS), DedicatedScheduler

Substitute the host name of the dedicated scheduler machinefor the string
"full.host.name ".

If running personal Condor, the name of the scheduler includes the user name it was started as,
so the configuration appears as:

DedicatedScheduler = "DedicatedScheduler@username@ful l.host.name"
STARTD_ATTRS = $(STARTD_ATTRS), DedicatedScheduler

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 424

All dedicated resources must have policy expressions whichallow for jobs to always run, but not
be preempted. The resource must also be configured to prefer jobs from the dedicated scheduler over
all other jobs. Therefore, configuration gives the dedicated scheduler of choice the highest rank. It is
worth noting that Condor puts no other requirements on a resource for it to be considered dedicated.

Job ClassAds from the dedicated scheduler contain the attributeScheduler . The attribute is
defined by a string of the form

Scheduler = "DedicatedScheduler@full.host.name"

The host name of the dedicated scheduler substitutes for thestringfull.host.name .

Different resources in the pool may have different dedicated policies by varying the local con-
figuration.

Policy Scenario: Machine Runs Only Jobs That Require Dedicated ResourcesOne possible
scenario for the use of a dedicated resource is to only run jobs that require the dedicated
resource. To enact this policy, the configure with the following expressions:

START = Scheduler =?= $(DedicatedScheduler)
SUSPEND = False
CONTINUE = True
PREEMPT = False
KILL = False
WANT_SUSPEND = False
WANT_VACATE = False
RANK = Scheduler =?= $(DedicatedScheduler)

TheSTART expression specifies that a job with theScheduler attribute must match the
string correspondingDedicatedScheduler attribute in the machine ClassAd. TheRANK
expression specifies that this same job (with theScheduler attribute) has the highest rank.
This prevents other jobs from preempting it based on user priorities. The rest of the ex-
pressions disable all of thecondor_startddaemon’s regular policies for evicting jobs when
keyboard and CPU activity is discovered on the machine.

Policy Scenario: Run Both Jobs That Do and Do Not Require Dedicated ResourcesWhile the
first example works nicely for jobs requiring dedicated resources, it can lead to poor utilization
of the dedicated machines. A more sophisticated strategy allows the machines to run other
jobs, when no jobs that require dedicated resources exist. The machine is configured to prefer
jobs that require dedicated resources, but not prevent others from running.

To implement this, configure the machine as a dedicated resource (as above) modifying only
theSTARTexpression:

START = True

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 425

Policy Scenario: Adding Desk-Top Resources To The MixA third policy example allows all
jobs. These desk-top machines use a preexistingSTARTexpression that takes the machine
owner’s usage into account for some jobs. The machine does not preempt jobs that must
run on dedicated resources, while it will preempt other jobsbased on a previously set policy.
So, the default pool policy is used for starting and stoppingjobs, while jobs that require a
dedicated resource always start and are not preempted.

The START, SUSPEND, PREEMPT, andRANKpolicies are set in the global configuration.
Locally, the configuration is modified to this hybrid policy by adding a second case.

SUSPEND = Scheduler =!= $(DedicatedScheduler) && ($(SUSPE ND))
PREEMPT = Scheduler =!= $(DedicatedScheduler) && ($(PREEM PT))
RANK_FACTOR = 1000000
RANK = (Scheduler =?= $(DedicatedScheduler) * $(RANK_FACT OR)) \

+ $(RANK)
START = (Scheduler =?= $(DedicatedScheduler)) || ($(START))

DefineRANK_FACTORto be a larger value than the maximum value possible for the existing
rank expression.RANK is just a floating point value, so there is no harm in having a value
that is very large.

Policy Scenario: Parallel Scheduling GroupsIn some parallel environments, machines are di-
vided into groups, and jobs should not cross groups of machines – that is, all the nodes of
a parallel job should be allocated to machines within the same group. The most common
example is a pool of machines using infiniband switches. Eachswitch might connect 16 ma-
chines, and a pool might have 160 machines on 10 switches. If the infiniband switches are not
routed to each other, each job must run on machines connectedto the same switch.

The dedicated scheduler’s parallel scheduling groups features supports jobs that must not cross
group boundaries. Define a group by having each machine within a group set the configuration
variableParallelSchedulingGroup with a string that is a unique name for the group.
The submit description file for a parallel universe job whichmust not cross group boundaries
contains

+WantParallelSchedulingGroups = True

The dedicated scheduler enforces the allocation to within agroup.

Preemption with Dedicated Jobs

The dedicated scheduler can optionally preempt running MPIjobs in favor of higher priority MPI
jobs in its queue. Note that this is different from preemption in non-parallel universes, and MPI jobs
cannot be preempted either by a machine’s user pressing a keyor by other means.

By default, the dedicated scheduler will never preempt running MPI jobs. Two configura-
tion file items control dedicated preemption:SCHEDD_PREEMPTION_REQUIREMENTSand

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 426

SCHEDD_PREEMPTION_RANK. These have no default value, so if either are not defined, pre-
emption will never occur. SCHEDD_PREEMPTION_REQUIREMENTSmust evaluate toTrue
for a machine to be a candidate for this kind of preemption. Ifmore machines are candi-
dates for preemption than needed to satisfy a higher priority job, the machines are sorted by
SCHEDD_PREEMPTION_RANK, and only the highest ranked machines are taken.

Note that preempting one node of a running MPI job requires killing the entire job on all of its
nodes. So, when preemption happens, it may end up freeing more machines than strictly speaking
are needed. Also, as Condor cannot produce checkpoints for MPI jobs, preempted jobs will be re-
run, starting again from the beginning. Thus, the administrator should be careful when enabling
dedicated preemption. The following example shows how to enable dedicated preemption.

STARTD_JOB_EXPRS = JobPrio
SCHEDD_PREEMPTION_REQUIREMENTS = (My.JobPrio < Target.J obPrio)
SCHEDD_PREEMPTION_RANK = 0.0

In this case, preemption is enabled by the user job priority.If a set of machines is running a job at
user priority 5, and the user submits a new job at user priority 10, the running job will be preempted
for the new job. The old job is put back in the queue, and will begin again from the beginning when
assigned to a new set of machines.

Grouping dedicated nodes into parallel scheduling groups

In some parallel environments, machines are divided into groups, and jobs should not cross groups
of machines – that is, all the nodes of a parallel job should beallocated to machines in the same
group. The most common example is a pool of machine using infiniband switches. Each switch
might connect 16 machines, and a pool might have 160 machineson 10 switches. If the infiniband
switches are not routed to each other, each job must run on machines connected to the same switch.
The dedicated scheduler’s parallel scheduling groups features supports this operation.

Each condor_startd must define which group it belongs to by setting the
ParallelSchedulingGroup variable in the configuration file, and advertising it into
the machine ClassAd. The value of this variable is a string, which should be the same for all
condor_startddaemons in a given group. The property must be advertised in the condor_startd
ClassAd by appendingParallelSchedulingGroup to the STARTD_ATTRS configura-
tion variable. Then, parallel jobs which want to be scheduled by group declare this by setting
+WantParallelSchedulingGroups = True in their submit description file.

3.12.10 Configuring Condor for Running Backfill Jobs

Condor can be configured to run backfill jobs whenever thecondor_startdhas no other work to
perform. These jobs are considered the lowest possible priority, but when machines would otherwise
be idle, the resources can be put to good use.

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 427

Currently, Condor only supports using the Berkeley Open Infrastructure for Network Com-
puting (BOINC) to provide the backfill jobs. More information about BOINC is available at
http://boinc.berkeley.edu.

The rest of this section provides an overview of how backfill jobs work in Condor, details for
configuring the policy for when backfill jobs are started or killed, and details on how to configure
Condor to spawn the BOINC client to perform the work.

Overview of Backfill jobs in Condor

Whenever a resource controlled by Condor is in the Unclaimed/Idle state, it is totally idle; neither the
interactive user nor a Condor job is performing any work. Machines in this state can be configured
to enter theBackfill state, which allows the resource to attempt a background computation to keep
itself busy until other work arrives (either a user returning to use the machine interactively, or a
normal Condor job). Once a resource enters the Backfill state, the condor_startdwill attempt to
spawn another program, called abackfill client, to launch and manage the backfill computation.
When other work arrives, thecondor_startdwill kill the backfill client and clean up any processes
it has spawned, freeing the machine resources for the new, higher priority task. More details about
the different states a Condor resource can enter and all of the possible transitions between them are
described in section 3.5 beginning on page 294, especially sections 3.5.5, 3.5.6, and 3.5.7.

At this point, the only backfill system supported by Condor isBOINC. Thecondor_startdhas the
ability to start and stop the BOINC client program at the appropriate times, but otherwise provides
no additional services to configure the BOINC computations themselves. Future versions of Condor
might provide additional functionality to make it easier tomanage BOINC computations from within
Condor. For now, the BOINC client must be manually installedand configured outside of Condor
on each backfill-enabled machine.

Defining the Backfill Policy

There are a small set of policy expressions that determine ifa condor_startdwill attempt to spawn
a backfill client at all, and if so, to control the transitionsin to and out of the Backfill state. This
section briefly lists these expressions. More detail can be found in section 3.3.10 on page 201.

ENABLE_BACKFILL A boolean value to determine if any backfill functionality should be used.
The default value isFalse .

BACKFILL_SYSTEM A string that defines what backfill system to use for spawning and managing
backfill computations. Currently, the only supported string is "BOINC" .

START_BACKFILL A boolean expression to control if a Condor resource should start a backfill
client. This expression is only evaluated when the machine is in the Unclaimed/Idle state and
theENABLE_BACKFILLexpression isTrue .

Condor Version 7.7.6 Manual

http://boinc.berkeley.edu

3.12. Setting Up for Special Environments 428

EVICT_BACKFILL A boolean expression that is evaluated whenever a Condor resource is in the
Backfill state. A value ofTrue indicates the machine should immediately kill the currently
running backfill client and any other spawned processes, andreturn to the Owner state.

The following example shows a possible configuration to enable backfill:

Turn on backfill functionality, and use BOINC
ENABLE_BACKFILL = TRUE
BACKFILL_SYSTEM = BOINC

Spawn a backfill job if we've been Unclaimed for more than 5
minutes
START_BACKFILL = $(StateTimer) > (5 * $(MINUTE))

Evict a backfill job if the machine is busy (based on keyboar d
activity or cpu load)
EVICT_BACKFILL = $(MachineBusy)

Overview of the BOINC system

The BOINC system is a distributed computing environment forsolving large scale scientific prob-
lems. A detailed explanation of this system is beyond the scope of this manual. Thorough docu-
mentation about BOINC is available at their website: http://boinc.berkeley.edu. However, a brief
overview is provided here for sites interested in using BOINC with Condor to manage backfill jobs.

BOINC grew out of the relatively famous SETI@home computation, where volunteers installed
special client software, in the form of a screen saver, that contacted a centralized server to download
work units. Each work unit contained a set of radio telescopedata and the computation tried to find
patterns in the data, a sign of intelligent life elsewhere inthe universe (hence the name: “Search
for Extra Terrestrial Intelligence at home”). BOINC is developed by the Space Sciences Lab at
the University of California, Berkeley, by the same people who created SETI@home. However,
instead of being tied to the specific radio telescope application, BOINC is a generic infrastructure
by which many different kinds of scientific computations canbe solved. The current generation
of SETI@home now runs on top of BOINC, along with various physics, biology, climatology, and
other applications.

The basic computational model for BOINC and the original SETI@home is the same: volunteers
install BOINC client software which runs whenever the machine would otherwise be idle. However,
the BOINC installation on any given machine must be configured so that it knows what computations
to work for (each computation is referred to as aproject using BOINC’s terminology), instead of
always working on a hard coded computation. A given BOINC client can be configured to donate
all of its cycles to a single project, or to split the cycles between projects so that, on average, the
desired percentage of the computational power is allocatedto each project. Once the client software
(a program called theboinc_client) starts running, it attempts to contact a centralized server for
each project it has been configured to work for. The BOINC software downloads the appropriate
platform-specific application binary and some work units from the central server for each project.
Whenever the client software completes a given work unit, itonce again attempts to connect to that
project’s central server to upload the results and downloadmore work.

Condor Version 7.7.6 Manual

http://boinc.berkeley.edu

3.12. Setting Up for Special Environments 429

BOINC participants must register at the centralized serverfor each project they wish to donate
cycles to. The process produces a unique identifier so that the work performed by a given client can
be credited to a specific user. BOINC keeps track of the work units completed by each user, so that
users providing the most cycles get the highest rankings (and therefore, bragging rights).

Because BOINC already handles the problems of distributingthe application binaries for each
scientific computation, the work units, and compiling the results, it is a perfect system for managing
backfill computations in Condor. Many of the applications that run on top of BOINC produce
their own application-specific checkpoints, so even if theboinc_clientis killed (for example, when
a Condor job arrives at a machine, or if the interactive user returns) an entire work unit will not
necessarily be lost.

Installing the BOINC client software

If a working installation of BOINC currently exists on machines where backfill is desired, skip the
remainder of this section. Continue reading with the section titled “Configuring the BOINC client
under Condor”.

In Condor Version 7.7.6, the BOINC client software that actually spawns and manages the back-
fill computations (theboinc_client) must be manually downloaded, installed and configured outside
of Condor. Hopefully in future versions, the Condor packagewill include theboinc_client, and there
will be a way to automatically install and configure the BOINCsoftware together with Condor.

Theboinc_clientexecutables can be obtained at one of the following locations:

http://boinc.berkeley.edu/download.php This is the official BOINC download site, which pro-
vides binaries for MacOS 10.3 or higher, Linux/x86, and Windows/x86. From the download
table, use the “Recommended version”, and use the “Core client only (command-line)” pack-
age when available.

http://boinc.berkeley.edu/download_other.phpThis page contains links to sites that distribute
boinc_clientbinaries for other platforms beyond the officially supported ones.

Once the BOINC client software has been downloaded, theboinc_clientbinary should be placed
in a location where the Condor daemons can use it. The path will be specified via a Condor config-
uration setting,BOINC_Executable , described below.

Additionally, a local directory on each machine should be created where the BOINC system can
write files it needs. This directory must not be shared by multiple instances of the BOINC software,
just like thespool or execute directories used by Condor. This location of this directoryis
defined using theBOINC_InitialDir macro, described below. The directory must be writable
by whatever user theboinc_clientwill run as. This user is either the same as the user the Condor
daemons are running as (if Condor is not running as root), or auser defined via theBOINC_Owner
setting described below.

Finally, Condor administrators wishing to use BOINC for backfill jobs must create accounts
at the various BOINC projects they want to donate cycles to. The details of this process vary

Condor Version 7.7.6 Manual

http://boinc.berkeley.edu/download.php
http://boinc.berkeley.edu/download_other.php

3.12. Setting Up for Special Environments 430

from project to project. Beware that this step must be done manually, as the BOINC software
spawned by Condor (theboinc_client) can not automatically register a user at a given project
(unlike the more fancy GUI version of the BOINC client software which many users run as a
screen saver). For example, to configure machines to performwork for the Einstein@home project
(a physics experiment run by the University of Wisconsin at Milwaukee) Condor administrators
should go to http://einstein.phys.uwm.edu/create_account_form.php, fill in the web form, and gen-
erate a new Einstein@home identity. This identity takes theform of a project URL (such as
http://einstein.phys.uwm.edu) followed by anaccount key, which is a long string of letters and num-
bers that is used as a unique identifier. This URL and account key will be needed when configuring
Condor to use BOINC for backfill computations (described in the next section).

Configuring the BOINC client under Condor

This section assumes that the BOINC client software has already been installed on a given machine,
that the BOINC projects to join have been selected, and that aunique project account key has been
created for each project. If any of these steps has not been completed, please read the previous
section titled “Installing the BOINC client software”

Whenever thecondor_startddecides to spawn theboinc_clientto perform backfill computa-
tions (whenENABLE_BACKFILL is True , when the resource is in Unclaimed/Idle, and when
theSTART_BACKFILL expression evaluates toTrue), it will spawn acondor_starterto directly
launch and monitor theboinc_clientprogram. Thiscondor_starteris just like the one used to spawn
normal Condor jobs. In fact, the argv[0] of theboinc_clientwill be renamed to “condor_exec”, as
described in section 2.15.1 on page 129.

Thecondor_starterfor spawning theboinc_clientreads values out of the Condor configuration
files to define the job it should run, as opposed to getting these values from a job classified ad in the
case of a normal Condor job. All of the configuration settingsto control things like the path to the
boinc_clientbinary to use, the command-line arguments, the initial working directory, and so on,
are prefixed with the string"BOINC_" . Each possible setting is described below:

Required settings:

BOINC_Executable The full path to theboinc_clientbinary to use.

BOINC_InitialDir The full path to the local directory where BOINC should run.

BOINC_Universe The Condor universe used for running theboinc_clientprogram. Thismust
be set to"vanilla" for BOINC to work under Condor.

BOINC_Owner What user theboinc_clientprogram should be run as. This macro is only used
if the Condor daemons are running as root. In this case, thecondor_startermust be told
what user identity to switch to before spawning theboinc_client. This can be any valid user
on the local system, but it must have write permission in whatever directory is specified in
BOINC_InitialDir).

Optional settings:

Condor Version 7.7.6 Manual

http://einstein.phys.uwm.edu/create_account_form.php
http://einstein.phys.uwm.edu

3.12. Setting Up for Special Environments 431

BOINC_Arguments Command-line arguments that should be passed to theboinc_clientpro-
gram. For example, one way to specify the BOINC project to join is to use the
–attach_projectargument to specify a project URL and account key. For example:

BOINC_Arguments = --attach_project http://einstein.phy s.uwm.edu [account_key]

BOINC_Environment Environment variables that should be set for theboinc_client.

BOINC_Output Full path to the file where STDOUT from theboinc_clientshould be written. If
this macro is not defined, STDOUT will be discarded.

BOINC_Error Full path to the file where STDERR from theboinc_clientshould be written. If
this macro is not defined, STDERR will be discarded.

The following example shows one possible usage of these settings:

Define a shared macro that can be used to define other settin gs.
This directory must be manually created before attempting to run
any backfill jobs.
BOINC_HOME = $(LOCAL_DIR)/boinc

Path to the boinc_client to use, and required universe sett ing
BOINC_Executable = /usr/local/bin/boinc_client
BOINC_Universe = vanilla

What initial working directory should BOINC use?
BOINC_InitialDir = $(BOINC_HOME)

Save STDOUT and STDERR
BOINC_Output = $(BOINC_HOME)/boinc.out
BOINC_Error = $(BOINC_HOME)/boinc.err

If the Condor daemons reading this configuration are runningas root, an additional macro must
be defined:

Specify the user that the boinc_client should run as:
BOINC_Owner = nobody

In this case, Condor would spawn theboinc_clientas “nobody”, so the directory specified in
$(BOINC_HOME)would have to be writable by the “nobody” user.

A better choice would probably be to create a separate user account just for running BOINC
jobs, so that the local BOINC installation is not writable byother processes running as “nobody”.
Alternatively, theBOINC_Owner could be set to “daemon”.

Attaching to a specific BOINC project

There are a few ways to attach a Condor/BOINC installation toa given BOINC project:

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 432

• The –attach_project argument to the boinc_client program, defined via the
BOINC_Arguments setting (described above). Theboinc_client will only accept a
single–attach_projectargument, so this method can only be used to attach to one project.

• Theboinc_cmdcommand-line tool can perform various BOINC administrative tasks, includ-
ing attaching to a BOINC project. Usingboinc_cmd, the appropriate argument to use is called
–project_attach. Unfortunately, theboinc_clientmust be running forboinc_cmdto work, so
this method can only be used once the Condor resource has entered the Backfill state and has
spawned theboinc_client.

• Manually create account files in the local BOINC directory. Upon startup,
the boinc_client will scan its local directory (the directory specified with
BOINC_InitialDir) for files of the form account_[URL].xml , for example,
account_einstein.phys.uwm.edu.xml . Any files with a name that matches this
convention will be read and processed. The contents of the file define the project URL and
the authentication key. The format is:

<account>
<master_url>[URL]</master_url>
<authenticator>[key]</authenticator>

</account>

For example:

<account>
<master_url>http://einstein.phys.uwm.edu</master_ur l>
<authenticator>aaaa1111bbbb2222cccc3333</authentica tor>

</account>

(Of course, the<authenticator> tag would use the real authentication key returned when
the account was created at a given project).

These account files can be copied to the local BOINC directoryon all machines in a Condor
pool, so administrators can either distribute them manually, or use symbolic links to point to
a shared file system.

In the first two cases (using command-line arguments forboinc_clientor running theboinc_cmd
tool), BOINC will write out the resulting account file to the local BOINC directory on the ma-
chine, and then future invocations of theboinc_clientwill already be attached to the appropri-
ate project(s). More information about participating in multiple BOINC projects can be found at
http://boinc.berkeley.edu/multiple_projects.php.

BOINC on Windows

The Windows version of BOINC has multiple installation methods. The preferred method of instal-
lation for use with Condor is the “Shared Installation” method. Using this method gives all users
access to the executables. During the installation process

Condor Version 7.7.6 Manual

http://boinc.berkeley.edu/multiple_projects.php

3.12. Setting Up for Special Environments 433

1. Deselect the option which makes BOINC the default screen saver

2. Deselect the option which runs BOINC on start-up.

3. Do not launch BOINC at the conclusion of the installation.

There are three major differences from the Unix version to keep in mind when dealing with the
Windows installation:

1. The Windows executables have different names from the Unix versions. The Windows client
is calledboinc.exe. Therefore, the configuration variableBOINC_Executable is written:

BOINC_Executable = C:\PROGRA~1\BOINC\boinc.exe

The Unix administrative toolboinc_cmdis calledboinccmd.exeon Windows.

2. When using BOINC on Windows, the configuration variableBOINC_InitialDir will not
be respected fully. To work around this difficulty, pass the BOINC home directory directly to
the BOINC application via theBOINC_Arguments configuration variable. For Windows,
rewrite the argument line as:

BOINC_Arguments = --dir $(BOINC_HOME) \
--attach_project http://einstein.phys.uwm.edu [accoun t_key]

As a consequence of setting the BOINC home directory, some projects may fail with the
authentication error:

Scheduler request failed: Peer
certificate cannot be authenticated
with known CA certificates.

To resolve this issue, copy theca-bundle.crt file from the BOINC installation directory
to $(BOINC_HOME). This file appears to be project and machine independent, andit can
therefore be distributed as part of an automated Condor installation.

3. TheBOINC_Owner configuration variable behaves differently on Windows thanit does on
Unix. Its value may take one of two forms:

• domain\user

• user

This form assumes that the user exists in the local domain (that is, on the computer
itself).

Setting this option causes the addition of the job attribute

RunAsUser = True

to the backfill client. This further implies that the configuration variable
STARTER_ALLOW_RUNAS_OWNERbe set toTrue to insure that the localcondor_starter
be able to run jobs in this manner. For more information on theRunAsUser attribute,
see section 6.2.4. For more information on the theSTARTER_ALLOW_RUNAS_OWNER
configuration variable, see section 3.3.7.

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 434

3.12.11 Group ID-Based Process Tracking

One function that Condor often must perform is keeping trackof all processes created by a job. This
is done so that Condor can provide resource usage statisticsabout jobs, and also so that Condor can
properly clean up any processes that jobs leave behind when they exit.

In general, tracking process families is difficult to do reliably. By default Condor uses a combi-
nation of process parent-child relationships, process groups, and information that Condor places in
a job’s environment to track process families on a best-effort basis. This usually works well, but it
can falter for certain applications or for jobs that try to evade detection.

Jobs that run with a user account dedicated for Condor’s use can be reliably tracked, since
all Condor needs to do is look for all processes running usingthe given account. Administra-
tors must specify in Condor’s configuration what accounts can be considered dedicated via the
DEDICATED_EXECUTE_ACCOUNT_REGEXPsetting. See Section 3.6.13 for further details.

Ideally, jobs can be reliably tracked regardless of the useraccount they execute under. This can
be accomplished with group ID-based tracking. This method of tracking requires that a range of
dedicatedgroup IDs (GID) be set aside for Condor’s use. The number of GIDs that must be set
aside for an execute machine is equal to its number of execution slots. GID-based tracking is only
available on Linux, and it requires that Condor either runs as root or uses privilege separation (see
Section 3.6.14).

GID-based tracking works by placing a dedicated GID in the supplementary group list of a job’s
initial process. Since modifying the supplementary group ID list requiresroot privilege, the job
will not be able to create processes that go unnoticed by Condor.

Once a suitable GID range has been set aside for process tracking, GID-based tracking can be
enabled via theUSE_GID_PROCESS_TRACKINGparameter. The minimum and maximum GIDs
included in the range are specified with theMIN_TRACKING_GID andMAX_TRACKING_GID
settings. For example, the following would enable GID-based tracking for an execute machine with
8 slots.

USE_GID_PROCESS_TRACKING = True
MIN_TRACKING_GID = 750
MAX_TRACKING_GID = 757

If the defined range is too small, such that there is not a GID available when starting a job, then
thecondor_starterwill fail as it tries to start the job. An error message will belogged stating that
there are no more tracking GIDs.

GID-based process tracking requires use of thecondor_procd. If
USE_GID_PROCESS_TRACKINGis true, thecondor_procdwill be used regardless of the
USE_PROCDsetting. Changes toMIN_TRACKING_GIDandMAX_TRACKING_GIDrequire a
full restart of Condor.

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 435

3.12.12 Cgroup-Based Process Tracking

A new feature in Linux kernels version 2.6.24 and more recentkernels allows Condor to more
accurately and safely manage jobs composed of sets of processes. This Linux feature is called
Control Groups, or cgroups for short, and it is available starting with RHEL 6, Debian 6, and
related distributions. Documentation about Linux kernel support for cgroups can be found in
the Documentation directory in the kernel source code distribution. Another good reference is
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/index.html
Even if cgroup support is built into the kernel, many distributions do not install the cgroup tools by
default. In order to use cgroups, the tools must be installed. On RPM-based systems, these can be
installed with the command

yum install libcgroup*

Starting with Condor version 7.7.0, thecondor_starterdaemon can optionally use cgroups to
accurately track all the processes started by a job, even when quickly-exiting parent processes
spawn many child processes. As with the GID-based tracking,this is only implemented when a
condor_procddaemon is running. The Condor team recommends enabling thisfeature on Linux
platforms that support it. When cgroup tracking is enabled,Condor is able to report a much more
accurate measurement of the physical memory used by a set of processes.

Kernel cgroups are named in a virtual file system hierarchy. Condor will put each run-
ning job on the execute node in a separate cgroup, named usingthe job’s attributes by
job_<ClusterId>_<ProcId> , where<ClusterId> is replaced by the job ClassAd attribute
ClusterId , and<ProcId> is replaced by the job ClassAd attributeProcId . These directories
will be under a base directory named by the Condor configuration variableBASE_CGROUP. This
variable has no default value, so if the variable is not set, cgroup tracking will not be used. Unless
there is a need for integration of Condor jobs with other cgroup-based tracking, a good choice for
BASE_CGROUPlocation might be/condor .

Condor itself will not mount the virtual cgroup file systems.This can either be done by hand at
each system reboot, by thecgconfigservice which reads a file called/etc/cgconfig.conf , or
automatically by thesystemdservice on systems which usesystemdinstead ofinit.

Here is an example of the contents of filecgconfig.conf :

mount {
cpuacct = /mnt/cgroups/cpuacct;
memory = /mnt/cgroups/memory;
freezer = /mnt/cgroups/freezer;
blkio = /mnt/cgroups/blkio;

}

group condor {
cpuacct {}
memory {}

Condor Version 7.7.6 Manual

http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/index.html

3.12. Setting Up for Special Environments 436

freezer {}
blkio {}

}

If the mount command shows that no cgroup file systems are mounted, then either the by hand
method or thecgconfigservice will need to mount the four controllers which Condorneeds: cpuacct,
memory, freezer and blkio.

Once cgroup-based tracking is configured, usage should be invisible to the user and adminis-
trator. Thecondor_procdlog, as defined by configuration variablePROCD_LOG, will mention that
it is using this method, but no user visible changes should occur, other than the impossibility of
a quickly-forking process escaping from the control of thecondor_starter, and the more accurate
reporting of memory usage.

3.12.13 Limiting Resource Usage

An administrator can strictly limit the usage of system resources by jobs for any job that may be
wrapped using the script defined by the configuration variable USER_JOB_WRAPPER. These are
jobs within universes that are controlled by thecondor_starterdaemon, and they include thevanilla,
standard, java, local, andparallel universes.

The job’s ClassAd is written by thecondor_starterdaemon. It will need to contain attributes
that the script defined byUSER_JOB_WRAPPERcan use to implement platform specific resource
limiting actions. Examples of resources that may be referred to for limiting purposes are RAM,
swap space, file descriptors, stack size, and core file size.

An initial sample of a USER_JOB_WRAPPERscript is provided in the installation at
$(LIBEXEC)/condor_limits_wrapper.sh . Here is the contents of that file:

#!/bin/sh
Copyright 2008 Red Hat, Inc.
#
Licensed under the Apache License, Version 2.0 (the "Licen se");
you may not use this file except in compliance with the Licen se.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, s oftware
distributed under the License is distributed on an "AS IS" B ASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permis sions and
limitations under the License.

if [[$_CONDOR_MACHINE_AD != ""]]; then
mem_limit=$((`egrep '^Memory' $_CONDOR_MACHINE_AD | cut -d ' ' -f 3` * 1024))

block_size=$((`stat -f -c %s .` / 1024))
disk_limit=$((`egrep '^Disk' $_CONDOR_MACHINE_AD | cut -d ' ' -f 3` / $block_size))

disk_limit=`egrep '^Disk' $_CONDOR_MACHINE_AD | cut -d ' ' -f 3`

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 437

vm_limit=`egrep '^VirtualMemory' $_CONDOR_MACHINE_AD | cut -d ' ' -f 3`

ulimit -d $mem_limit
if [[$? != 0]] || [[$mem_limit = ""]]; then

echo "Failed to set Memory Resource Limit" > $_CONDOR_WRAPP ER_ERROR_FILE
exit 1

fi
ulimit -f $disk_limit
if [[$? != 0]] || [[$disk_limit = ""]]; then

echo "Failed to set Disk Resource Limit" > $_CONDOR_WRAPPER _ERROR_FILE
exit 1

fi
ulimit -v $vm_limit
if [[$? != 0]] || [[$vm_limit = ""]]; then

echo "Failed to set Virtual Memory Resource Limit" > $_CONDO R_WRAPPER_ERROR_FILE
exit 1

fi
fi

exec "$@"
error=$?
echo "Failed to exec($error): $@" > $_CONDOR_WRAPPER_ERRO R_FILE
exit 1

If used in an unmodified form, this script sets the job’s limits on a per slot basis for memory,
disk, and virtual memory usage, with the limits defined by thevalues in the machine ClassAd. This
example file will need to be modified and merged for use with a preexistingUSER_JOB_WRAPPER
script.

If additional functionality is added to the script, an administrator is likely to use the
USER_JOB_WRAPPERscript in conjunction withSUBMIT_EXPRS to force the job ClassAd to
contain attributes that theUSER_JOB_WRAPPERscript expects to have defined.

The following variables are set in the environment of the theUSER_JOB_WRAPPERscript by
thecondor_starterdaemon, when theUSER_JOB_WRAPPERis defined.

_CONDOR_MACHINE_AD The full path and file name of the file containing the machine ClassAd.

_CONDOR_JOB_AD The full path and file name of the file containing the job ClassAd.

_CONDOR_WRAPPER_ERROR_FILEThe full path and file name of the file that the
USER_JOB_WRAPPERscript should create, if there is an error. The text in this file will
be included in any Condor failure messages.

3.12.14 Concurrency Limits

Condor’s implementation of the mechanism calledconcurrency limitsallows an administrator to
define and set integer limits on consumable resources. Theselimits are utilized during matchmaking,
preventing matches when the resources are allocated. Typical uses of this mechanism will include
the management of software licenses, database connections, and any other consumable resource
external to Condor.

Condor Version 7.7.6 Manual

3.12. Setting Up for Special Environments 438

Use of the concurrency limits mechanism requires configuration variables to set distinct limits,
while jobs must identify the need for a specific resource.

In the configuration, a string must be chosen as a name for the particular resource. This name is
used in the configuration of acondor_negotiatordaemon variable that defines the concurrency limit,
or integer quantity available of this resource. For example, assume that there are 3 licenses for the
X software. The configuration variable concurrency limit may be:

XSW_LIMIT = 3

where"XSW" is the invented name of this resource, which is appended withthe string_LIMIT .
With this limit, a maximum of 3 jobs declaring that they need this resource may be executed con-
currently.

In addition to named limits, such as in the example named limit XSW, configuration may specify
a concurrency limit for all resources that are not covered byspecifically-named limits. The configu-
ration variableCONCURRENCY_LIMIT_DEFAULTsets this value. For example,

CONCURRENCY_LIMIT_DEFAULT = 1

sets a limit of 1 job in execution for any job that declares itsrequirement for a resource that is not
named in the configuration. IfCONCURRENCY_LIMIT_DEFAULTis omitted from the configura-
tion, then no limits are placed on the number of concurrentlyexecuting jobs of resources for which
there is no specifically named concurrency limit.

The job must declare its need for a resource by placing a command in its submit description file
or adding an attribute to the job ClassAd. In the submit description file, an example job that requires
the X software adds:

concurrency_limits = XSW

This results in the job ClassAd attribute

ConcurrencyLimits = "XSW"

The implementation of the job ClassAd attributeConcurrencyLimits has a more general
implementation. It is either a string or a string list. A listcontains items delimited by space charac-
ters and comma characters. Therefore, a job that requires the 3 separate resources named as"XSW",
"y" , and"Z" , will contain in its submit description file:

concurrency_limits = y,XSW,Z

Additionally, a numerical value identifying the number of resources required may be specified
in the definition of a resource, following the resource name by a colon character and the integer
number of resources. Modifying the given example to specifythat 3 of the"XSW" resource are
needed results in:

Condor Version 7.7.6 Manual

3.13. Java Support Installation 439

concurrency_limits = y,XSW:3,Z

Concurrency limit defaults may also be declared for named groups, which allow default limits
to be “scoped” by a group name, as in this example:

CONCURRENCY_LIMIT_DEFAULT = 5
CONCURRENCY_LIMIT_DEFAULT_LARGE = 100
CONCURRENCY_LIMIT_DEFAULT_SMALL = 25

With the above configuration, a concurrency limit named “large.swlicense” will receive a
default limit of 100. A concurrency limit named “large.dbsession” will also receive a default
limit of 100. A limit named “small.dbsession” will receive adefault limit of 25. A concur-
rency limit “other.license” will receive the global default limit of 5, as there is no declaration for
CONCURRENCY_LIMIT_DEFAULT_OTHER.

Note that the maximum for any given limit, as specified with the configuration variable
<*>_LIMIT , is as strictly enforcedas possible. In the presence of preemption and dropped up-
dates from thecondor_startddaemon to thecondor_collectordaemon, it is possible for the limit
to be exceeded. Condor will never kill a job to free up a limit,including the case where a limit
maximum is exceeded.

3.13 Java Support Installation

Compiled Java programs may be executed (under Condor) on anyexecution site with a Java Virtual
Machine (JVM). To do this, Condor must be informed of some details of the JVM installation.

Begin by installing a Java distribution according to the vendor’s instructions. We have suc-
cessfully used the Sun Java Developer’s Kit, but any distribution should suffice. Your machine
may have been delivered with a JVM already installed – installed code is frequently found in
/usr/bin/java .

Condor’s configuration includes the location of the installed JVM. Edit the configuration file.
Modify the JAVA entry to point to the JVM binary, typically/usr/bin/java . Restart the
condor_startddaemon on that host. For example,

% condor_restart -startd bluejay

The condor_startddaemon takes a few moments to exercise the Java capabilitiesof the con-
dor_starter, query its properties, and then advertise the machine to thepool as Java-capable. If the
set up succeeded, thencondor_statuswill tell you the host is now Java-capable by printing the Java
vendor and the version number:

% condor_status -java bluejay

Condor Version 7.7.6 Manual

3.13. Java Support Installation 440

After a suitable amount of time, if this command does not giveany output, then thecon-
dor_starteris having difficulty executing the JVM. The exact cause of theproblem depends on the
details of the JVM, the local installation, and a variety of other factors. We can offer only limited
advice on these matters, but here is an approach to solving the problem.

To reproduce the test that thecondor_starteris attempting, try running the Javacondor_starter
directly. To find where thecondor_starteris installed, run this command:

% condor_config_val STARTER

This command prints out the path to thecondor_starter, perhaps something like this:

/usr/condor/sbin/condor_starter

Use this path to execute thecondor_starterdirectly with the-classadargument. This tells the
starter to run its tests and display its properties.

/usr/condor/sbin/condor_starter -classad

This command will display a short list of cryptic properties, such as:

IsDaemonCore = True
HasFileTransfer = True
HasMPI = True
CondorVersion = "$CondorVersion: 7.1.0 Mar 26 2008 BuildID : 80210 $"

If the Java configuration is correct, there will also be a short list of Java properties, such as:

JavaVendor = "Sun Microsystems Inc."
JavaVersion = "1.2.2"
JavaMFlops = 9.279696
HasJava = True

If the Java installation is incorrect, then any error messages from the shell or Java will be printed
on the error stream instead.

The Sun JVM sets a value of 64 Mbytes for the Java Maxheap Argument, which Condor uses.
This value is often too small for the application. The administrator can change this value through
configuration by setting a different value forJAVA_EXTRA_ARGUMENTS.

JAVA_EXTRA_ARGUMENTS = -Xmx1024m

Note that if a specific job sets the value in the submit description file, using the submit command
java_vm_args, this job’s value takes precedence over a configured value.

Condor Version 7.7.6 Manual

3.14. Virtual Machines 441

3.14 Virtual Machines

Virtual machines can be executed on any execution site with VMware, Xen (vialibvirt), or KVM.
To do this, Condor must be informed of some details of the virtual machine installation, and the
execution machines must be configured correctly. This permits the execution ofvm universe jobs.

What follows is not a comprehensive list of the options that help set up to use thevm universe;
rather, it is intended to serve as a starting point for those users interested in gettingvm universe jobs
up and running quickly. Details of configuration variables are in section 3.3.28.

Begin by installing the virtualization package on all execute machines, according to the vendor’s
instructions. We have successfully used VMware Server, Xen, and KVM. If considering running
on a Windows system, aPerl distribution will also need to be installed; we have successfully used
ActivePerl.

For VMware,VMware Server 1must be installed and running on the execute machine.

For Xen, there are three things that must exist on an execute machine to fully supportvm universe
jobs.

1. A Xen-enabled kernel must be running. This running Xen kernel acts as Dom0, in Xen termi-
nology, under which all VMs are started, called DomUs Xen terminology.

2. Thelibvirtd daemon must be available, andXendservices must be running.

3. Thepygrubprogram must be available, for execution of VMs whose disks contain the kernel
they will run.

For KVM, there are two things that must exist on an execute machine to fully supportvm uni-
verse jobs.

1. The machine must have the KVM kernel module installed and running.

2. Thelibvirtd daemon must be installed and running.

3.14.1 Configuration Variables

There are configuration variables related to the virtual machines forvm universe jobs. Some options
are required, while others are optional. Here we only discuss those that are required.

First, the type of virtual machine that is installed on the execute machine must be specified. For
now, only one type can be utilized per machine. For instance,the following tells Condor to use
VMware:

VM_TYPE = vmware

Condor Version 7.7.6 Manual

3.14. Virtual Machines 442

The location of thecondor_vm-gahpand its log file must also be specified on the execute ma-
chine. On a Windows installation, these options would look like this:

VM_GAHP_SERVER = $(SBIN)/condor_vm-gahp.exe
VM_GAHP_LOG = $(LOG)/VMGahpLog

VMware-Specific Configuration

To use VMware, identify the location of thePerl executable on the execute machine. In most cases,
the default value should suffice:

VMWARE_PERL = perl

This, of course, assumes thePerl executable is in the path of thecondor_masterdaemon. If this
is not the case, then a full path to thePerl executable will be required.

The final required configuration is the location of the VMwarecontrol script used by the
condor_vm-gahpon the execute machine to talk to the virtual machine hypervisor. It is located
in Condor’ssbin directory:

VMWARE_SCRIPT = $(SBIN)/condor_vm_vmware

Note that an execute machine’sEXECUTEvariable should not contain any symbolic links in its
path, if the machine is configured to run VMwarevm universe jobs. See the FAQ entry in section 7.3
for details.

Xen-Specific and KVM-Specific Configuration

Once the configuration options have been set, restart thecondor_startddaemon on that host. For
example:

> condor_restart -startd leovinus

The condor_startddaemon takes a few moments to exercise the VM capabilities ofthe
condor_vm-gahp, query its properties, and then advertise the machine to thepool as VM-capable.
If the set up succeeded, thencondor_statuswill reveal that the host is now VM-capable by printing
the VM type and the version number:

> condor_status -vm leovinus

Condor Version 7.7.6 Manual

3.15. Power Management 443

After a suitable amount of time, if this command does not giveany output, then thecondor_vm-
gahp is having difficulty executing the VM software. The exact cause of the problem depends on
the details of the VM, the local installation, and a variety of other factors. We can offer only limited
advice on these matters:

For Xen and KVM, thevm universe is only available whenroot starts Condor. This is a
restriction currently imposed because root privileges arerequired to create a virtual machine on top
of a Xen-enabled kernel. Specifically, root is needed to properly use thelibvirt utility that controls
creation and management of Xen and KVM guest virtual machines. This restriction may be lifted in
future versions, depending on features provided by the underlying tool libvirt .

3.15 Power Management

Condor supports placing machines in low power states. A machine in the low power state is identi-
fied as being offline. Power setting decisions are based upon Condor configuration.

Power conservation is relevant when machines are not in heavy use, or when there are known
periods of low activity within the pool.

3.15.1 Entering a Low Power State

By default, Condor does not do power management. When desired, the ability to place a machine
into a low power state is accomplished through configuration. This occurs when all slots on a
machine agree that a low power state is desired.

A slot’s readiness to hibernate is determined by the evaluating theHIBERNATE configuration
variable (see section 3.3.10 on page 213) within the contextof the slot. Readiness is evaluated at
fixed intervals, as determined by theHIBERNATE_CHECK_INTERVALconfiguration variable.
A non-zero value of this variable enables the power management facility. It is an integer value
representing seconds, and it need not be a small value. Thereis a trade off between the extra time
not at a low power state and the unnecessary computation of readiness.

To put the machine in a low power state rapidly after it has become idle, consider checking each
slot’s state frequently, as in the example configuration:

HIBERNATE_CHECK_INTERVAL = 20

This checks each slot’s readiness every 20 seconds. A more common value for frequency of
checks is 300 (5 minutes). A value of 300 loses some degree of granularity, but it is more reasonable
as machines are likely to be put in to a low power state after a few hours, rather than minutes.

A slot’s readiness or willingness to enter a low power state is determined by theHIBERNATE
expression. Because this expression is evaluated in the context of each slot, and not on the machine
as a whole, any one slot can veto a change of power state. TheHIBERNATEexpression may

Condor Version 7.7.6 Manual

3.15. Power Management 444

reference a wide array of variables. Possibilities includethe change in power state if none of the
slots are claimed, or if the slots are not in the Owner state.

Here is a concrete example. Assume that theSTARTexpression is not set to always beTrue .
This permits an easy determination whether or not the machine is in an Unclaimed state through the
use of an auxiliary macro calledShouldHibernate .

TimeToWait = (2 * $(HOUR))
ShouldHibernate = ((KeyboardIdle > $(StartIdleTime)) \

&& $(CPUIdle) \
&& ($(StateTimer) > $(TimeToWait)))

This macro evaluates toTrue if the following are allTrue :

• The keyboard has been idle long enough.

• The CPU is idle.

• The slot has been Unclaimed for more than 2 hours.

The sample HIBERNATE expression that enters the power state called"RAM", if
ShouldHibernate evaluates toTrue , and remains in its current state otherwise is

HibernateState = "RAM"
HIBERNATE = ifThenElse($(ShouldHibernate), $(Hibernate State), "NONE")

If any slot returns"NONE", that slot vetoes the decision to enter a low power state. Only when
values returned by all slots are all non-zero is there a decision to enter a low power state. If all agree
to enter the low power state, but differ in which state to enter, then the largest magnitude value is
chosen.

3.15.2 Returning From a Low Power State

The Condor command line toolcondor_powermay wake a machine from a low power state by
sending a UDP Wake On LAN (WOL) packet. See thecondor_powermanual page on page 810.

To automatically callcondor_powerunder specific conditions,condor_roostermay be used.
The configuration options forcondor_roosterare described in section 3.3.33.

3.15.3 Keeping a ClassAd for a Hibernating Machine

A pool’s condor_collectordaemon can be configured to keep a persistent ClassAd entry for each
machine, once it has entered hibernation. This is required by condor_roosterso that it can evaluate
theUNHIBERNATEexpression of the offline machines.

Condor Version 7.7.6 Manual

3.15. Power Management 445

To do this, define a log file using theOFFLINE_LOG configuration variable. See section 3.3.10
on page 215 for the definition. An optional expiration time for each ClassAd can be specified with
OFFLINE_EXPIRE_ADS_AFTER. The timing begins from the time the hibernating machine’s
ClassAd enters thecondor_collectordaemon. See section 3.3.10 on page 215 for the definition.

3.15.4 Linux Platform Details

Depending on the Linux distribution and version, there are three methods for controlling a machine’s
power state. The methods:

1. pm-utilsis a set of command line tools which can be used to detect and switch power states.
In Condor, this is defined by the string"pm-utils" .

2. The directory in the virtual file system/sys/power contains virtual files that can be used
to detect and set the power states. In Condor, this is defined by the string"/sys" .

3. The directory in the virtual file system/proc/acpi contains virtual files that can be used
to detect and set the power states. In Condor, this is defined by the string"/proc" .

By default, the Condor attempts to detect the method to use inthe order shown. The first method
detected as usable on the system is chosen.

This ordered detection may be bypassed, to use a specified method instead by setting the config-
uration variableLINUX_HIBERNATION_METHODwith one of the defined strings. This variable
is defined in section 3.3.10 on page 214. If no usable methods are detected or the method specified
by LINUX_HIBERNATION_METHODis either not detected or invalid, hibernation is disabled.

The details of this selection process, and the final method selected can be logged via enabling
D_FULLDEBUGin the relevant subsystem’s log configuration.

3.15.5 Windows Platform Details

If after a suitable amount of time, a Windows machine has not entered the expected power state,
then Condor is having difficulty exercising the operating system’s low power capabilities. While
the cause will be specific to the machine’s hardware, it may also be due to improperly configured
software. For hardware difficulties, the likely culprit is the configuration within the machine’s BIOS,
for which Condor can offer little guidance. For operating system difficulties, the Vistapowercfg
tool can be used to discover the available power states on themachine. The following command
demonstrates how to list all of the supported power states ofthe machine:

> powercfg -A
The following sleep states are available on this system:
Standby (S3) Hibernate Hybrid Sleep
The following sleep states are not available on this system:

Condor Version 7.7.6 Manual

3.15. Power Management 446

Standby (S1)
The system firmware does not support this standby state.

Standby (S2)
The system firmware does not support this standby state.

Note that theHIBERNATEexpression is written in terms of the Sn state, wheren is the value
evaluated from the expression.

This tool can also be used to enable and disable other sleep states. This example turns hibernation
on.

> powercfg -h on

If this tool is insufficient for configuring the machine in themanner required, thePower Op-
tionscontrol panel application offers the full extent of the machine’s power management abilities.
Windows 2000 and XP lack thepowercfgprogram, so all configuration must be done via thePower
Optionscontrol panel application.

Condor Version 7.7.6 Manual

CHAPTER

FOUR

Miscellaneous Concepts

This chapter contains sections describing a variety of key Condor concepts that do not belong in
other chapters.

ClassAds and the ClassAd language are presented.

Details of checkpoints are presented.

Description and useage of COD (Computing on Demand) extensions to Condor are presented.

The various APIs that Condor implements are described.

4.1 Condor’s ClassAd Mechanism

ClassAds are a flexible mechanism for representing the characteristics and constraints of machines
and jobs in the Condor system. ClassAds are used extensivelyin the Condor system to represent
jobs, resources, submitters and other Condor daemons. An understanding of this mechanism is
required to harness the full flexibility of the Condor system.

A ClassAd is is a set of uniquely named expressions. Each named expression is called anat-
tribute. Figure 4.1 shows an example of a ClassAd with ten attributes.

ClassAd expressions look very much like expressions in C, and are composed of literals and
attribute references composed with operators and functions. The difference between ClassAd ex-
pressions and C expressions arise from the fact that ClassAdexpressions operate in a much more
dynamic environment. For example, an expression from a machine’s ClassAd may refer to an at-
tribute in a job’s ClassAd, such asTARGET.Owner in the above example. The value and type of
the attribute is not known until the expression is evaluatedin an environment which pairs a specific

447

4.1. Condor’s ClassAd Mechanism 448

MyType = "Machine"
TargetType = "Job"
Machine = "froth.cs.wisc.edu"
Arch = "INTEL"
OpSys = "LINUX"
Disk = 35882
Memory = 128
KeyboardIdle = 173
LoadAvg = 0.1000
Requirements = TARGET.Owner=="smith" || LoadAvg<=0.3 && K eyboardIdle>15*60

Figure 4.1: An example ClassAd

job ClassAd with the machine ClassAd.

ClassAd expressions handle these uncertainties by definingall operators to betotal operators,
which means that they have well defined behavior regardless of supplied operands. This func-
tionality is provided through two distinguished values,UNDEFINEDandERROR, and defining all
operators so that they can operate on all possible values in the ClassAd system. For example, the
multiplication operator which usually only operates on numbers, has a well defined behavior if sup-
plied with values which are not meaningful to multiply. Thus, the expression10 * "A string"
evaluates to the valueERROR. Most operators arestrict with respect toERROR, which means that
they evaluate toERRORif any of their operands areERROR. Similarly, most operators are strict with
respect toUNDEFINED.

4.1.1 ClassAds: Old and New

ClassAds have existed for quite some time in two forms: Old and New. Old ClassAds were the
original form and were used in Condor until Condor version 7.5.0. They were heavily tied to the
Condor development libraries. New ClassAds added new features and were designed as a stand-
alone library that could be used apart from Condor.

In Condor version 7.5.1, Condor switched the internal usageof ClassAds from Old to New.
All user interaction with tools (such ascondor_q) as well as output of tools is still done as Old
ClassAds. Before Condor version 7.5.1, New ClassAds were used in just a few places within
Condor, for example, in the Job Router and incondor_q-better-analyze. There are some syn-
tax and behavior differences between Old and New ClassAds, all of which will remain invisible
to users of Condor for this version. A complete description of New ClassAds can be found at
http://www.cs.wisc.edu/condor/classad/, and in the ClassAd Language Reference Manual found on
this web page.

Some of the features of New ClassAds that arenot in Old ClassAds are lists, nested ads, time val-
ues, and matching groups of ads. Condor will avoid using these features until the 7.7.x development
series, as using them makes it difficult to interact with older versions of Condor.

The syntax varies slightly between Old and New ClassAds. Here is an example ClassAd pre-
sented in both forms. The Old form:

Condor Version 7.7.6 Manual

http://www.cs.wisc.edu/condor/classad/

4.1. Condor’s ClassAd Mechanism 449

Foo = 3
Bar = "ab\"cd\ef"
Moo = Foo =!= Undefined

The New form:

[
Foo = 3;
Bar = "ab\"cd\\ef";
Moo = Foo isnt Undefined;
]

Condor will convert to and from Old ClassAd syntax as needed.

New ClassAd Attribute References

Expressions often refer to ClassAd attributes. These attribute references work differently in Old
ClassAds as compared with New ClassAds. In New ClassAds, an unscoped reference is looked
for only in the local ClassAd. Anunscoped referenceis an attribute that does not have aMY. or
TARGET. prefix. Thelocal ClassAdmay be described by an example. Matchmaking uses two
ClassAds: the job ClassAd and the machine ClassAd. The job ClassAd is evaluated to see if it
is a match for the machine ClassAd. The job ClassAd is the local ClassAd. Therefore, in the
Requirements attribute of the job ClassAd, any attribute without the prefix TARGET. is looked
up only in the job ClassAd. With New ClassAd evaluation, the use of the prefixMY. is eliminated,
as an unscoped reference can only refer to the local ClassAd.

TheMY. andTARGET. scoping prefixes only apply when evaluating an expression within the
context of two ClassAds. Two examples that exemplify this are matchmaking and machine pol-
icy evaluation. When evaluating an expression within the context of a single ClassAd,MY. and
TARGET.are not defined. Using them within the context of a single ClassAd will result in a value
of Undefined . Two examples that exemplify evaluating an expression within the context of a sin-
gle ClassAd are during user job policy evaluation, and with the-constraint option to command-line
tools.

New ClassAds have noCurrentTime attribute. If needed, use thetime() function instead.
In order to mimic Old ClassAd semantics in this Condor version 7.5.1 release, all ClassAds have an
explicit CurrentTime attribute, with a value oftime() .

In this Condor version 7.5.1 release, New ClassAds will mimic the evaluation behavior of Old
ClassAds. No configuration variables or submit descriptionfile contents should need to be changed.
To eliminate this behavior and use only the semantics of New ClassAds, set the configuration vari-
ableSTRICT_CLASSAD_EVALUATIONto True . This permits testing expressions to see if any
adjustment is required, before a future version of Condor potentially makes New ClassAds evalua-
tion behavior the default or the only option.

Condor Version 7.7.6 Manual

4.1. Condor’s ClassAd Mechanism 450

4.1.2 Old ClassAd Syntax

ClassAd expressions are formed by composing literals, attribute references and other sub-
expressions with operators and functions.

Literals

Literals in the ClassAd language may be of integer, real, string, undefined or error types. The syntax
of these literals is as follows:

Integer A sequence of continuous digits (i.e.,[0-9]). Additionally, the keywordsTRUEand
FALSE(case insensitive) are syntactic representations of the integers 1 and 0 respectively.

Real Two sequences of continuous digits separated by a period (i.e.,[0-9]+.[0-9]+).

String A double quote character, followed by an list of characters terminated by a double quote
character. A backslash character inside the string causes the following character to be consid-
ered as part of the string, irrespective of what that character is.

Undefined The keywordUNDEFINED(case insensitive) represents theUNDEFINEDvalue.

Error The keywordERROR(case insensitive) represents theERRORvalue.

Attributes

Every expression in a ClassAd is named by anattribute name. Together, the (name,expression) pair
is called anattribute. An attributes may be referred to in other expressions through its attribute
name.

Attribute names are sequences of alphabetic characters, digits and underscores, and may not
begin with a digit. All characters in the name are significant, but case isnot significant. Thus,
Memory, memory andMeMoRyall refer to the same attribute.

An attribute referenceconsists of the name of the attribute being referenced, and an optional
scope resolution prefix. The prefixes that may be used areMY. andTARGET.. The case used for
these prefixes isnot significant. The semantics of supplying a prefix are discussed in Section 4.1.3.

Operators

The operators that may be used in ClassAd expressions are similar to those available in C. The
available operators and their relative precedence is shownin figure 4.2. The operator with the highest
precedence is the unary minus operator. The only operators which are unfamiliar are the=?= and
=!= operators, which are discussed in Section 4.1.3.

Condor Version 7.7.6 Manual

4.1. Condor’s ClassAd Mechanism 451

- (unary negation) (high precedence)
* /
+ - (addition, subtraction)
< <= >= >
== != =?= =!=
&&
|| (low precedence)

Figure 4.2: Relative precedence of ClassAd expression operators

Predefined Functions

Any ClassAd expression may utilize predefined functions. Function names are case insensitive.
Parameters to functions and a return value from a function may be typed (as given) or not. Nested
or recursive function calls are allowed.

Here are descriptions of each of these predefined functions.The possible types are the same
as itemized in in Section 4.1.2. Where the type may be any of these literal types, it is called out
asAnyType . Where the type isInteger , but only returns the value 1 or 0 (implyingTrue or
False), it is called out asBoolean . The format of each function is given as

ReturnType FunctionName(ParameterType parameter1, Para meterType parameter2, ...)

Optional parameters are given within square brackets.

AnyType eval(AnyType Expr)EvaluatesExpr as a string and then returns the result of
evaluating thecontentsof the string as a ClassAd expression. This is useful when refer-
ring to an attribute such asslotX_State whereX, the desired slot number is an expres-
sion, such asSlotID+10 . In such a case, if attributeSlotID is 5, the value of the at-
tributeslot15_State can be referenced using the expressioneval(strcat("slot",
SlotID+10,"_State")) . Functionstrcat() calls functionstring() on the sec-
ond parameter, which evaluates the expression, and then converts the integer result 15 to the
string "15" . The concatenated string returned bystrcat() is "slot15_State" , and
this string is then evaluated.

Note that referring to attributes of a job from within the string passed toeval() in the
Requirements or Rank expressions could cause inaccuracies in Condor’s automatic auto-
clustering of jobs into equivalent groups for matchmaking purposes. This is because Condor
needs to determine which ClassAd attributes are significantfor matchmaking purposes, and
indirect references from within the string passed toeval() will not be counted.

String unparse(Attribute attr)This function looks up the value of the provided at-
tribute and returns the unparsed version as a string. The attribute’s value is not evaluated. If
the attribute’s value isx + 3 , then the function would return the string"x + 3" . If the
provided attribute cannot be found, an empty string is returned.

Condor Version 7.7.6 Manual

4.1. Condor’s ClassAd Mechanism 452

This function returnsERRORif other than exactly 1 argument is given or the argument is not
an attribute reference.

AnyType ifThenElse(AnyType IfExpr,AnyType ThenExpr, AnyType ElseExpr)
A conditional expression is described byIfExpr . The following defines return values, when
IfExpr evaluates to

• True . Evaluate and return the value as given byThenExpr .

• False . Evaluate and return the value as given byElseExpr .

• UNDEFINED. Return the valueUNDEFINED.

• ERROR. Return the valueERROR.

• 0.0 . Evaluate, and return the value as given byElseExpr .

• non-0.0 Real values. Evaluate, and return the value as given byThenExpr .

WhereIfExpr evaluates to give a value of typeString , the function returns the value
ERROR. The implementation uses lazy evaluation, so expressions are only evaluated as de-
fined.

This function returnsERRORif other than exactly 3 arguments are given.

Boolean isUndefined(AnyType Expr)Returns True , if Expr evaluates to
UNDEFINED. ReturnsFalse in all other cases.

This function returnsERRORif other than exactly 1 argument is given.

Boolean isError(AnyType Expr)ReturnsTrue , if Expr evaluates toERROR. Returns
False in all other cases.

This function returnsERRORif other than exactly 1 argument is given.

Boolean isString(AnyType Expr)ReturnsTrue , if the evaluation ofExpr gives a
value of typeString . ReturnsFalse in all other cases.

This function returnsERRORif other than exactly 1 argument is given.

Boolean isInteger(AnyType Expr)ReturnsTrue , if the evaluation ofExpr gives a
value of typeInteger . ReturnsFalse in all other cases.

This function returnsERRORif other than exactly 1 argument is given.

Boolean isReal(AnyType Expr)ReturnsTrue , if the evaluation ofExpr gives a value
of typeReal . ReturnsFalse in all other cases.

This function returnsERRORif other than exactly 1 argument is given.

Boolean isBoolean(AnyType Expr)ReturnsTrue , if the evaluation ofExpr gives the
integer value 0 or 1. ReturnsFalse in all other cases.

This function returnsERRORif other than exactly 1 argument is given.

Condor Version 7.7.6 Manual

4.1. Condor’s ClassAd Mechanism 453

Integer int(AnyType Expr)Returns the integer value as defined byExpr . Where the
type of the evaluatedExpr is Real , the value is truncated (round towards zero) to an integer.
Where the type of the evaluatedExpr is String , the string is converted to an integer using
a C-likeatoi() function. When this result is not an integer,ERRORis returned. Where the
evaluatedExpr is ERRORor UNDEFINED, ERRORis returned.

This function returnsERRORif other than exactly 1 argument is given.

Real real(AnyType Expr)Returns the real value as defined byExpr . Where the type of
the evaluatedExpr is Integer , the return value is the converted integer. Where the type of
the evaluatedExpr is String , the string is converted to a real value using a C-likeatof()
function. When this result is not a real,ERRORis returned. Where the evaluatedExpr is
ERRORor UNDEFINED, ERRORis returned.

This function returnsERRORif other than exactly 1 argument is given.

String string(AnyType Expr)Returns the string that results from the evaluation of
Expr . Converts a non-string value to a string. Where the evaluated Expr is ERRORor
UNDEFINED, ERRORis returned.

This function returnsERRORif other than exactly 1 argument is given.

Integer floor(AnyType Expr)Returns the integer that results from the evaluation of
Expr , where the type of the evaluatedExpr is Integer . Where the type of the eval-
uatedExpr is not Integer , function real(Expr) is called. Its return value is then
used to return the largest magnitude integer that is not larger than the returned value. Where
real(Expr) returnsERRORor UNDEFINED, ERRORis returned.

This function returnsERRORif other than exactly 1 argument is given.

Integer ceiling(AnyType Expr)Returns the integer that results from the evaluation of
Expr , where the type of the evaluatedExpr is Integer . Where the type of the eval-
uatedExpr is not Integer , function real(Expr) is called. Its return value is then
used to return the smallest magnitude integer that is not less than the returned value. Where
real(Expr) returnsERRORor UNDEFINED, ERRORis returned.

This function returnsERRORif other than exactly 1 argument is given.

Integer pow(Integer base, Integer exponent)

OR Real pow(Integer base, Integer exponent)

OR Real pow(Real base, Real exponent)Calculatesbase raised to the power of
exponent . If exponent is an integer value greater than or equal to 0, andbase is an
integer, then an integer value is returned. Ifexponent is an integer value less than 0, or
if either base or exponent is a real, then a real value is returned. An invocation with
exponent=0 or exponent=0.0 , for any value ofbase , including 0 or 0.0, returns the
value 1 or 1.0, type appropriate.

Integer quantize(AnyType a, Integer b)

OR Real quantize(AnyType a, Real b)

Condor Version 7.7.6 Manual

4.1. Condor’s ClassAd Mechanism 454

OR AnyType quantize(AnyType a, AnyType list b)quantize() computes the
quotient ofa/b , in order to further computeceiling(quotient) * b . This computes
and returns an integral multiple ofb that is at least as large asa. So, whenb >= a , the return
value will beb. The return type is the same as that ofb, whereb is an Integer or Real.

Whenb is a list,quantize() returns the first value in the list that is greater than or equal to
a. When no value in the list is greater than or equal toa, this computes and returns an integral
multiple of the last member in the list that is at least as large asa.

This function returnsERRORif a or b, or a member of the list that must be considered is not
an Integer or Real.

Here are examples:

8 = quantize(3, 8)
4 = quantize(3, 2)
0 = quantize(0, 4)
6.8 = quantize(1.5, 6.8)
7.2 = quantize(6.8, 1.2)
10.2 = quantize(10, 5.1)

4 = quantize(0, {4})
2 = quantize(2, {1, 2, "A"})
3.0 = quantize(3, {1, 2, 0.5})
3.0 = quantize(2.7, {1, 2, 0.5})
ERROR = quantize(3, {1, 2, "A"})

Integer round(AnyType Expr)Returns the integer that results from the evaluation of
Expr , where the type of the evaluatedExpr is Integer . Where the type of the evalu-
atedExpr is not Integer , functionreal(Expr) is called. Its return value is then used
to return the integer that results from a round-to-nearest rounding method. The nearest in-
teger value to the return value is returned, except in the case of the value at the exact mid-
point between two integer values. In this case, the even valued integer is returned. Where
real(Expr) returnsERRORor UNDEFINED, or the integer value does not fit into 32 bits,
ERRORis returned.

This function returnsERRORif other than exactly 1 argument is given.

Integer random([AnyType Expr])Where the optional argumentExpr evaluates to
typeInteger or typeReal (and calledx), the return value is the integer or realr randomly
chosen from the interval0 <= r < x . With no argument, the return value is chosen with
random(1.0) . ReturnsERRORin all other cases.

This function returnsERRORif greater than 1 argument is given.

String strcat(AnyType Expr1 [, AnyType Expr2. . .]) Returns the string
which is the concatenation of all arguments, where all arguments are converted to type
String by function string(Expr) . ReturnsERRORif any argument evaluates to
UNDEFINEDor ERROR.

Condor Version 7.7.6 Manual

4.1. Condor’s ClassAd Mechanism 455

String substr(String s, Integer offset [, Integer length])Returns
the substring ofs , from the position indicated byoffset , with (optional) length
characters. The first character withins is at offset 0. If the optionallength argument is
not present, the substring extends to the end of the string. If offset is negative, the value
(length - offset) is used for the offset. Iflength is negative, an initial substring
is computed, from the offset to the end of the string. Then, the absolute value oflength
characters are deleted from the right end of the initial substring. Further, where characters
of this resulting substring lie outside the original string, the part that lies within the original
string is returned. If the substring lies completely outside of the original string, the null string
is returned.

This function returnsERRORif greater than 3 or less than 2 arguments are given.

Integer strcmp(AnyType Expr1, AnyType Expr2)Both arguments are converted to
typeString by functionstring(Expr) . The return value is an integer that will be

• less than 0, ifExpr1 is lexicographically less thanExpr2

• equal to 0, ifExpr1 is lexicographically equal toExpr2

• greater than 0, ifExpr1 is lexicographically greater thanExpr2

Case is significant in the comparison. Where either argumentevaluates toERRORor
UNDEFINED, ERRORis returned.

This function returnsERRORif other than 2 arguments are given.

Integer stricmp(AnyType Expr1, AnyType Expr2)This function is the same as
strcmp , except that letter case isnot significant.

String toUpper(AnyType Expr)The single argument is converted to typeString by
functionstring(Expr) . The return value is this string, with all lower case lettersconverted
to upper case. If the argument evaluates toERRORor UNDEFINED, ERRORis returned.

This function returnsERRORif greater than 1 argument is given.

String toLower(AnyType Expr)The single argument is converted to typeString by
functionstring(Expr) . The return value is this string, with all upper case lettersconverted
to lower case. If the argument evaluates toERRORor UNDEFINED, ERRORis returned.

This function returnsERRORif other than exactly 1 argument is given.

Integer size(AnyType Expr)Returns the number of characters in the string, after calling
functionstring(Expr) . If the argument evaluates toERRORor UNDEFINED, ERRORis
returned.

This function returnsERRORif other than exactly 1 argument is given.

String list splitUserName(String Name)Returns a list of two strings. Where
Nameincludes an@character, the first string in the list will be the substring that comes before
the@character, and the second string in the list will be the substring that comes after. Thus,
if Nameis "user@domain" , then the returned list will be{"user", "domain"} . If
there is no@character inName, then the first string in the list will beName, and the second
string in the list will be the empty string. Thus, ifNameis "username" , then the returned
list will be {"username", ""} .

Condor Version 7.7.6 Manual

4.1. Condor’s ClassAd Mechanism 456

String list splitSlotName(String Name)Returns a list of two strings. Where
Nameincludes an@character, the first string in the list will be the substring that comes before
the@character, and the second string in the list will be the substring that comes after. Thus, if
Nameis "slot1@machine" , then the returned list will be{"slot1", "machine"} .
If there is no@character inName, then the first string in the list will be the empty string,
and the second string in the list will beName, Thus, ifNameis "machinename" , then the
returned list will be{"", "machinename"} .

Integer time() Returns the current coordinated universal time, which is the same as the
ClassAd attributeCurrentTime . This is the time, in seconds, since midnight of January
1, 1970.

String formatTime([Integer time] [, String format])Returns a for-
matted string that is a representation oftime . The argumenttime is interpreted as coor-
dinated universe time in seconds, since midnight of January1, 1970. If not specified,time
will default to the value of attributeCurrentTime .

The argumentformat is interpreted similarly to the format argument of the ANSI Cstrftime
function. It consists of arbitrary text plus placeholders for elements of the time. These place-
holders are percent signs (%) followed by a single letter. Tohave a percent sign in the output,
use a double percent sign (%%). Ifformat is not specified, it defaults to%c.

Because the implementation usesstrftime() to implement this, and some versions imple-
ment extra, non-ANSI C options, the exact options availableto an implementation may vary.
An implementation is only required to implement the ANSI C options, which are:

%a abbreviated weekday name

%A full weekday name

%b abbreviated month name

%B full month name

%c local date and time representation

%d day of the month (01-31)

%H hour in the 24-hour clock (0-23)

%I hour in the 12-hour clock (01-12)

%j day of the year (001-366)

%m month (01-12)

%M minute (00-59)

%p local equivalent of AM or PM

%S second (00-59)

%U week number of the year (Sunday as first day of week) (00-53)

%w weekday (0-6, Sunday is 0)

%W week number of the year (Monday as first day of week) (00-53)

%x local date representation

Condor Version 7.7.6 Manual

4.1. Condor’s ClassAd Mechanism 457

%X local time representation

%y year without century (00-99)

%Y year with century

%Z time zone name, if any

String interval(Integer seconds)Uses seconds to return a string of the form
days+hh:mm:ss . This represents an interval of time. Leading values that are zero are
omitted from the string. For example,seconds of 67 becomes "1:07". A second ex-
ample,seconds of 1472523 = 17*24*60*60 + 1*60*60 + 2*60 + 3, results in the string
"17+1:02:03".

AnyType debug(AnyType expression)This function evaluates its argument, and it re-
turns the result. Thus, it is a no-operation. However, a side-effect of the function is that
information about the evaluation is logged to the evaluating program’s log file. This is useful
for determining why a given ClassAd expression is evaluating the way it does. For example,
if a condor_startdSTARTexpression is unexpectedly evaluating toUNDEFINED, then wrap-
ping the expression in thisdebug() function will log information about each component of
the expression to the log file, making it easier to understandthe expression.

For the following functions, a delimiter is represented by astring. Each character within the
delimiter string delimits individual strings within a listof strings that is given by a single string.
The default delimiter contains the comma and space characters. A string within the list is ended
(delimited) by one or more characters within the delimiter string.

Integer stringListSize(String list [, String delimiter])Returns
the number of elements in the stringlist , as delimited by the optionaldelimiter string.
ReturnsERRORif either argument is not a string.

This function returnsERRORif other than 1 or 2 arguments are given.

Integer stringListSum(String list [, String delimiter])

OR Real stringListSum(String list [, String delimiter])Sums and
returns the sum of all items in the stringlist , as delimited by the optionaldelimiter
string. If all items in the list are integers, the return value is also an integer. If any item in the
list is a real value (noninteger), the return value is a real.If any item does not represent an
integer or real value, the return value isERROR.

Real stringListAvg(String list [, String delimiter])Sums and returns
the real-valued average of all items in the stringlist , as delimited by the optional
delimiter string. If any item does not represent an integer or real value, the return value is
ERROR. A list with 0 items (the empty list) returns the value 0.0.

Integer stringListMin(String list [, String delimiter])

Condor Version 7.7.6 Manual

4.1. Condor’s ClassAd Mechanism 458

OR Real stringListMin(String list [, String delimiter])Finds and
returns the minimum value from all items in the stringlist , as delimited by the optional
delimiter string. If all items in the list are integers, the return value is also an integer. If
any item in the list is a real value (noninteger), the return value is a real. If any item does not
represent an integer or real value, the return value isERROR. A list with 0 items (the empty
list) returns the valueUNDEFINED.

Integer stringListMax(String list [, String delimiter])

OR Real stringListMax(String list [, String delimiter])Finds and
returns the maximum value from all items in the stringlist , as delimited by the optional
delimiter string. If all items in the list are integers, the return value is also an integer. If
any item in the list is a real value (noninteger), the return value is a real. If any item does not
represent an integer or real value, the return value isERROR. A list with 0 items (the empty
list) returns the valueUNDEFINED.

Boolean stringListMember(String x, String list [, String delimiter])
ReturnsTRUEif item x is in the stringlist , as delimited by the optionaldelimiter
string. ReturnsFALSE if item x is not in the stringlist . Comparison is done with
strcmp() . The return value isERROR, if any of the arguments are not strings.

Boolean stringListIMember(String x, String list [, Stringdelimiter])
Same asstringListMember() , but comparison is done withstricmp() , so letter case
is not relevant.

Integer stringListsIntersect(String list1, String list2[, String delimiter])
ReturnsTRUEif the lists contain any matching elements, and returnsFALSE if the lists do
not contain any matching elements. ReturnsERRORif either argument is not a string or if an
incorrect number of arguments are given.

The following three functions utilize regular expressionsas defined and supported by the PCRE
library. See http://www.pcre.org for complete documentation of regular expressions.

Theoptions argument to these functions is a string of special characters that modify the use
of the regular expressions. Inclusion of characters other than these as options are ignored.

I or i Ignore letter case.

M or m Modifies the interpretation of the carat (^) and dollar sign ($) characters. The carat character
matches the start of a string, as well as after each newline character. The dollar sign character
matches before a newline character.

S or s The period matches any character, including the newline character.

Boolean regexp(String pattern, String target [, String options])
ReturnsTRUE if the string target is a regular expression as described bypattern .
ReturnsFALSEotherwise. If any argument is not a string, or ifpattern does not describe
a valid regular expression, returnsERROR.

Condor Version 7.7.6 Manual

http://www.pcre.org

4.1. Condor’s ClassAd Mechanism 459

String regexps(String pattern, String target, String substitute,

[String options]) The regular expressionpattern is applied totarget . If the
string target is a regular expression as described bypattern , the stringsubstitute
is returned, with backslash expansion performed. The return value isERROR, if any of the
arguments are not strings.

Boolean stringList_regexpMember(String pattern, Stringlist [, String delimiter][,
ReturnsTRUEif the string pattern is a regular expression that matches an item in the
string list , as delimited by the optionaldelimiter string. Stringoptions modifies
how the match is performed. ReturnsFALSE if pattern does not match any entries in
list . The return value isERROR, if any of the arguments are not strings, or ifpattern is
not a valid regular expression.

4.1.3 Old ClassAd Evaluation Semantics

The ClassAd mechanism’s primary purpose is for matching entities that supply constraints on can-
didate matches. The mechanism is therefore defined to carry out expression evaluations in the
context of two ClassAds that are testing each other for a potential match. For example, thecon-
dor_negotiatorevaluates theRequirements expressions of machine and job ClassAds to test if
they can be matched. The semantics of evaluating such constraints is defined below.

Literals

Literals are self-evaluating, Thus, integer, string, real, undefined and error values evaluate to them-
selves.

Attribute References

Since the expression evaluation is being carried out in the context of two ClassAds, there is a po-
tential for name space ambiguities. The following rules define the semantics of attribute references
made by adA that is being evaluated in a context with another adB:

1. If the reference is prefixed by a scope resolution prefix,

• If the prefix isMY., the attribute is looked up in ClassAdA. If the named attribute does
not exist inA, the value of the reference isUNDEFINED. Otherwise, the value of the
reference is the value of the expression bound to the attribute name.

• Similarly, if the prefix isTARGET., the attribute is looked up in ClassAdB. If the named
attribute does not exist inB, the value of the reference isUNDEFINED. Otherwise, the
value of the reference is the value of the expression bound tothe attribute name.

2. If the reference is not prefixed by a scope resolution prefix,

Condor Version 7.7.6 Manual

4.1. Condor’s ClassAd Mechanism 460

• If the attribute is defined inA, the value of the reference is the value of the expression
bound to the attribute name inA.

• Otherwise, if the attribute is defined inB, the value of the reference is the value of the
expression bound to the attribute name inB.

• Otherwise, if the attribute is defined in the ClassAd environment, the value from the
environment is returned. This is a special environment, to be distinguished from the
Unix environment. Currently, the only attribute of the environment isCurrentTime ,
which evaluates to the integer value returned by the system call time(2) .

• Otherwise, the value of the reference isUNDEFINED.

3. Finally, if the reference refers to an expression that is itself in the process of being evaluated,
there is a circular dependency in the evaluation. The value of the reference isERROR.

Operators

All operators in the ClassAd language aretotal, and thus have well defined behavior regardless of the
supplied operands. Furthermore, most operators arestrict with respect toERRORandUNDEFINED,
and thus evaluate toERRORorUNDEFINEDif either of their operands have these exceptional values.

• Arithmetic operators:

1. The operators* , / , + and- operate arithmetically only on integers and reals.

2. Arithmetic is carried out in the same type as both operands, and type promotions from
integers to reals are performed if one operand is an integer and the other real.

3. The operators are strict with respect to bothUNDEFINEDandERROR.

4. If either operand is not a numerical type, the value of the operation isERROR.

• Comparison operators:

1. The comparison operators==, != , <=, <, >= and> operate on integers, reals and strings.

2. String comparisons are case insensitive for most operators. The only exceptions are the
operators=?= and=!= , which do case sensitive comparisons assuming both sides are
strings.

3. Comparisons are carried out in the same type as both operands, and type promotions
from integers to reals are performed if one operand is a real,and the other an integer.
Strings may not be converted to any other type, so comparing astring and an integer or
a string and a real results inERROR.

4. The operators==, != , <=, < and>= > are strict with respect to bothUNDEFINEDand
ERROR.

5. In addition, the operators=?= and =!= behave similar to== and != , but are
not strict. Semantically, the=?= tests if its operands are “identical,” i.e.,
have the same type and the same value. For example,10 == UNDEFINED
and UNDEFINED == UNDEFINED both evaluate to UNDEFINED, but

Condor Version 7.7.6 Manual

4.1. Condor’s ClassAd Mechanism 461

10 =?= UNDEFINED and UNDEFINED =?= UNDEFINEDevaluate toFALSE
andTRUErespectively. The=!= operator test for the “is not identical to” condition.

• Logical operators:

1. The logical operators&&and|| operate on integers and reals. The zero value of these
types are consideredFALSEand non-zero valuesTRUE.

2. The operators arenot strict, and exploit the “don’t care” properties of the op-
erators to squashUNDEFINEDand ERRORvalues when possible. For example,
UNDEFINED && FALSEevaluates toFALSE, but UNDEFINED || FALSE evalu-
ates toUNDEFINED.

3. Any string operand is equivalent to anERRORoperand for a logical operator. In other
words,TRUE && "foobar" evaluates toERROR.

Expression Examples

The=?= operator is similar to the== operator. It checks if the left hand side operand is identical in
both type and value to the the right hand side operand, returning TRUEwhen they are identical. A
key point in understanding is that the=?= operator only produces evaluation results ofTRUEand
FALSE, where the== operator may produce evaluation resultsTRUE, FALSE, UNDEFINED, or
ERROR. Table 4.1 presents examples that define the outcome of the== operator. Table 4.2 presents
examples that define the outcome of the=?= operator.

expression evaluated result

(10 == 10) TRUE
(10 == 5) FALSE
(10 == "ABC") ERROR
(10 == UNDEFINED) UNDEFINED
(UNDEFINED == UNDEFINED) UNDEFINED

Table 4.1: Evaluation examples for the== operator

expression evaluated result

(10 =?= 10) TRUE
(10 =?= 5) FALSE
(10 =?= "ABC") FALSE
(10 =?= UNDEFINED) FALSE
(UNDEFINED =?= UNDEFINED) TRUE

Table 4.2: Evaluation examples for the=?= operator

Condor Version 7.7.6 Manual

4.1. Condor’s ClassAd Mechanism 462

The =!= operator is similar to the!= operator. It checks if the left hand side operand isnot
identical in both type and value to the the right hand side operand, returningFALSE when they
are identical. A key point in understanding is that the=!= operator only produces evaluation re-
sults ofTRUEandFALSE, where the!= operator may produce evaluation resultsTRUE, FALSE,
UNDEFINED, or ERROR. Table 4.3 presents examples that define the outcome of the!= operator.
Table 4.4 presents examples that define the outcome of the=!= operator.

expression evaluated result
(10 != 10) FALSE
(10 != 5) TRUE
(10 != "ABC") ERROR
(10 != UNDEFINED) UNDEFINED
(UNDEFINED != UNDEFINED) UNDEFINED

Table 4.3: Evaluation examples for the!= operator

expression evaluated result

(10 =!= 10) FALSE
(10 =!= 5) TRUE
(10 =!= "ABC") TRUE
(10 =!= UNDEFINED) TRUE
(UNDEFINED =!= UNDEFINED) FALSE

Table 4.4: Evaluation examples for the=!= operator

4.1.4 Old ClassAds in the Condor System

The simplicity and flexibility of ClassAds is heavily exploited in the Condor system. ClassAds are
not only used to represent machines and jobs in the Condor pool, but also other entities that ex-
ist in the pool such as checkpoint servers, submitters of jobs and master daemons. Since arbitrary
expressions may be supplied and evaluated over these ads, users have a uniform and powerful mech-
anism to specify constraints over these ads. These constraints can take the form ofRequirements
expressions in resource and job ads, or queries over other ads.

Constraints and Preferences

Therequirements andrank expressions within the submit description file are the mechanism
by which users specify the constraints and preferences of jobs. For machines, the configuration
determines both constraints and preferences of the machines.

Condor Version 7.7.6 Manual

4.1. Condor’s ClassAd Mechanism 463

For both machine and job, therank expression specifies the desirability of the match (where
higher numbers mean better matches). For example, a job ad may contain the following expressions:

Requirements = Arch=="INTEL" && OpSys == "LINUX"
Rank = TARGET.Memory + TARGET.Mips

In this case, the job requires an Intel 32-bit computer running RHEL 3 as its operating system.
Among all such computers, the customer prefers those with large physical memories and high MIPS
ratings. Since theRank is a user-specified metric,any expression may be used to specify the
perceived desirability of the match. Thecondor_negotiatordaemon runs algorithms to deliver the
best resource (as defined by therank expression) while satisfying other required criteria.

Similarly, the machine may place constraints and preferences on the jobs that it will run by
setting the machine’s configuration. For example,

Friend = Owner == "tannenba" || Owner == "wright"
ResearchGroup = Owner == "jbasney" || Owner == "raman"
Trusted = Owner != "rival" && Owner != "riffraff"
START = Trusted && (ResearchGroup || LoadAvg < 0.3 &&

KeyboardIdle > 15*60)
RANK = Friend + ResearchGroup*10

The above policy states that the computer will never run jobsowned by users rival and riffraff,
while the computer will always run a job submitted by membersof the research group. Furthermore,
jobs submitted by friends are preferred to other foreign jobs, and jobs submitted by the research
group are preferred to jobs submitted by friends.

Note: Because of the dynamic nature of ClassAd expressions, thereis no a priori notion of
an integer-valued expression, a real-valued expression, etc. However, it is intuitive to think of
theRequirements andRank expressions as integer-valued and real-valued expressions, respec-
tively. If the actual type of the expression is not of the expected type, the value is assumed to be
zero.

Querying with ClassAd Expressions

The flexibility of this system may also be used when querying ClassAds through thecondor_status
andcondor_qtools which allow users to supply ClassAd constraint expressions from the command
line.

Needed syntax is different on Unix and Windows platforms, due to the interpretation of charac-
ters in forming command-line arguments. The expression must be a single command-line argument,
and the resulting examples differ for the platforms. For Unix shells, single quote marks are used
to delimit a single argument. For a Windows command window, double quote marks are used to
delimit a single argument. Within the argument, Unix escapes the double quote mark by prepend-
ing a backslash to the double quote mark. Windows escapes thedouble quote mark by prepending
another double quote mark. There may not be spaces in between.

Here are several examples. To find all computers which have had their keyboards idle for more
than 20 minutes and have more than 100 MB of memory, the desired ClassAd expression is

Condor Version 7.7.6 Manual

4.1. Condor’s ClassAd Mechanism 464

KeyboardIdle > 20*60 && Memory > 100

On a Unix platform, the command appears as

% condor_status -const 'KeyboardIdle > 20*60 && Memory > 100 '

Name Arch OpSys State Activity LoadAv Mem ActvtyTime

amul.cs.wi SUN4u SOLARIS251 Claimed Busy 1.000 128 0+03:45 :01
aura.cs.wi SUN4u SOLARIS251 Claimed Busy 1.000 128 0+00:15 :01
balder.cs. INTEL SOLARIS251 Claimed Busy 1.000 1024 0+01:0 5:00
beatrice.c INTEL SOLARIS251 Claimed Busy 1.000 128 0+01:30 :02
...
...

Machines Owner Claimed Unclaimed Matched Preempting

SUN4u/SOLARIS251 3 0 3 0 0 0
INTEL/SOLARIS251 21 0 21 0 0 0
SUN4x/SOLARIS251 3 0 3 0 0 0

INTEL/WINDOWS 1 0 0 1 0 0
INTEL/LINUX 1 0 1 0 0 0

Total 29 0 28 1 0 0

The Windows equivalent command is

>condor_status -const "KeyboardIdle > 20*60 && Memory > 100 "

Here is an example for a Unix platform that utilizes a regularexpression ClassAd function to list
specific information. A file contains ClassAd information.condor_advertiseis used to inject this
information, andcondor_statusconstrains the search with an expression that contains a ClassAd
function.

% cat ad
MyType = "Generic"
FauxType = "DBMS"
Name = "random-test"
Machine = "f05.cs.wisc.edu"
MyAddress = "<128.105.149.105:34000>"
DaemonStartTime = 1153192799
UpdateSequenceNumber = 1

% condor_advertise UPDATE_AD_GENERIC ad

% condor_status -any -constraint 'FauxType=="DBMS" && reg exp("random.*", Name, "i")'

MyType TargetType Name

Generic None random-test

The ClassAd expression describing a machine that advertises a Windows NT operating system:

Condor Version 7.7.6 Manual

4.2. Condor’s Checkpoint Mechanism 465

OpSys == "WINDOWS"

Here are three equivalent ways on a Unix platform to list all machines advertising a Windows NT
operating system. Spaces appear in these examples to show where they are permitted.

% condor_status -constraint ' OpSys == "WINDOWS" '

% condor_status -constraint OpSys==\"WINDOWS\"

% condor_status -constraint "OpSys==\"WINDOWS\""

The equivalent command on a Windows platform to list all machines advertising a Windows
NT operating system must delimit the single argument with double quote marks, and then escape
the needed double quote marks that identify the string within the expression. Spaces appear in this
example where they are permitted.

>condor_status -constraint " OpSys == ""WINDOWS"" "

4.2 Condor’s Checkpoint Mechanism

Checkpointing is taking a snapshot of the current state of a program in such a way that the program
can be restarted from that state at a later time. Checkpointing gives the Condor scheduler the freedom
to reconsider scheduling decisions through preemptive-resume scheduling. If the scheduler decides
to no longer allocate a machine to a job (for example, when theowner of that machine returns), it
can checkpoint the job and preempt it without losing the workthe job has already accomplished.
The job can be resumed later when the scheduler allocates it anew machine. Additionally, periodic
checkpointing provides fault tolerance in Condor. Snapshots are taken periodically, and after an
interruption in service the program can continue from the most recent snapshot.

Condor provides checkpointing services to single process jobs on a number of Unix platforms.
To enable checkpointing, the user must link the program withthe Condor system call library
(libcondorsyscall.a), using thecondor_compilecommand. This means that the user must
have the object files or source code of the program to use Condor checkpointing. However, the
checkpointing services provided by Condor are strictly optional. So, while there are some classes
of jobs for which Condor does not provide checkpointing services, these jobs may still be submitted
to Condor to take advantage of Condor’s resource managementfunctionality. (See section 2.4.1 on
page 15 for a description of the classes of jobs for which Condor does not provide checkpointing
services.)

Process checkpointing is implemented in the Condor system call library as a signal handler.
When Condor sends a checkpoint signal to a process linked with this library, the provided signal
handler writes the state of the process out to a file or a network socket. This state includes the
contents of the process stack and data segments, all shared library code and data mapped into the
process’s address space, the state of all open files, and any signal handlers and pending signals. On

Condor Version 7.7.6 Manual

4.2. Condor’s Checkpoint Mechanism 466

restart, the process reads this state from the file, restoring the stack, shared library and data segments,
file state, signal handlers, and pending signals. The checkpoint signal handler then returns to user
code, which continues from where it left off when the checkpoint signal arrived.

Condor processes for which checkpointing is enabled perform a checkpoint when preempted
from a machine. When a suitable replacement execution machine is found (of the same architec-
ture and operating system), the process is restored on this new machine from the checkpoint, and
computation is resumed from where it left off. Jobs that can not be checkpointed are preempted and
restarted from the beginning.

Condor’s periodic checkpointing provides fault tolerance. Condor pools are each configured
with the PERIODIC_CHECKPOINTexpression which controls when and how often jobs which
can be checkpointed do periodic checkpoints (examples: never, every three hours, etc.). When the
time for a periodic checkpoint occurs, the job suspends processing, performs the checkpoint, and
immediately continues from where it left off. There is also acondor_ckptcommand which allows
the user to request that a Condor job immediately perform a periodic checkpoint.

In all cases, Condor jobs continue execution from the most recent complete checkpoint. If
service is interrupted while a checkpoint is being performed, causing that checkpoint to fail, the
process will restart from the previous checkpoint. Condor uses a commit style algorithm for writing
checkpoints: a previous checkpoint is deleted only after a new complete checkpoint has been written
successfully.

In certain cases, checkpointing may be delayed until a more appropriate time. For example, a
Condor job will defer a checkpoint request if it is communicating with another process over the
network. When the network connection is closed, the checkpoint will occur.

The Condor checkpointing facility can also be used for any Unix process outside of the Condor
batch environment. Standalone checkpointing is describedin section 4.2.1.

Condor can produce and use compressed checkpoints. Configuration variables (detailed in sec-
tion 3.3.12 control whether compression is used. The default is to not compress.

By default, a checkpoint is written to a file on the local disk of the machine where the job was
submitted. A Condor pool can also be configured with a checkpoint server or servers that serve as
a repository for checkpoints. (See section 3.8 on page 379.)When a host is configured to use a
checkpoint server, jobs submitted on that machine write andread checkpoints to and from the server
rather than the local disk of the submitting machine, takingthe burden of storing checkpoint files off
of the submitting machines and placing it instead on server machines (with disk space dedicated to
the purpose of storing checkpoints).

4.2.1 Standalone Checkpointing

Using the Condor checkpoint library without the remote system call functionality and outside of the
Condor system is known as standalone mode checkpointing.

To prepare a program for standalone checkpointing, simply use thecondor_compileutility as

Condor Version 7.7.6 Manual

4.2. Condor’s Checkpoint Mechanism 467

for a standard Condor job, but do not usecondor_submit. Run the program from the command line.
The checkpointing library will print a message to let you know that checkpointing is enabled and to
inform you of the default name for the checkpoint image. The message is of the form:

Condor: Notice: Will checkpoint to program_name.ckpt
Condor: Notice: Remote system calls disabled.

Platforms that use address space randomization will need a modified invocation of the program,
as described in section 6.1.2 on page 566. The invocation disables the address space randomization.

To force the program to write a checkpoint image and stop, send it the SIGTSTP signal or press
control-Z. To force the program to write a checkpoint image and continue executing, send it the
SIGUSR2 signal.

To restart a program using a checkpoint, run the program withthe argument-_condor_restart
followed by the name of the checkpoint image file. As an example, if the program is calledP1and
the checkpoint is calledP1.ckpt , use

P1 -_condor_restart P1.ckpt

Again, platforms that implement address space randomization will need a modified invocation, as
described in section 6.1.2.

4.2.2 Checkpoint Safety

Some programs have fundamental limitations that make them unsafe for checkpointing. For exam-
ple, a program that both reads and writes a single file may enter an unexpected state. Here is an
example of how this might happen.

1. Record a checkpoint image.

2. Read data from a file.

3. Write data to the same file.

4. Execution failure, so roll back to step 2.

In this example, the program would re-read data from the file,but instead of finding the original
data, would see data created in the future, and yield unexpected results.

To prevent this sort of accident, Condor displays a warning if a file is used for both reading
and writing. You can ignore or disable these warnings if you choose (see section 4.2.3,) but please
understand that your program may compute incorrect results.

Condor Version 7.7.6 Manual

4.2. Condor’s Checkpoint Mechanism 468

4.2.3 Checkpoint Warnings

Condor has warning messages in the case unexpected behaviors in your program. For example, if
file x is opened for reading and writing, you will see:

Condor: Warning: READWRITE: File '/tmp/x' used for both rea ding and writing.

You may control how these messages are displayed with the-_condor_warning command-
line argument. This argument accepts a warning category anda mode. The category describes a
certain class of messages, such as READWRITE or ALL. The modedescribes what to do with the
category. It may be ON, OFF, or ONCE. If a category is ON, it is always displayed. If a category is
OFF, it is never displayed. If a category is ONCE, it is displayed only once. To show all the available
categories and modes, just use-_condor_warning with no arguments.

For example, to limit read/write warnings to one instance:

-_condor_warning READWRITE ONCE

To turn all ordinary notices off:

-_condor_warning NOTICE OFF

The same effect can be accomplished within a program by usingthe function
_condor_warning_config , described in section 4.2.4.

4.2.4 Checkpoint Library Interface

A program need not be rewritten to take advantage of checkpointing. However, the checkpointing
library provides several C entry points that allow for a program to control its own checkpointing
behavior if needed.

• void init_image_with_file_name(char *ckpt_file_name)
This function explicitly sets a file name to use when producing or using a checkpoint.ckpt()
or ckpt_and_exit() must be called to produce the checkpoint, andrestart() must
be called to perform the actual restart.

• void init_image_with_file_descriptor(int fd)
This function explicitly sets a file descriptor to use when producing or using a check-
point. ckpt() or ckpt_and_exit() must be called to produce the checkpoint, and
restart() must be called to perform the actual restart.

• void ckpt()
This function causes a checkpoint image to be written to disk. The program will continue to
execute. This is identical to sending the program a SIGUSR2 signal.

Condor Version 7.7.6 Manual

4.3. Computing On Demand (COD) 469

• void ckpt_and_exit()
This function causes a checkpoint image to be written to disk. The program will then exit.
This is identical to sending the program a SIGTSTP signal.

• void restart()
This function causes the program to read the checkpoint image and to resume execution of the
program from the point where the checkpoint was taken. This function does not return.

• void _condor_ckpt_disable()
This function temporarily disables checkpointing. This can be handy if your program does
something that is not checkpoint-safe. For example, if a program must not be interrupted
while accessing a special file, call_condor_ckpt_disable() , access the file, and then
call _condor_ckpt_enable() . Some program actions, such as opening a socket or a
pipe, implicitly cause checkpointing to be disabled.

• void _condor_ckpt_enable()
This function re-enables checkpointing after a call to_condor_ckpt_disable() . If
a checkpointing signal arrived while checkpointing was disabled, the checkpoint will oc-
cur when this function is called. Disabling and enabling of checkpointing must occur
in matched pairs._condor_ckpt_enable() must be called once for every time that
_condor_ckpt_disable() is called.

• int _condor_warning_config(const char *kind, const char * mode
)
This function controls what warnings are displayed by Condor. The kind and mode
arguments are the same as for the-_condor_warning option described in section 4.2.3.
This function returns true if the arguments are understood and accepted. Otherwise, it returns
false.

• extern int condor_compress_ckpt
Setting this variable to one causes checkpoint images to be compressed. Setting it to zero
disables compression.

4.3 Computing On Demand (COD)

Computing On Demand (COD) extends Condor’s high throughputcomputing abilities to include a
method for running short-term jobs on instantly-availableresources.

The motivation for COD extends Condor’s job management to include interactive, compute-
intensive jobs, giving these jobs immediate access to the compute power they need over a relatively
short period of time. COD provides computing poweron demand, switching predefined resources
from working on Condor jobs to working on the COD jobs. These COD jobs (applications) cannot
use the batch scheduling functionality of Condor, since theCOD jobs require interactive response-
time. Many of the applications that are well-suited to Condor’s COD capabilities involve a cycle:
application blocked on user input, computation burst to compute results, block again on user input,

Condor Version 7.7.6 Manual

4.3. Computing On Demand (COD) 470

computation burst, etc. When the resources are not being used for the bursts of computation to
service the application, they should continue to execute long-running batch jobs.

Here are examples of applications that may benefit from COD capability:

• A giant spreadsheet with a large number of highly complex formulas which take a lot of
compute power to recalculate. The spreadsheet application(as a COD application) predefines
a claim on resources within the Condor pool. When the user presses arecalculate button,
the predefined Condor resources (nodes) work on the computation and send the results back
to the master application providing the user interface and displaying the data. Ideally, while
the user is entering new data or modifying formulas, these nodes work on non-COD jobs.

• A graphics rendering application that waits for user inputto select an image to render. The
rendering requires a huge burst of computation to produce the image. Examples are various
Computer-Aided Design (CAD) tools, fractal rendering programs, and ray-tracing tools.

• Visualization tools for data mining.

The way Condor helps these kinds of applications is to provide an infrastructure to use Condor
batch resources for the types of compute nodes described above. Condor doesNOT provide tools
to parallelize existing GUI applications. The COD functionality is an interface to allow these com-
pute nodes to interact with long-running Condor batch jobs.The user provides both the compute
node applications and the interactive master application that controls them. Condor only provides
a mechanism to allow these interactive (and often parallelized) applications to seamlessly interact
with the Condor batch system.

4.3.1 Overview of How COD Works

The resources of a Condor pool (nodes) run jobs. When a high-priority COD job appears at a node,
the lower-priority (currently running) batch job is suspended. The COD job runs immediately, while
the batch job remains suspended. When the COD job completes,the batch job instantly resumes
execution.

Administratively, an interactive COD application puts claims on nodes. While the COD appli-
cation does not need the nodes (to run the COD jobs), the claims are suspended, allowing batch jobs
to run.

4.3.2 Authorizing Users to Create and Manage COD Claims

Claims on nodes are assigned to users. A user with a claim on a resource can then suspend and
resume a COD job at will. This gives the user a great deal of power on the claimed resource, even if
it is owned by another user. Because of this, it is essential that users allowed to claim COD resources
can be trusted not to abuse this power. Users are authorized to have access to the privilege of creating
and using a COD claim on a machine. This privilege is granted when the Condor administrator

Condor Version 7.7.6 Manual

4.3. Computing On Demand (COD) 471

places a given user name in theVALID_COD_USERS list in the Condor configuration for the
machine (usually in a local configuration file).

In addition, the tools to request and manage COD claims require that the user issuing the com-
mands be authenticated. Use one of the strong authentication methods described in section 3.6.1
“Security Configuration” on page 326. If one of these methodscannot be used, then file system
authentication may be used when directly logging in to that machine (to be claimed) and issuing the
command locally.

4.3.3 Defining a COD Application

To run an application on a claimed COD resource, an authorized user defines characteristics of the
application. Examples of characteristics are the executable or script to use, the directory to run the
application in, command-line arguments, and files to use forstandard input and output. COD users
specify a ClassAd that describes these characteristics fortheir application. There are two ways for a
user to define a COD application’s ClassAd:

1. in the Condor configuration files of the COD resources

2. when they use thecondor_codcommand-line tool to launch the application itself

These two methods for defining the ClassAd can be used together. For example, the user can
define some attributes in the configuration file, and only provide a few dynamically defined attributes
with thecondor_codtool.

Regardless of how the COD application’s ClassAd is defined, the application’s executable and
input data must be pre-staged at the node. This is a current limitation of Condor’s support for COD
that will eventually go away. For now, there is no mechanism to transfer files for a COD application,
and all I/O must be performed locally or onto a network file system that is accessible by a node.

The following three sections detail defining the attributes. The first lists the attributes that can be
used to define a COD application. The second describes how to define these attributes in a Condor
configuration file. The third explains how to define these attributes using thecondor_codtool.

COD Application Attributes

Attributes for a COD application are either required or optional. The following attributes arere-
quired:

Cmd This attribute defines the full path to the executable program to be run as a COD application.
Since Condor does not currently provide any mechanism to transfer files on behalf of COD
applications, this path should be a valid path on the machinewhere the application will be
run. It is a string attribute, and must therefore be enclosedin quotation marks ("). There is no
default.

Condor Version 7.7.6 Manual

4.3. Computing On Demand (COD) 472

Owner If the condor_startddaemon is executing as root on the resource where a COD application
will run, the user must also defineOwner to specify what user name the application will
run as. (On Windows, thecondor_startddaemon always runs as an Administrator service,
which is equivalent to running as root on UNIX platforms). Ifthe user specifies any COD
application attributes with thecondor_cod_activatecommand-line tool, theOwner attribute
will be defined as the user name that rancondor_cod_activate. However, if the user defines
all attributes of their COD application in the Condor configuration files, and does not define
any attributes with thecondor_cod_activatecommand-line tool (both methods are described
below in more detail), there is no default andOwner must be specified in the configuration
file. Owner must contain a valid user name on the given COD resource. It isa string attribute,
and must therefore be enclosed in quotation marks (").

The following list of attributes areoptional:

JobUniverse This attribute defines what Condor job universe to use for thegiven COD applica-
tion. At this point, the only supported universes are vanilla and Java. This attribute must be
an integer, with vanilla using the value 5, and Java the value10.

IWD IWD is an acronym for Initial Working Directory. It defines the full path to the directory where
a given COD application are to be run. Unless the applicationchanges its current working
directory, any relative path names used by the application will be relative to the IWD. If any
other attributes that define file names (for example,In , Out , and so on) do not contain a full
path, theIWDwill automatically be pre-pended to those file names. It is a string attribute, and
must therefore be enclosed in quotation marks ("). If the IWD is not specified, the temporary
execution sandbox created by thecondor_starterwill be used as the initial working directory.

In This string defines the path to the file on the COD resource thatshould be used as standard input
(stdin) for the COD application. This file (and all parent directories) must be readable by
whatever user the COD application will run as. If not specified, the default is/dev/null .

Out This string defines the path to the file on the COD resource thatshould be used as standard
output (stdout) for the COD application. This file must be writable (and all parent directo-
ries readable) by whatever user the COD application will runas. If not specified, the default is
/dev/null . It is a string attribute, and must therefore be enclosed in quotation marks (").

Err This string defines the path to the file on the COD resource thatshould be used as standard
error (stderr) for the COD application. This file must be writable (and all parent directories
readable) by whatever user the COD application will run as. If not specified, the default is
/dev/null . It is a string attribute, and must therefore be enclosed in quotation marks (").

Env This string defines environment variables to set for a given COD application. Each environ-
ment variable has the formNAME=value . Multiple variables are delimited with a semi-
colon. An example:Env = "PATH=/usr/local/bin:/usr/bin;TERM=vt100" It
is a string attribute, and must therefore be enclosed in quotation marks (").

Args This string attribute defines the list of arguments to be supplied to the program on the
command-line. The arguments are delimited (separated) by space characters. There is no

Condor Version 7.7.6 Manual

4.3. Computing On Demand (COD) 473

default. If theJobUniverse corresponds to the Java universe, the first argument must be
the name of the class containingmain . It is a string attribute, and must therefore be enclosed
in quotation marks (").

JarFiles This string attribute is only used ifJobUniverse is 10 (the Java universe). If a
given COD application is a Java program, specify the JAR filesthat the program requires with
this attribute. There is no default. It is a string attribute, and must therefore be enclosed in
quotation marks ("). Multiple file names may be delimited with either commas or white space
characters, and therefore, file names can not contain spaces.

KillSig This attribute specifies what signal should be sent wheneverthe Condor system needs to
gracefully shutdown the COD application. It can either be specified as a string containing the
signal name (for exampleKillSig = "SIGQUIT"), or as an integer (KillSig = 3)
The default is to use SIGTERM.

StarterUserLog This string specifies a file name for a log file that thecondor_starterdaemon
can write with entries for relevant events in the life of a given COD application. It is similar to
the UserLog file specified for regular Condor jobs with theLog setting in a submit description
file. However, certain attributes that are placed in the regular UserLog file do not make sense
in the COD environment, and are therefore omitted. The default is not to write this log file. It
is a string attribute, and must therefore be enclosed in quotation marks (").

StarterUserLogUseXMLIf the StarterUserLog attribute is defined, the default format is
a human-readable format. However, Condor can write out thislog in an XML representa-
tion, instead. To enable the XML format for this UserLog, theStarterUserLogUseXML
boolean is set toTRUE. The default if not specified isFALSE.

NOTE: If any path attribute (Cmd, In , Out ,Err , StarterUserLog) is not a full path name,
Condor automatically prepends the value ofIWD.

The final set of attributes define an identification for a COD application. The job ID is made up
of both theClusterId andProcId attributes (as described below). This job ID is similar to the
job ID that is created whenever a regular Condor batch job is submitted. For regular Condor batch
jobs, the job ID is assigned automatically by thecondor_scheddwhenever a new job is submitted
into the persistent job queue. However, since there is no persistent job queue for COD, the usual
mechanism to identify the jobs does not exist. Moreover, commands that require the job ID for
batch jobs such ascondor_qand condor_rmdo not exist for COD. Instead, the claim ID is the
unique identifier for COD jobs and COD-related commands.

When using COD, the job ID is only used to identify the job in various log messages and in the
COD-specific output ofcondor_status. The COD job ID is part of the information included in all
events written to theStarterUserLog regarding a given job. The COD job ID is also used in the
Condor debugging logs described in section 3.3.4 on page 176For example, in thecondor_starter
daemon’s log file for COD jobs (calledStarterLog.cod by default) or in thecondor_startd
daemon’s log file (calledStartLog by default).

These COD IDs are optional. The job ID is useful to define whereit helps a user with ac-
counting or debugging of their own application. In this case, it is the user’s responsibility to ensure
uniqueness, if so desired.

Condor Version 7.7.6 Manual

4.3. Computing On Demand (COD) 474

ClusterId This integer defines the cluster identifier for a COD job. The default value is 1. The
ClusterId can also be defined with thecondor_cod_activatecommand-line tool using the
-cluster option.

ProcId This integer defines the process identifier (within a cluster) for a COD job. The default
value is 0. TheProcId can also be defined with thecondor_cod_activatecommand-line tool
using the-cluster option.

NOTE: The cluster and proc identifiers can also be specified as command-line arguments to the
condor_cod_activatetool when spawning a given COD application. See section 4.3.4 below for
details on usingcondor_cod_activate.

Defining Attributes in the Condor Configuration Files

To define COD attributes in the Condor configuration file for a given application, the user selects a
keyword to uniquely name ClassAd attributes of the application. This case-insensitive keyword is
used as a prefix for the various configuration file attribute names. When a user wishes to spawn a
given application, the keyword is given as an argument to thecondor_codtool and the keyword is
used at the remote COD resource to find attributes which definethe application.

Any of the ClassAd attributes described in the previous section can be specified in the configu-
ration file with the keyword prefix followed by an underscore character ("_").

For example, if the user’s keyword for a given fractal generation application is “FractGen”, the
resulting entries in the Condor configuration file may appearas:

FractGen_Cmd = "/usr/local/bin/fractgen"
FractGen_Iwd = "/tmp/cod-fractgen"
FractGen_Out = "/tmp/cod-fractgen/output"
FractGen_Err = "/tmp/cod-fractgen/error"
FractGen_Args = "mandelbrot -0.65865,-0.56254 -0.45865, -0.71254"

In this example, the executable may create other files. TheOut andErr attributes specified in
the configuration file are only for standard output and standard error redirection.

When the user wishes to spawn an instance of this application, they use the-keyword option of
FractGen in the command-line of thecondor_cod_activatecommand.

NOTE: If a user is defining all attributes of their COD applicationin the Condor configuration
files, and thecondor_startddaemon on the COD resource they are using is running as root, the user
must also defineOwner to be the user that the COD application should run as (see section 4.3.3
above).

Condor Version 7.7.6 Manual

4.3. Computing On Demand (COD) 475

Defining Attributes with the condor_codTool

COD users may define attributes dynamically (at the time theyspawn a COD application). In this
case, the user writes the ClassAd attributes into a file, and the file name is passed to thecon-
dor_cod_activatetool using the-jobad command-line option. These attributes are read by the
condor_codtool and passed through the system onto thecondor_starterdaemon which spawns
the COD application. If the file name given is- , thecondor_codtool will read from standard input
(stdin).

Users should not add a keyword prefix when defining attributeswith thecondor_cod_activate
tool. The attribute names can be used in the file directly.

WARNING: The current syntax for this file is not the same as the syntax in the file used with
condor_submit.

NOTE: Users should not define theOwner attribute when usingcondor_cod_activateon the
command line, since Condor will automatically insert the correct value based on what user runs
thecondor_cod_activatecommand and how that user authenticates to the COD resource.If a user
defines an attribute that does not match the authenticated identity, Condor treats this case as an error,
and it will fail to launch the application.

4.3.4 Managing COD Resource Claims

Separate commands are provided by Condor to manage COD claims on batch resources. Once
created, each COD claim has a unique identifying string, called the claim ID. Most commands
require a claim ID to specify which claim you wish to act on. These commands are the means by
which COD applications interact with the rest of the Condor system. They should be issued by the
controller application to manage its compute nodes. Here isa list of the commands:

Request Create a new COD claim on a given resource.

Activate Spawn a specific application on a specific COD claim.

Suspend Suspend a running application within a specific COD claim.

Renew Renew the lease to a COD claim.

Resume Resume a suspended application on a specific COD claim.

Deactivate Shut down an application, but hold onto the COD claim for future use.

ReleaseDestroy a specific COD claim, and shut down any job that is currently running on it.

Delegate proxy Send an x509 proxy credential to the specific COD claim (optional, only required
in rare cases like using glexec to spawn thecondor_starterat the execute machine where the
COD job is running).

Condor Version 7.7.6 Manual

4.3. Computing On Demand (COD) 476

To issue these commands, a user or application invokes thecondor_codtool. A command may
be specified as the first argument to this tool, as

condor_cod request -name c02.cs.wisc.edu

or thecondor_codtool can be installed in such a way that the same binary is usedfor a set of names,
as

condor_cod_request -name c02.cs.wisc.edu

Other than the command name itself (which must be included infull) additional options sup-
ported by each tool can be abbreviated to the shortest unambiguous value. For example,-name
can also be specified as-n. However, for a command likecondor_cod_activatethat supports both
-classadand -cluster, the user must use at least-cla or -clu. If the user specifies an ambiguous
option, thecondor_codtool will exit with an error message.

In addition, there is now a-codoption tocondor_status.

The following sections describe each option in greater detail.

Request

A user must be granted authorization to create COD claims on aspecific machine. In addition, when
the user uses these COD claims, the application binary or script they wish to run (and any input
data) must be pre-staged on the machine. Therefore, a user cannot simply request a COD claim at
random.

The user specifies the resource on which to make a COD claim. This is accomplished by specify-
ing the name of thecondor_startddaemon desired by invokingcondor_cod_requestwith the-name
option and the resource name (usually the host name). For example:

condor_cod_request -name c02.cs.wisc.edu

If the condor_startddaemon desired belongs to a different Condor pool than the one where
executing the COD commands, use the-pool option to provide the name of the central manager
machine of the other pool. For example:

condor_cod_request -name c02.cs.wisc.edu -pool condor.c s.wisc.edu

An alternative is to provide the IP address and port number where thecondor_startddaemon
is listening with the-addr option. This information can be found in thecondor_startdClassAd as
the attributeStartdIpAddr or by reading the log file when thecondor_startdfirst starts up. For
example:

Condor Version 7.7.6 Manual

4.3. Computing On Demand (COD) 477

condor_cod_request -addr "<128.105.146.102:40967>"

If neither -name or -addr are specified,condor_cod_requestattempts to connect to thecon-
dor_startddaemon running on the local machine (where the request command was issued).

If the condor_startddaemon to be used for the COD claim is an SMP machine and has multiple
slots, specify which resource on the machine to use for COD byproviding the full name of the
resource, not just the host name. For example:

condor_cod_request -name slot2@c02.cs.wisc.edu

A constraint on what slot is desired may be provided, insteadof specifying it by name. For
example, to run on machine c02.cs.wisc.edu, not caring which slot is used, so long as it the machine
is not currently running a job, use something like:

condor_cod_request -name c02.cs.wisc.edu -requirements 'State!="Claimed"'

In general, be careful with shell quoting issues, so that your shell is not confused by the ClassAd
expression syntax (in particular if the expression includes a string). The safest method is to enclose
any requirement expression within single quote marks (as shown above).

Once a givencondor_startddaemon has been contacted to request a new COD claim, thecon-
dor_startddaemon checks for proper authorization of the user issuing the command. If the user has
the authority, and thecondor_startddaemon finds a resource that matches any given requirements,
thecondor_startddaemon creates a new COD claim and gives it a unique identifier, the claim ID.
This ID is used to identify COD claims when using other commands. If condor_cod_requestsuc-
ceeds, the claim ID for the new claim is printed out to the screen. All other commands to manage
this claim require the claim ID to be provided as a command-line option.

When thecondor_startddaemon assigns a COD claim, the ClassAd describing the resource
is returned to the user that requested the claim. This ClassAd is a snap-shot of the output of
condor_status -long for the given machine. Ifcondor_cod_requestis invoked with the
-classadoption (which takes a file name as an argument), this ClassAd will be written out to the
given file. Otherwise, the ClassAd is printed to the screen. The only essential piece of information
in this ClassAd is the Claim ID, so that is printed to the screen, even if the whole ClassAd is also
being written to a file.

The claim ID as given after listing the machine ClassAd appears as this example:

ID of new claim is: "<128.105.121.21:49973>#1073352104#4 "

When using this claim ID in further commands, include the quote marks as well as all the characters
in between the quote marks.

NOTE: Once a COD claim is created, there is no persistent record ofit kept by thecondor_startd
daemon. So, if thecondor_startddaemon is restarted for any reason, all existing COD claims will

Condor Version 7.7.6 Manual

4.3. Computing On Demand (COD) 478

be destroyed and the newcondor_startddaemon will not recognize any attempts to use the previous
claims.

Also note that it is your responsibility to ensure that the claim is eventually removed (see sec-
tion 4.3.4). Failure to remove the COD claim will result in the condor_startdcontinuing to hold a
record of the claim for as long ascondor_startdcontinues running. If a very large number of such
claims are accumulated by thecondor_startd, this can impact its performance. Even worse: if a
COD claim is unintentionally left in an activated state, this results in the suspension of any batch
job running on the same resource for as long as the claim remains activated. For this reason, an
optional-leaseargument is supported bycondor_cod_request. This tells thecondor_startdto auto-
matically release the COD claim after the specified number ofseconds unless the lease is renewed
with condor_cod_renew. The default lease is infinitely long.

Activate

Once a user has created a valid COD claim and has the claim ID, the next step is to spawn a COD
job using the claim. The way to do this is to activate the claim, using thecondor_cod_activate
command. Once a COD application is active on a COD claim, the COD claim will move into the
Running state, and any batch Condor job on the same resource will be suspended. Whenever the
COD application is inactive (either suspended, removed from the machine, or if it exits on its own),
the state of the COD claim changes. The new state depends on why the application became inactive.
The batch Condor job then resumes.

To activate a COD claim, first define attributes about the job to be run in either the local con-
figuration of the COD resource, or in a separate file as described in this manual section. Invoke the
condor_cod_activatecommand to launch a specific instance of the job on a given COD claim ID.
The options given tocondor_cod_activatevary depending on if the job attributes are defined in the
configuration file or are passed via a file to thecondor_cod_activatetool itself. However, the-id
option is always required bycondor_cod_activate, and this option should be followed by a COD
claim ID that the user acquired viacondor_cod_request.

If the application is defined in the configuration files for theCOD resource, the user provides
the keyword (described in section 4.3.3) that uniquely identifies the application’s configuration at-
tributes. To continue the example from that section, the user would spawn their job by specifying
-keyword FractGen , for example:

condor_cod_activate -id "<claim_id>" -keyword FractGen

Substitute the<claim_id> with the valid Cod Claim Id. Using the same example as given above,
this example would be:

condor_cod_activate -id "<128.105.121.21:49973>#10733 52104#4" -keyword FractGen

If the job attributes are placed into a file to be passed to thecondor_cod_activatetool, the user
must provide the name of the file using the-jobad option. For example, if the job attributes were
defined in a file namedcod-fractgen.txt , the user spawns the job using the command:

Condor Version 7.7.6 Manual

4.3. Computing On Demand (COD) 479

condor_cod_activate -id "<claim_id>" -jobad cod-fractge n.txt

Alternatively, if the filename specified with-jobad is - , thecondor_cod_activatetool reads the job
ClassAd from standard input (stdin).

Regardless of how the job attributes are defined, there are other options thatcondor_cod_activate
accepts. These options specify the job ID for the application to be run. The job ID can either be
specified in the job’s ClassAd, or it can be specified on the command line tocondor_cod_activate.
These options are-cluster and -proc. For example, to launch a COD job with keywordfoo as
cluster 23, proc 5, or 23.5, the user invokes:

condor_cod_activate -id "<claim_id>" -key foo -cluster 23 -proc 5

The -cluster and -proc arguments are optional, since the job ID is not required for COD. If not
specified, the job ID defaults to1.0 .

Suspend

Once a COD application has been activated withcondor_cod_activateand is running on a COD
resource, it may be temporarily suspended usingcondor_cod_suspend. In this case, the claim state
becomesSuspended . Once a given COD job is suspended, if there are no other running COD jobs
on the resource, a Condor batch job can use the resource. By suspending the COD application, the
batch job is allowed to run. If a resource is idle when a COD application is first spawned, suspen-
sion of the COD job makes the batch resource available for usein the Condor system. Therefore,
whenever a COD application has no work to perform, it should be suspended to prevent the resource
from being wasted.

The interface ofcondor_cod_suspendsupports the single option-id, to specify the COD claim
ID to be suspended. For example:

condor_cod_suspend -id "<claim_id>"

If the user attempts to suspend a COD job that is not running,condor_cod_suspendexits with
an error message. The COD job may not be running because it is already suspended or because the
job was never spawned on the given COD claim in the first place.

Renew

This command tells thecondor_startdto renew the lease on the COD claim for the amount of lease
time specified when the claim was created. See section 4.3.4 for more information on using leases.

Thecondor_cod_renewtool supports only the-id option to specify the COD claim ID the user
wishes to renew. For example:

Condor Version 7.7.6 Manual

4.3. Computing On Demand (COD) 480

condor_cod_renew -id "<claim_id>"

If the user attempts to renew a COD job that no longer exists,condor_cod_renewexits with an
error message.

Resume

Once a COD application has been suspended withcondor_cod_suspend, it can be resumed using
condor_cod_resume. In this case, the claim state returns toRunning . If there is a regular batch job
running on the same resource, it will automatically be suspended if a COD application is resumed.

Thecondor_cod_resumetool supports only the-id option to specify the COD claim ID the user
wishes to resume. For example:

condor_cod_resume -id "<claim_id>"

If the user attempts to resume a COD job that is not suspended,condor_cod_resumeexits with
an error message.

Deactivate

If a given COD application does not exit on its own and needs tobe removed manually, invoke the
condor_cod_deactivatecommand to kill the job, but leave the COD claim ID valid for future COD
jobs. The user must specify the claim ID they wish to deactivate using the-id option. For example:

condor_cod_deactivate -id "<claim_id>"

By default,condor_cod_deactivateattempts to gracefully cleanup the COD application and give
it time to exit. In this case the COD claim goes into theVacating state and thecondor_starter
process controlling the job will send it theKillSig defined for the job (SIGTERM by default).
This allows the COD job to catch the signal and do whatever final work is required to exit cleanly.

However, if the program is stuck or if the user does not want togive the application time to
clean itself up, the user may use the-fast option to tell thecondor_starterto quickly kill the job and
all its descendants using SIGKILL. In this case the COD claimgoes into theKilling state. For
example:

condor_cod_deactivate -id "<claim_id>" -fast

In either case, once the COD job has finally exited, the COD claim will go into the Idle state
and will be available for future COD applications. If there are no other active COD jobs on the same
resource, the resource would become available for batch Condor jobs. Whenever the user wishes to

Condor Version 7.7.6 Manual

4.3. Computing On Demand (COD) 481

spawn another COD application, they can reuse this idle COD claim by using the same claim ID,
without having to go through the process of runningcondor_cod_request.

If the user attempts acondor_cod_deactivaterequest on a COD claim that is neitherRunning
norSuspended , thecondor_codtool exits with an error message.

Release

If users no longer wish to use a given COD claim, they can release the claim with thecon-
dor_cod_releasecommand. If there is a COD job running on the claim, the job will first be shut
down (as ifcondor_cod_deactivatewas used), and then the claim itself is removed from the resource
and the claim ID is destroyed. Further attempts to use the claim ID for any COD commands will
fail.

Thecondor_cod_releasecommand always prints out the state the COD claim was in when the
request was received. This way, users can know what state a given COD application was in when
the claim was destroyed.

Like most COD commands,condor_cod_releaserequires the claim ID to be specified using
-id. In addition,condor_cod_releasesupports the-fast option (described above in the section about
condor_cod_deactivate). If there is a job running or suspended on the claim when it isreleased with
condor_cod_release -fast , the job will be immediately killed. If-fast is not specified, the
default behavior is to use a graceful shutdown, sending whatever signal is specified in theKillSig
attribute for the job (SIGTERM by default).

Delegate proxy

In some cases, a user will want to delegate a copy of their usercredentials (in the form of an x509
proxy) to the machine where one of their COD jobs will run. Forexample, sites wishing to spawn
the condor_starterusing glexec will need a copy of this credential before the claim can be acti-
vated. Therefore, beginning with Condor version 6.9.2, CODusers have access to a the command
delegate_proxy . If users do not specifically require this proxy delegation,this command should
not be used and the rest of this section can be skipped.

Thedelegate_proxy command optionally takes a-x509proxyargument to specify the path
to the proxy file to use. Otherwise, it uses the same discoverylogic thatcondor_submituses to find
the user’s currently active proxy.

Just like every other COD command (exceptrequest), this command requires a valid COD
claim id (specified with-id) to indicate what COD claim you wish to delegate the credentials to.

This command can only be sent to idle COD claims, so it should be done beforeactivate
is run for the first time. However, once a proxy has been delegated, it can be reused by successive
claim activations, so normally this step only has to happen once, not before every activate. If a proxy
is going to expire, and a new one should be sent, this should only happen after the existing COD
claim has been deactivated.

Condor Version 7.7.6 Manual

4.4. Hooks 482

4.3.5 Limitations of COD Support in Condor

Condor’s support for COD has a few limitations.

The following items are all limitations we plan to remove in future releases of Condor:

• Applications and data must be pre-staged at a given machine.

• There is no way to define limits for how long a given COD claim can be active, how often it
is run, and so on.

• There is no accounting done for applications run under COD claims. Therefore, use of a lot
of COD resources in a given Condor pool does not adversely affect user priority.

None of the above items are fundamentally difficult to add andwe hope to address them relatively
quickly. If you run into one of these limitations, and it is a barrier to using COD, please contact
condor-admin@cs.wisc.edu with the subject “COD limitation” to gain quick help.

The following list are more fundamental limitations that wedo not plan to address:

• COD claims are not persistent on a givencondor_startddaemon.

• Condor does not provide a mechanism to parallelize a graphic application to take advantage
of COD. The Condor Team is not in the business of developing applications, we only provide
mechanisms to execute them.

4.4 Hooks

A hookis an external program or script invoked by Condor.

Job hooks that fetch work allow sites to write their own programs or scripts, and allow Con-
dor to invoke these hooks at the right moments to accomplish the desired outcome. This elimi-
nates the expense of the matchmaking and scheduling provided by thecondor_scheddand thecon-
dor_negotiator, although at the price of the flexibility they offer. Therefore, job hooks that fetch
work allow Condor to more easily and directly interface withexternal scheduling systems.

Hooks may also behave as a Job Router.

The Daemon ClassAd hooks permit thecondor_startdand thecondor_schedddaemons to exe-
cute hooks once or on a periodic basis.

Note that standard universe jobs execute differentcondor_starterandcondor_shadowdaemons
that do not implement any hook mechanisms.

Condor Version 7.7.6 Manual

mailto:condor-admin@cs.wisc.edu

4.4. Hooks 483

4.4.1 Job Hooks That Fetch Work

In the past, Condor has always sent work to the execute machines by pushing jobs to thecon-
dor_startddaemon, either from thecondor_schedddaemon or viacondor_cod. Beginning with the
Condor version 7.1.0, thecondor_startddaemon now has the ability to pull work by fetching jobs
via a system of plug-ins or hooks. Any site can configure a set of hooks to fetch work, completely
outside of the usual Condor matchmaking system.

A projected use of the hook mechanism implements what might be termed aglide-in factory,
especially where the factory is behind a firewall. Without using the hook mechanism to fetch work,
a glide-incondor_startddaemon behind a firewall depends on CCB to help it listen and eventually
receive work pushed from elsewhere. With the hook mechanism, a glide-incondor_startddaemon
behind a firewall uses the hook to pull work. The hook needs only an outbound network connection
to complete its task, thereby being able to operate from behind the firewall, without the intervention
of CCB.

Periodically, each execution slot managed by acondor_startdwill invoke a hook to see if there
is any work that can be fetched. Whenever this hook returns a valid job, thecondor_startdwill
evaluate the current state of the slot and decide if it shouldstart executing the fetched work. If the
slot is unclaimed and theStart expression evaluates toTrue , a new claim will be created for the
fetched job. If the slot is claimed, thecondor_startdwill evaluate theRank expression relative to the
fetched job, compare it to the value ofRank for the currently running job, and decide if the existing
job should be preempted due to the fetched job having a higherrank. If the slot is unavailable for
whatever reason, thecondor_startdwill refuse the fetched job and ignore it. Either way, once the
condor_startddecides what it should do with the fetched job, it will invokeanother hook to reply to
the attempt to fetch work, so that the external system knows what happened to that work unit.

If the job is accepted, a claim is created for it and the slot moves into the Claimed state. As
soon as this happens, thecondor_startdwill spawn acondor_starterto manage the execution of the
job. At this point, from the perspective of thecondor_startd, this claim is just like any other. The
usual policy expressions are evaluated, and if the job needsto be suspended or evicted, it will be.
If a higher-ranked job being managed by acondor_scheddis matched with the slot, that job will
preempt the fetched work.

Thecondor_starteritself can optionally invoke additional hooks to help manage the execution
of the specific job. There are hooks to prepare the execution environment for the job, periodically
update information about the job as it runs, notify when the job exits, and to take special actions
when the job is being evicted.

Assuming there are no interruptions, the job completes, andthecondor_starterexits, thecon-
dor_startdwill invoke the hook to fetch work again. If another job is available, the existing claim
will be reused and a newcondor_starteris spawned. If the hook returns that there is no more work
to perform, the claim will be evicted, and the slot will return to the Owner state.

Condor Version 7.7.6 Manual

4.4. Hooks 484

Work Fetching Hooks Invoked by Condor

There are a handful of hooks invoked by Condor related to fetching work, some of which are called
by thecondor_startdand others by thecondor_starter. Each hook is described, including when it
is invoked, what task it is supposed to accomplish, what datais passed to the hook, what output is
expected, and, when relevant, the exit status expected.

Hook: Fetch Work The hook defined by the configuration variable <Keyword>_HOOK_FETCH_WORKis in-
voked whenever thecondor_startdwants to see if there is any work to fetch. There is a
related configuration variable calledFetchWorkDelay which determines how long the
condor_startdwill wait between attempts to fetch work, which is describedin detail in within
section 4.4.1 on page 487.<Keyword>_HOOK_FETCH_WORKis the most important hook in
the whole system, and is the only hook that must be defined for any of the othercondor_startd
hooks to operate.

The job ClassAd returned by the hook needs to contain enough information for thecon-
dor_starterto eventually spawn the work. The required and optional attributes in this ClassAd
are identical to the ones described for Computing on Demand (COD) jobs in section 4.3.3 on
COD Application Attributes, page 471.

Command-line arguments passed to the hookNone.

Standard input given to the hook ClassAd of the slot that is looking for work.

Expected standard output from the hook ClassAd of a job that can be run. If there is no
work, the hook should return no output.

Exit status of the hook Ignored.

Hook: Reply Fetch The hook defined by the configuration variable <Keyword>_HOOK_REPLY_FETCHis in-
voked whenever<Keyword>_HOOK_FETCH_WORKreturns data and thecondor_startdde-
cides if it is going to accept the fetched job or not.

The condor_startdwill not wait for this hook to return before taking other actions, and it
ignores all output. The hook is simply advisory, and it has noimpact on the behavior of the
condor_startd.

Command-line arguments passed to the hookEither the stringaccept or reject .

Standard input given to the hook A copy of the job ClassAd and the slot ClassAd (sepa-
rated by the string----- and a new line).

Expected standard output from the hook None.

Exit status of the hook Ignored.

Hook: Evict Claim The hook defined by the configuration variable <Keyword>_HOOK_EVICT_CLAIM is in-
voked whenever thecondor_startdneeds to evict a claim representing fetched work.

The condor_startdwill not wait for this hook to return before taking other actions, and ig-
nores all output. The hook is simply advisory, and has no impact on the behavior of the
condor_startd.

Condor Version 7.7.6 Manual

4.4. Hooks 485

Command-line arguments passed to the hookNone.

Standard input given to the hook A copy of the job ClassAd and the slot ClassAd (sepa-
rated by the string----- and a new line).

Expected standard output from the hook None.

Exit status of the hook Ignored.

Hook: Prepare Job The hook defined by the configuration variable <Keyword>_HOOK_PREPARE_JOBis in-
voked by thecondor_starterbefore a job is going to be run. This hook provides a chance to
execute commands to set up the job environment, for example,to transfer input files.

Thecondor_starterwaits until this hook returns before attempting to execute the job. If the
hook returns a non-zero exit status, thecondor_starterwill assume an error was reached while
attempting to set up the job environment and abort the job.

Command-line arguments passed to the hookNone.

Standard input given to the hook A copy of the job ClassAd.

Expected standard output from the hook A set of attributes to insert or update into the job
ad. For example, changing theCmdattribute to a quoted string changes the executable
to be run.

Exit status of the hook 0 for success preparing the job, any non-zero value on failure.

Hook: Update Job Info The hook defined by the configuration variable<Keyword>_HOOK_UPDATE_JOB_INFO
is invoked periodically during the life of the job to update information about the status

of the job. When the job is first spawned, thecondor_starterwill invoke this hook after
STARTER_INITIAL_UPDATE_INTERVAL seconds (defaults to 8). Thereafter, thecon-
dor_starterwill invoke the hook everySTARTER_UPDATE_INTERVALseconds (defaults
to 300, which is 5 minutes).

Thecondor_starterwill not wait for this hook to return before taking other actions, and ig-
nores all output. The hook is simply advisory, and has no impact on the behavior of the
condor_starter.

Command-line arguments passed to the hookNone.

Standard input given to the hook A copy of the job ClassAd that has been augmented with
additional attributes describing the current status and execution behavior of the job.
The additional attributes included inside the job ClassAd are:

JobState The current state of the job. Can be either"Running" or
"Suspended" .

JobPid The process identifier for the initial job directly spawned by the con-
dor_starter.

NumPids The number of processes that the job has currently spawned.
JobStartDate The epoch time when the job was first spawned by thecon-

dor_starter.
RemoteSysCpu The total number of seconds of system CPU time (the time spentat

system calls) the job has used.

Condor Version 7.7.6 Manual

4.4. Hooks 486

RemoteUserCpu The total number of seconds of user CPU time the job has used.

ImageSize The memory image size of the job in Kbytes.

Expected standard output from the hook None.

Exit status of the hook Ignored.

Hook: Job Exit The hook defined by the configuration variable<Keyword>_HOOK_JOB_EXIT is invoked
by thecondor_starterwhenever a job exits, either on its own or when being evicted from an
execution slot.

Thecondor_starterwill wait for this hook to return before taking any other actions. In the
case of jobs that are being managed by acondor_shadow, this hook is invoked before the
condor_starterdoes its own optional file transfer back to the submission machine, writes to
the local user log file, or notifies thecondor_shadowthat the job has exited.

Command-line arguments passed to the hookA string describing how the job exited:

– exit The job exited or died with a signal on its own.

– remove The job was removed withcondor_rmor as the result of user job policy
expressions (for example,PeriodicRemove).

– hold The job was held withcondor_holdor the user job policy expressions (for
example,PeriodicHold).

– evict The job was evicted from the execution slot for any other reason (PREEMPT
evaluated to TRUE in thecondor_startd, condor_vacate, condor_off, etc).

Standard input given to the hook A copy of the job ClassAd that has been augmented with
additional attributes describing the execution behavior of the job and its final results.

The job ClassAd passed to this hook contains all of the extra attributes described above
for <Keyword>_HOOK_UPDATE_JOB_INFO, and the following additional attributes
that are only present once a job exits:

ExitReason A human-readable string describing why the job exited.

ExitBySignal A boolean indicating if the job exited due to being killed by asignal,
or if it exited with an exit status.

ExitSignal If ExitBySignal is true, the signal number that killed the job.

ExitCode If ExitBySignal is false, the integer exit code of the job.

JobDuration The number of seconds that the job ran during this invocation.

Expected standard output from the hook None.

Exit status of the hook Ignored.

Keywords to Define Job Fetch Hooks in the Condor Configurationfiles

Hooks are defined in the Condor configuration files by prefixingthe name of the hook with a key-
word. This way, a given machine can have multiple sets of hooks, each set identified by a specific
keyword.

Condor Version 7.7.6 Manual

4.4. Hooks 487

Each slot on the machine can define a separate keyword for the set of hooks that should be used
with SLOT<N>_JOB_HOOK_KEYWORD. For example, on slot 1, the variable name will be called
SLOT1_JOB_HOOK_KEYWORD. If the slot-specific keyword is not defined, thecondor_startdwill
use a global keyword as defined bySTARTD_JOB_HOOK_KEYWORD.

Once a job is fetched via<Keyword>_HOOK_FETCH_WORK, thecondor_startdwill insert
the keyword used to fetch that job into the job ClassAd asHookKeyword . This way, the same
keyword will be used to select the hooks invoked by thecondor_starterduring the actual exe-
cution of the job. However, theSTARTER_JOB_HOOK_KEYWORDcan be defined to force the
condor_starterto always use a given keyword for its own hooks, instead of looking the job ClassAd
for a HookKeyword attribute.

For example, the following configuration defines two sets of hooks, and on a machine with 4
slots, 3 of the slots use the global keyword for running work from a database-driven system, and one
of the slots uses a custom keyword to handle work fetched froma web service.

Most slots fetch and run work from the database system.
STARTD_JOB_HOOK_KEYWORD = DATABASE

Slot4 fetches and runs work from a web service.
SLOT4_JOB_HOOK_KEYWORD = WEB

The database system needs to both provide work and know the r eply
for each attempted claim.
DATABASE_HOOK_DIR = /usr/local/condor/fetch/database
DATABASE_HOOK_FETCH_WORK = $(DATABASE_HOOK_DIR)/fetch_work.php
DATABASE_HOOK_REPLY_FETCH = $(DATABASE_HOOK_DIR)/reply_fetch.php

The web system only needs to fetch work.
WEB_HOOK_DIR = /usr/local/condor/fetch/web
WEB_HOOK_FETCH_WORK = $(WEB_HOOK_DIR)/fetch_work.php

The keywords"DATABASE" and"WEB" are completely arbitrary, so each site is encouraged to
use different (more specific) names as appropriate for theirown needs.

Defining the FetchWorkDelay Expression

There are two events that trigger thecondor_startdto attempt to fetch new work:

• thecondor_startdevaluates its own state

• thecondor_starterexits after completing some fetched work

Even if a given compute slot is already busy running other work, it is possible that if it fetched
new work, thecondor_startdwould prefer this newly fetched work (via theRank expression) over
the work it is currently running. However, thecondor_startdfrequently evaluates its own state,
especially when a slot is claimed. Therefore, administrators can define a configuration variable
which controls how long thecondor_startdwill wait between attempts to fetch new work. This
variable is calledFetchWorkDelay .

Condor Version 7.7.6 Manual

4.4. Hooks 488

TheFetchWorkDelay expression must evaluate to an integer, which defines the number of
seconds since the last fetch attempt completed before thecondor_startdwill attempt to fetch more
work. However, as a ClassAd expression (evaluated in the context of the ClassAd of the slot consid-
ering if it should fetch more work, and the ClassAd of the currently running job, if any), the length
of the delay can be based on the current state the slot and eventhe currently running job.

For example, a common configuration would be to always wait 5 minutes (300 seconds) between
attempts to fetch work, unless the slot is Claimed/Idle, in which case thecondor_startdshould fetch
immediately:

FetchWorkDelay = ifThenElse(State == "Claimed" && Activit y == "Idle", 0, 300)

If the condor_startdwants to fetch work, but the time since the last attempted fetch is shorter
than the current value of the delay expression, thecondor_startdwill set a timer to fetch as soon as
the delay expires.

If this expression is not defined, thecondor_startdwill default to a five minute (300 second)
delay between all attempts to fetch work.

Example Hook: Specifying the Executable at Execution Time

The availability of multiple versions of an application leads to the need to specify one of the versions.
As an example, consider that the java universe utilizes a single, fixed JVM. There may be multiple
JVMs available, and the Condor job may need to make the choiceof JVM version. The use of a
job hook solves this problem. The job does not use the java universe, and instead uses the vanilla
universe in combination with a prepare job hook to overwritetheCmdattribute of the job ClassAd.
This attribute is the name of the executable thecondor_starterdaemon will invoke, thereby selecting
the specific JVM installation.

In the configuration of the execute machine:

JAVA5_HOOK_PREPARE_JOB = $(LIBEXEC)/java5_prepare_hoo k

With this configuration, a job that sets theHookKeyword attribute with

+HookKeyword = "JAVA5"

in the submit description file causes thecondor_starterwill run the hook specified by
JAVA5_HOOK_PREPARE_JOBbefore running this job. Note that the double quote marks are
required to correctly define the attribute. Any output from this hook is an update to the job ClassAd.
Therefore, the hook that changes the executable may be

#!/bin/sh

Condor Version 7.7.6 Manual

4.4. Hooks 489

Read and discard the job ClassAd
cat > /dev/null
echo 'Cmd = "/usr/java/java5/bin/java"'

The submit description file for this example job may be

universe = vanilla
executable = /usr/bin/java
arguments = Hello
match with a machine that advertises the JAVA5 hook
requirements = (JAVA5_HOOK_PREPARE_JOB =!= UNDEFINED)

should_transfer_files = always
when_to_transfer_output = on_exit
transfer_input_files = Hello.class

output = hello.out
error = hello.err
log = hello.log

+HookKeyword="JAVA5"
queue

Note that therequirements command ensures that this job matches with a machine that has
JAVA5_HOOK_PREPARE_JOBdefined.

4.4.2 Hooks for a Job Router

Job Router Hooks allow for an alternate transformation and/or monitoring than thecon-
dor_job_routerdaemon implements. Routing is still managed by thecondor_job_routerdaemon,
but if the Job Router Hooks are specified, then these hooks will be used to transform and monitor
the job instead.

Job Router Hooks are similar in concept to Fetch Work Hooks, but they are limited in their
scope. A hook is an external program or script invoked by thecondor_job_routerdaemon at various
points during the life cycle of a routed job.

The following sections describe how and when these hooks areused, what hooks are invoked at
various stages of the job’s life, and how to configure Condor to use these Hooks.

Hooks Invoked for Job Routing

The Job Router Hooks allow for replacement of the transformation engine used by Condor for rout-
ing a job. Since the external transformation engine is not controlled by Condor, additional hooks
provide a means to update the job’s status in Condor, and to clean up upon exit or failure cases. This

Condor Version 7.7.6 Manual

4.4. Hooks 490

allows one job to be transformed to just about any other type of job that Condor supports, as well as
to use execution nodes not normally available to Condor.

It is important to note that if the Job Router Hooks are utilized, then Condor will not ignore
or work around a failure in any hook execution. If a hook is configured, then Condor assumes its
invocation is required and will not continue by falling backto a part of its internal engine. For
example, if there is a problem transforming the job using thehooks, Condor will not fall back on its
transformation accomplished without the hook to process the job.

There are 2 ways in which the Job Router Hooks may be enabled. Ajob’s submit description
file may cause the hooks to be invoked with

+HookKeyword = "HOOKNAME"

Adding this attribute to the job’s ClassAd causes thecondor_job_routerdaemon on the submit
machine to invoke hooks prefixed with the defined keyword.HOOKNAMEis a string chosen as an
example; any string may be used.

The job’s ClassAd attribute definition ofHookKeyword takes precedence, but if not present,
hooks may be enabled by defining on the submit machine the configuration variable

JOB_ROUTER_HOOK_KEYWORD = HOOKNAME

Like the example attribute above,HOOKNAMErepresents a chosen name for the hook, replaced as
desired or appropriate.

There are 4 hooks that the Job Router can be configured to use. Each hook will be described
below along with data passed to the hook and expected output.All hooks must exit successfully.

Hook: Translate The hook defined by the configuration variable <Keyword>_HOOK_TRANSLATE_JOBis
invoked when the Job Router has determined that a job meets the definition for a route. This
hook is responsible for doing the transformation of the job and configuring any resources that
are external to Condor if applicable.

Command-line arguments passed to the hookNone.

Standard input given to the hook The first line will be the route that the job matched as
defined in Condor’s configuration files followed by the job ClassAd, separated by the
string"------" and a new line.

Expected standard output from the hook The transformed job.

Exit status of the hook 0 for success, any non-zero value on failure.

Hook: Update Job Info The hook defined by the configuration variable<Keyword>_HOOK_UPDATE_JOB_INFO
is invoked to provide status on the specified routed job when the Job Router polls the status
of routed jobs at intervals set byJOB_ROUTER_POLLING_PERIOD.

Command-line arguments passed to the hookNone.

Condor Version 7.7.6 Manual

4.4. Hooks 491

Standard input given to the hook The routed job ClassAd that is to be updated.

Expected standard output from the hook The job attributes to be updated in the routed job,
or nothing, if there was no update. To prevent clashing with Condor’s management of
job attributes, only attributes that are not managed by Condor should be output from this
hook.

Exit status of the hook 0 for success, any non-zero value on failure.

Hook: Job Finalize The hook defined by the configuration variable <Keyword>_HOOK_JOB_FINALIZE is
invoked when the Job Router has found that the job has completed. Any output from the hook
is treated as an update to the source job.

Command-line arguments passed to the hookNone.

Standard input given to the hook The source job ClassAd, followed by the routed copy
Classad that completed, separated by the string"------" and a new line.

Expected standard output from the hook An updated source job ClassAd, or nothing if
there was no update.

Exit status of the hook 0 for success, any non-zero value on failure.

Hook: Job Cleanup The hook defined by the configuration variable <Keyword>_HOOK_JOB_CLEANUPis in-
voked when the Job Router finishes managing the job. This hookwill be invoked regardless
of whether the job completes successfully or not, and must exit successfully.

Command-line arguments passed to the hookNone.

Standard input given to the hook The job ClassAd that the Job Router is done managing.

Expected standard output from the hook None.

Exit status of the hook 0 for success, any non-zero value on failure.

4.4.3 Daemon ClassAd Hooks

The Daemon ClassAd Hookmechanism is used to run executables (called jobs) directlyfrom the
condor_startdandcondor_schedddaemons. The output from these jobs is incorporated into the
machine ClassAd generated by the respective daemon. The mechanism and associated jobs have
been identified by various names, including theStartd Cron, dynamic attributes, and a distribution
of executables collectively known asHawkeye.

Pool management tasks can be enhanced by using a daemon’s ability to periodically run exe-
cutables. The executables are expected to generate ClassAdattributes as their output, which are
incorporated into the machine ClassAd. Policy expressionsmay then reference the dynamic at-
tributes.

Configuration variables related to Daemon ClassAd Hooks aredefined within section 3.3.36.
Here is a complete configuration example. It defines all threeof the available types of jobs: ones
that use thecondor_startd, benchmark jobs, and ones that use thecondor_schedd.

Condor Version 7.7.6 Manual

4.4. Hooks 492

#
Startd Cron Stuff
#
auxiliary variable to use in identifying locations of file s
MODULES = $(ROOT)/modules

STARTD_CRON_CONFIG_VAL = $(RELEASE_DIR)/bin/condor_co nfig_val
STARTD_CRON_MAX_JOB_LOAD = 0.2
STARTD_CRON_JOBLIST =

Test job
STARTD_CRON_JOBLIST = $(STARTD_CRON_JOBLIST) test
STARTD_CRON_TEST_MODE = OneShot
STARTD_CRON_TEST_RECONFIG_RERUN = True
STARTD_CRON_TEST_PREFIX = test_
STARTD_CRON_TEST_EXECUTABLE = $(MODULES)/test
STARTD_CRON_TEST_KILL = True
STARTD_CRON_TEST_PARAM0 = abc
STARTD_CRON_TEST_PARAM1 = 123
STARTD_CRON_TEST_SLOTS = 1
STARTD_CRON_TEST_JOB_LOAD = 0.01

job 'date'
STARTD_CRON_JOBLIST = $(STARTD_CRON_JOBLIST) date
STARTD_CRON_DATE_MODE = Periodic
STARTD_CRON_DATE_EXECUTABLE = $(MODULES)/date
STARTD_CRON_DATE_PERIOD = 15s
STARTD_CRON_DATE_JOB_LOAD = 0.01

Job 'foo'
STARTD_CRON_JOBLIST = $(STARTD_CRON_JOBLIST) foo
STARTD_CRON_FOO_EXECUTABLE = $(MODULES)/foo
STARTD_CRON_FOO_PREFIX = Foo
STARTD_CRON_FOO_MODE = Periodic
STARTD_CRON_FOO_PERIOD = 10m
STARTD_CRON_FOO_JOB_LOAD = 0.2

#
Benchmark Stuff
#
BENCHMARKS_JOBLIST = mips kflops

MIPS benchmark
BENCHMARKS_MIPS_EXECUTABLE = $(LIBEXEC)/condor_mips
BENCHMARKS_MIPS_JOB_LOAD = 1.0

KFLOPS benchmark
BENCHMARKS_KFLOPS_EXECUTABLE = $(LIBEXEC)/condor_kflo ps
BENCHMARKS_KFLOPS_JOB_LOAD = 1.0

#
Schedd Cron Stuff
#
SCHEDD_CRON_CONFIG_VAL = $(RELEASE_DIR)/bin/condor_co nfig_val
SCHEDD_CRON_JOBLIST =

Test job
SCHEDD_CRON_JOBLIST = $(SCHEDD_CRON_JOBLIST) test

Condor Version 7.7.6 Manual

4.5. Application Program Interfaces 493

SCHEDD_CRON_TEST_MODE = OneShot
SCHEDD_CRON_TEST_RECONFIG_RERUN = True
SCHEDD_CRON_TEST_PREFIX = test_
SCHEDD_CRON_TEST_EXECUTABLE = $(MODULES)/test
SCHEDD_CRON_TEST_PERIOD = 5m
SCHEDD_CRON_TEST_KILL = True
SCHEDD_CRON_TEST_PARAM0 = abc
SCHEDD_CRON_TEST_PARAM1 = 123

4.5 Application Program Interfaces

4.5.1 Web Service

Condor’s Web Service (WS) API provides a way for applicationdevelopers to interact with Condor,
without needing to utilize Condor’s command-line tools. Inkeeping with the Condor philosophy
of reliability and fault-tolerance, this API is designed toprovide a simple and powerful way to
interact with Condor. Condor daemons understand and implement the SOAP (Simple Object Access
Protocol) XML API to provide a web service interface for Condor job submission and management.

To deal with the issues of reliability and fault-tolerance,a two-phase commit mechanism to pro-
vides a transaction-based protocol. The following API description describes interaction between a
client using the API and both thecondor_scheddandcondor_collectordaemons to illustrate trans-
actions for use in job submission, queue management and ClassAd management functions.

Transactions

All applications using the API to interact with thecondor_scheddwill need to use transactions. A
transaction is an ACID unit of work (atomic, consistent, isolated, and durable). The API limits
the lifetime of a transaction, and both the client (application) and the server (thecondor_schedd
daemon) may place a limit on the lifetime. The server reserves the right to specify a maximum
duration for a transaction.

The client initiates a transaction using thebeginTransaction() method. It ends
the transaction with either a commit (usingcommitTransaction()) or an abort (using
abortTransaction()).

Not all operations in the API need to be performed within a transaction. Some accept a null
transaction. A null transaction is a SOAP message with

<transaction xsi:type="ns1:Transaction" xsi:nil="true "/>

Often this is achieved by passing the programming language’s equivalent ofnull in place of a
transaction identifier. It is possible that some operationswill have access to more information when

Condor Version 7.7.6 Manual

4.5. Application Program Interfaces 494

they are used inside a transaction. For instance, agetJobAds() . query would have access to the
jobs that are pending in a transaction, which are not committed and therefore not visible outside
of the transaction. Transactions are as ACID compliant as possible. Therefore, do not query for
information outside of a transaction on which to make a decision inside a transaction based on the
query’s results.

Job Submission

A ClassAd is required to describe a job. The job ClassAd will be submitted to thecondor_schedd
within a transaction using thesubmit() method. The complexity of job ClassAd creation may be
simplified by thecreateJobTemplate() method. It returns an instance of a ClassAd structure
that may be further modified. A necessary part of the job ClassAd are the job attributesClusterId
andProcId , which uniquely identify the cluster and the job within a cluster. Allocation and as-
signment of (monotonically increasing)ClusterId values utilize thenewCluster() method.
Jobs may be submitted within the assigned cluster only untilthe newCluster() method is in-
voked a subsequent time. Each job is allocated and assigned a(monotonically increasing)ProcId
within the current cluster using thenewJob() method. Therefore, the sequence of method calls to
submit a set of jobs initially callsnewCluster() . This is followed by calls tonewJob() and
thensubmit() for each job within the cluster.

As an example, here are sample cluster and job numbers that result from the ordered calls to
submission methods:

1. A call tonewCluster() , assigns aClusterId of 6.

2. A call tonewJob() , assigns aProcId of 0, as this is the first job within the cluster.

3. A call tosubmit() results in a job submission numbered 6.0.

4. A call tonewJob() , assigns aProcId of 1.

5. A call tosubmit() results in a job submission numbered 6.1.

6. A call tonewJob() , assigns aProcId of 2.

7. A call tosubmit() results in a job submission numbered 6.2.

8. A call tonewCluster() , assigns aClusterId of 7.

9. A call tonewJob() , assigns aProcId of 0, as this is the first job within the cluster.

10. A call tosubmit() results in a job submission numbered 7.0.

11. A call tonewJob() , assigns aProcId of 1.

12. A call tosubmit() results in a job submission numbered 7.1.

Condor Version 7.7.6 Manual

4.5. Application Program Interfaces 495

There is the potential that a call tosubmit() will fail. Failure means that the job is in the
queue, and it typically indicates that something needed by the job has not been sent. As a re-
sult the job has no hope in successfully running. It is possible to recover from such a failure
by trying to resend information that the job will need. It is also completely acceptable to abort
and make another attempt. To simplify the client’s effort infiguring out what the job requires, a
discoverJobRequirements() method accepting a job ClassAd and returning a list of things
that should be sent along with the job is provided.

File Transfer

A common job submission case requires the job’s executable and input files to be transferred from
the machine where the application is running to the machine where thecondor_schedddaemon is
running. This is the analogous situation to runningcondor_submitusing the-spool or -remote
option. The executable and input files must be sent directly to thecondor_schedddaemon, which
places all files in a spool location.

The two methodsdeclareFile() and sendFile() work in tandem to transfer files to
thecondor_schedddaemon. ThedeclareFile() method causes thecondor_schedddaemon to
create the file in its spool location, or indicate in its return value that the file already exists. This
increases efficiency, as resending an existing file is a wasteof resources. ThesendFile() method
sends base64 encoded data.sendFile() may be used to send an entire file, or chunks of files as
desired.

ThedeclareFile() method has both required and optional arguments.declareFile()
requires the name of the file and its size in bytes. The optional arguments relate hash information. A
hash type ofNOHASHdisables file verification; thecondor_schedddaemon will not have a reliable
way to determine the existence of the file being declared.

Methods for retrieving files are most useful when a job is completed. Consider the categorization
of the typical life-cycle for a job:

Birth: The birth of a job begins withsubmit() .

Childhood: The job executes.

Middle Age: A completed job waits to be removed. As the job enters Middle Age, itsJobStatus
ClassAd attribute becomes Completed (the value 4).

Old Age: The job’s information goes into the history log.

Once the job enters Middle Age, thegetFile() method retrieves a file. ThelistSpool()
method assists by providing a list of all the job’s files in thespool location.

The job enters Old Age by the application’s use of thecloseSpool() method. It
causes thecondor_schedddaemon to remove the job from the queue, and the job’s spool
files are no longer available. As there is no requirement for the application to invoke the
closeSpool() method, jobs can potentially remain in the queue forever. The configuration vari-
ableSOAP_LEAVE_IN_QUEUEmay mitigate this problem. When this boolean variable evaluates
to False , a job enters Old Age. A reasonable example for this configuration variable is

Condor Version 7.7.6 Manual

4.5. Application Program Interfaces 496

SOAP_LEAVE_IN_QUEUE = ((JobStatus==4) && ((ServerTime - C ompletionDate) < (60 * 60 * 24)))

This expression results in Old age for a job (removed from thequeue), once the job has been Middle
Aged (been completed) for 24 hours.

Implementation Details

Condor daemons understand and communicate using the SOAP XML protocol. An application seek-
ing to use this protocol will require code that handles the communication. The XML WSDL (Web
Services Description Language) that Condor implements is included with the Condor distribution.
It is in $(RELEASE_DIR)/lib/webservice . The WSDL must be run through a toolkit to
produce language-specific routines that do communication.The application is compiled with these
routines.

Condor must be configured to enable responses to SOAP calls. Please see section 3.3.31 for
definitions of the configuration variables related to the webservices API. The WS interface is lis-
tening on thecondor_schedddaemon’s command port. To obtain a list of all the thecondor_schedd
daemons in the pool with a WS interface, issue the command:

% condor_status -schedd -constraint "HasSOAPInterface=? =TRUE"

With this information, a further command locates the port number to use:

% condor_status -schedd -constraint "HasSOAPInterface=? =TRUE" -l | grep MyAddress

Condor’s security configuration must be set up such that access is authorized for the SOAP client.
See Section 3.6.7 for information on how to set theALLOW_SOAPandDENY_SOAPconfiguration
variables.

The API’s routines can be roughly categorized into ones thatdeal with

• Transactions

• Job Submission

• File Transfer

• Job Management

• ClassAd Management

• Version Information

The routines for each of these categories is detailed. Note that the signature provided will accurately
reflect a routine’s name, but that return values and parameter specification will vary according to the
target programming language.

Condor Version 7.7.6 Manual

4.5. Application Program Interfaces 497

Get These Items Correct

• For jobs that are to be executed on Windows platforms, explicitly set the job ClassAd attribute
NTDomain. This attribute defines the NT domain within which the job’s owner authenticates.
The attribute is necessary, and it is not set for the job by thecreateJobTemplate()
function.

Methods for Transaction Management

beginTransactionBegin a transaction. A prototype is

StatusAndTransaction beginTransaction(int duration);

Parameters • duration The expected duration of the transaction.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values. Additionally, on success, the return value con-
tains the new transaction.

commitTransactionCommits a transaction. A prototype is

Status commitTransaction(Transaction transaction);

Parameters • transaction The transaction to be committed.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values.

abortTransactionAbort a transaction. A prototype is

Status abortTransaction(Transaction transaction);

Parameters • transaction The transaction to be aborted.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values.

extendTransactionRequest an extension in duration for a specific transaction.A prototype
is

StatusAndTransaction extendTransaction(Transaction
transaction, int duration);

Parameters • transaction The transaction to be extended.

• duration The duration of the extension.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values. Additionally, on success, the return value con-
tains the transaction with the extended duration.

Condor Version 7.7.6 Manual

4.5. Application Program Interfaces 498

Methods for Job Submission

submit Submit a job. A prototype is

StatusAndRequirements submit(Transaction transaction, int
clusterId, int jobId, ClassAd jobAd);

Parameters • transaction The transaction in which the submission takes place.
• clusterId The cluster identifier.
• jobId The job identifier.
• jobAd The ClassAd describing the job. Creation of this ClassAd canbe simplified

with createJobTemplate(); .

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values. Additionally, the return value contains the job’s
requirements.

createJobTemplateRequest a job Class Ad, given some of the job requirements. This job
Class Ad will be suitable for use when submitting the job. Note that the job attribute
NTDomain is not set by this function, but must be set for jobs that will execute on Windows
platforms. A prototype is

StatusAndClassAd createJobTemplate(int clusterId, int j obId,
String owner, UniverseType type, String command, String
arguments, String requirements);

Parameters • clusterId The cluster identifier.
• jobId The job identifier.
• owner The name to be associated with the job.
• type The universe under which the job will run, wheretype can be one of the

following:
enum UniverseType { STANDARD = 1, VANILLA = 5,
SCHEDULER = 7, MPI = 8, GRID = 9, JAVA = 10, PARALLEL =
11, LOCALUNIVERSE = 12, VM = 13 };

• commandThe command to execute once the job has started.
• arguments The command-line arguments forcommand.
• requirements The requirements expression for the job. For further details and

examples of the expression syntax, please refer to section 4.1.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values.

discoverJobRequirementsDiscover the requirements of a job, given a Class Ad. May be
helpful in determining what should be sent along with the job. A prototype is

StatusAndRequirements discoverJobRequirements(ClassA d jobAd);

Parameters • jobAd The ClassAd of the job.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values. Additionally, on success, the return value con-
tains the job’s requirements.

Condor Version 7.7.6 Manual

4.5. Application Program Interfaces 499

Methods for File Transfer

declareFile Declare a file that may be used by a job. A prototype is

Status declareFile(Transaction transaction, int cluster Id, int
jobId, String name, int size, HashType hashType, String has h);

Parameters • transaction The transaction in which this file is declared.

• clusterId The cluster identifier.

• jobId An identifier of the job that will use the file.

• name The name of the file.

• size The size of the file.
• hashType The type of hash mechanism used to verify file integrity, where

hashType can be one of the following:
enum HashType { NOHASH, MD5HASH };

• hash An optionally zero-length string encoding of the file hash.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values.

sendFile Send a file that a job may use. A prototype is

Status sendFile(Transaction transaction, int clusterId, int
jobId, String name, int offset, Base64 data);

Parameters • transaction The transaction in which this file is send.

• clusterId The cluster identifier.
• jobId An identifier of the job that will use the file.

• name The name of the file being sent.

• offset The starting offset within the file being sent.

• length The length from the offset to send.

• data The data block being sent. This could be the entire file or a sub-section of
the file as defined byoffset andlength .

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values.

getFile Get a file from a job’s spool. A prototype is

StatusAndBase64 getFile(Transaction transaction, int
clusterId, int jobId, String name, int offset, int length);

Parameters • transaction An optionally nullable transaction, meaning this call does
not need to occur in a transaction.

• clusterId The cluster in which to search.

• jobId The job identifier the file is associated with.

• name The name of the file to retrieve.

• offset The starting offset withing the file being retrieved.

Condor Version 7.7.6 Manual

4.5. Application Program Interfaces 500

• length The length from the offset to retrieve.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values. Additionally, on success, the return value con-
tains the file or a sub-section of the file as defined byoffset andlength .

closeSpool Close a job’s spool. All the files in the job’s spool can be deleted. A prototype is

Status closeSpool(Transaction transaction, int clusterI d, int
jobId);

Parameters • transaction An optionally nullable transaction, meaning this call does
not need to occur in a transaction.

• clusterId The cluster identifier which the job is associated with.
• jobId The job identifier for which the spool is to be removed.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values.

listSpool List the files in a job’s spool. A prototype is

StatusAndFileInfoArray listSpool(Transaction transact ion, int
clusterId, int jobId);

Parameters • transaction An optionally nullable transaction, meaning this call does
not need to occur in a transaction.

• clusterId The cluster in which to search.
• jobId The job identifier to search for.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values. Additionally, on success, the return value con-
tains a list of files and their respective sizes.

Methods for Job Management

newCluster Create a new job cluster. A prototype is

StatusAndInt newCluster(Transaction transaction);

Parameters • transaction The transaction in which this cluster is created.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values. Additionally, on success, the return value con-
tains the cluster id.

removeClusterRemove a job cluster, and all the jobs within it. A prototype is

Status removeCluster(Transaction transaction, int clust erId,
String reason);

Parameters • transaction An optionally nullable transaction, meaning this call does
not need to occur in a transaction.

Condor Version 7.7.6 Manual

4.5. Application Program Interfaces 501

• clusterId The cluster to remove.

• reason The reason for the removal.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values.

newJob Creates a new job within the most recently created job cluster. A prototype is

StatusAndInt newJob(Transaction transaction, int cluste rId);

Parameters • transaction The transaction in which this job is created.

• clusterId The cluster identifier of the most recently created cluster.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values. Additionally, on success, the return value con-
tains the job id.

removeJob Remove a job, regardless of the job’s state. A prototype is

Status removeJob(Transaction transaction, int clusterId , int
jobId, String reason, boolean forceRemoval);

Parameters • transaction An optionally nullable transaction, meaning this call does
not need to occur in a transaction.

• clusterId The cluster identifier to search in.

• jobId The job identifier to search for.

• reason The reason for the release.

• forceRemoval Set if the job should be forcibly removed.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values.

holdJob Put a job into the Hold state, regardless of the job’s currentstate. A prototype is

Status holdJob(Transaction transaction, int clusterId, i nt
jobId, string reason, boolean emailUser, boolean emailAdm in,
boolean systemHold);

Parameters • transaction An optionally nullable transaction, meaning this call does
not need to occur in a transaction.

• clusterId The cluster in which to search.

• jobId The job identifier to search for.

• reason The reason for the release.

• emailUser Set if the submitting user should be notified.

• emailAdmin Set if the administrator should be notified.

• systemHold Set if the job should be put on hold.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values.

Condor Version 7.7.6 Manual

4.5. Application Program Interfaces 502

releaseJob Release a job that has been in the Hold state. A prototype is

Status releaseJob(Transaction transaction, int clusterI d, int
jobId, String reason, boolean emailUser, boolean emailAdm in);

Parameters • transaction An optionally nullable transaction, meaning this call does
not need to occur in a transaction.

• clusterId The cluster in which to search.

• jobId The job identifier to search for.

• reason The reason for the release.

• emailUser Set if the submitting user should be notified.

• emailAdmin Set if the administrator should be notified.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values.

getJobAds A prototype is

StatusAndClassAdArray getJobAds(Transaction transacti on,
String constraint);

Parameters • transaction An optionally nullable transaction, meaning this call does
not need to occur in a transaction.

• constraint A string constraining the number ClassAds to return. For further
details and examples of the constraint syntax, please referto section 4.1.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values. Additionally, on success, the return value con-
tains all job ClassAds matching the given constraint.

getJobAd Finds a specific job ClassAd.

This method does much the same as the first element from the array returned by

getJobAds(transaction, "(ClusterId==clusterId && JobId ==jobId)")

A prototype is

StatusAndClassAd getJobAd(Transaction transaction, int
clusterId, int jobId);

Parameters • transaction An optionally nullable transaction, meaning this call does
not need to occur in a transaction.

• clusterId The cluster in which to search.

• jobId The job identifier to search for.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values. Additionally, on success, the return value con-
tains the requested ClassAd.

Condor Version 7.7.6 Manual

4.5. Application Program Interfaces 503

requestRescheduleRequest acondor_reschedulefrom thecondor_schedddaemon. A proto-
type is

Status requestReschedule();

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values.

Methods for ClassAd Management

insertAd A prototype is

Status insertAd(ClassAdType type, ClassAdStruct ad);

Parameters • type The type of ClassAd to insert, wheretype can be one of the fol-
lowing:
enum ClassAdType { STARTD_AD_TYPE, QUILL_AD_TYPE,
SCHEDD_AD_TYPE, SUBMITTOR_AD_TYPE, LICENSE_AD_TYPE,
MASTER_AD_TYPE, CKPTSRVR_AD_TYPE, COLLECTOR_AD_TYPE,
STORAGE_AD_TYPE, NEGOTIATOR_AD_TYPE, HAD_AD_TYPE,
GENERIC_AD_TYPE };

• ad The ClassAd to insert.

Return Value If the function succeeds, the return value isSUCCESS; otherwise, see
StatusCode for valid return values.

queryStartdAdsA prototype is

ClassAdArray queryStartdAds(String constraint);

Parameters • constraint A string constraining the number ClassAds to return. For
further details and examples of the constraint syntax, please refer to section 4.1.

Return Value A list of all thecondor_startdClassAds matching the given constraint.

queryScheddAdsA prototype is

ClassAdArray queryScheddAds(String constraint);

Parameters • constraint A string constraining the number ClassAds to return. For
further details and examples of the constraint syntax, please refer to section 4.1.

Return Value A list of all thecondor_scheddClassAds matching the given constraint.

queryMasterAdsA prototype is

ClassAdArray queryMasterAds(String constraint);

Parameters • constraint A string constraining the number ClassAds to return. For
further details and examples of the constraint syntax, please refer to section 4.1.

Return Value A list of all thecondor_masterClassAds matching the given constraint.

Condor Version 7.7.6 Manual

4.5. Application Program Interfaces 504

querySubmittorAdsA prototype is

ClassAdArray querySubmittorAds(String constraint);

Parameters • constraint A string constraining the number ClassAds to return. For
further details and examples of the constraint syntax, please refer to section 4.1.

Return Value A list of all the submitters ClassAds matching the given constraint.

queryLicenseAdsA prototype is

ClassAdArray queryLicenseAds(String constraint);

Parameters • constraint A string constraining the number ClassAds to return.For
further details and examples of the constraint syntax, please refer to section 4.1.

Return Value A list of all the license ClassAds matching the given constraint.

queryStorageAdsA prototype is

ClassAdArray queryStorageAds(String constraint);

Parameters • constraint A string constraining the number ClassAds to return. For
further details and examples of the constraint syntax, please refer to section 4.1.

Return Value A list of all the storage ClassAds matching the given constraint.

queryAnyAds A prototype is

ClassAdArray queryAnyAds(String constraint);

Parameters • constraint A string constraining the number ClassAds to return. For
further details and examples of the constraint syntax, please refer to section 4.1.

Return Value A list of all the ClassAds matching the given constraint. to return.

Methods for Version Information

getVersionStringA prototype is

StatusAndString getVersionString();

Return Value Returns the Condor version as a string.

getPlatformStringA prototype is

StatusAndString getPlatformString();

Return Value Returns the platform information Condor is running on as string.

Common Data Structures

Many methods return a status. Table 4.5 lists and defines theStatusCode return values.

Condor Version 7.7.6 Manual

4.5. Application Program Interfaces 505

Value Identifier Definition
0 SUCCESS All OK
1 FAIL An error occurred that is not specific to another error code
2 INVALIDTRANSACTION No such transaction exists
3 UNKNOWNCLUSTER The specified cluster is not the currently active one
4 UNKNOWNJOB The specified job does not exist within the specified cluster
5 UNKNOWNFILE
6 INCOMPLETE
7 INVALIDOFFSET
8 ALREADYEXISTS For this job, the specified file already exists

Table 4.5:StatusCode definitions

4.5.2 The DRMAA API

The following quote from the DRMAA Specification 1.0 abstract nicely describes the purpose of
the API:

The Distributed Resource Management Application API (DRMAA), developed by a working
group of the Global Grid Forum (GGF),

provides a generalized API to distributed resource management systems (DRMSs) in
order to facilitate integration of application programs. The scope of DRMAA is lim-
ited to job submission, job monitoring and control, and the retrieval of the finished
job status. DRMAA provides application developers and distributed resource manage-
ment builders with a programming model that enables the development of distributed
applications tightly coupled to an underlying DRMS. For deployers of such distributed
applications, DRMAA preserves flexibility and choice in system design.

The API allows users who write programs using DRMAA functions and link to a DRMAA
library to submit, control, and retrieve information aboutjobs to a Grid system. The Condor im-
plementation of a portion of the API allows programs (applications) to use the library functions
provided to submit, monitor and control Condor jobs.

See the DRMAA site (http://www.drmaa.org) to find the API specification for DRMA 1.0 for
further details on the API.

Implementation Details

The library was developed from the DRMA API Specification 1.0of January 2004 and the DRMAA
C Bindings v0.9 of September 2003. It is a static C library that expects a POSIX thread model on
Unix systems and a Windows thread model on Windows systems. Unix systems that do not support
POSIX threads are not guaranteed thread safety when callingthe library’s functions.

The object library file is called libcondordrmaa.a , and it is located within

Condor Version 7.7.6 Manual

http://www.drmaa.org

4.5. Application Program Interfaces 506

the <release>/lib directory in the Condor download. Its header file is called
lib_condor_drmaa.h , and it is located within the <release>/include di-
rectory in the Condor download. Also within<release>/include is the file
lib_condor_drmaa.README , which gives further details on the implementation.

Use of the library requires that a localcondor_schedddaemon must be running, and the program
linked to the library must have sufficient spool space. This space should be in/tmp or specified by
the environment variablesTEMP, TMP, or SPOOL. The program linked to the library and the local
condor_schedddaemon must have read, write, and traverse rights to the spool space.

The library currently supports the following specification-defined job attributes:

DRMAA_REMOTE_COMMAND

DRMAA_JS_STATE

DRMAA_NATIVE_SPECIFICATION

DRMAA_BLOCK_EMAIL

DRMAA_INPUT_PATH

DRMAA_OUTPUT_PATH

DRMAA_ERROR_PATH

DRMAA_V_ARGV

DRMAA_V_ENV

DRMAA_V_EMAIL

The attributeDRMAA_NATIVE_SPECIFICATIONcan be used to direct all commands sup-
ported within submit description files. See thecondor_submitmanual page at section 10 for a
complete list. Multiple commands can be specified if separated by newlines.

As in the normal submit file, arbitrary attributes can be added to the job’s ClassAd by prefixing
the attribute with +. In this case, you will need to put stringvalues in quotation marks, the same as
in a submit file.

Thus to tell Condor that the job will likely use 64 megabytes of memory (65536 kilobytes), to
more highly rank machines with more memory, and to add the arbitrary attribute of department set
to chemistry, you would set AttrDRMAA_NATIVE_SPECIFICATION to the C string:

drmaa_set_attribute(jobtemplate, DRMAA_NATIVE_SPECIF ICATION,
"image_size=65536\nrank=Memory\n+department=\"chemi stry\"",
err_buf, sizeof(err_buf)-1);

Condor Version 7.7.6 Manual

4.5. Application Program Interfaces 507

4.5.3 The Condor User and Job Log Reader API

Condor has the ability to log a Condor job’s significant events during its lifetime. This is enabled in
the job’s submit description file with theLog command.

This section describes the API defined by the C++ReadUserLog class, which provides a
programming interface for applications to read and parse events, polling for events, and saving and
restoring reader state.

Constants and Enumerated Types

The following define enumerated types useful to the API.

• ULogEventOutcome (defined incondor_event.h):

– ULOG_OK: Event is valid

– ULOG_NO_EVENT: No event occurred (like EOF)

– ULOG_RD_ERROR: Error reading log file

– ULOG_MISSED_EVENT: Missed event

– ULOG_UNK_ERROR: Unknown Error

• ReadUserLog::FileStatus

– LOG_STATUS_ERROR: An error was encountered

– LOG_STATUS_NOCHANGE: No change in file size

– LOG_STATUS_GROWN: File has grown

– LOG_STATUS_SHRUNK: File has shrunk

Constructors and Destructors

All ReadUserLog constructors invoke one of theinitialize() methods. Since C++ con-
structors cannot return errors, an application using any but the default constructor should call
isIinitialized() to verify that the object initialized correctly, and for example, had permis-
sions to open required files.

Note that because the constructors cannot return status information, most of these constructors
will be eliminated in the future. All constructors, except for the default constructor with no parame-
ters, will be removed. The application will need to call the appropriateinitialize() method.

• ReadUserLog::ReadUserLog(bool isEventLog)
Synopsis:Constructor default
Returns: None
Constructor parameters:

Condor Version 7.7.6 Manual

4.5. Application Program Interfaces 508

– bool isEventLog (Optional with default= false)
If true , theReadUserLog object is initialized to read the schedd-wide event log.
NOTE: If isEventLog is true , the initialization may silently fail, so the value of
ReadUserLog::isInitialized should be checked to verify that the initialization
was successful.
NOTE: The isEventLog parameter will be removed in the future.

• ReadUserLog::ReadUserLog(FILE *fp, bool is_xml, bool
enable_close)
Synopsis:Constructor of a limited functionality reader: no rotationhandling, no locking
Returns: None
Constructor parameters:

– FILE * fp
File pointer to the previously opened log file to read.

– bool is_xml
If true , the file is treated as XML; otherwise, it will be read as an oldstyle file.

– bool enable_close (Optional with default= false)
If true , the reader will open the file read-only.

NOTE: TheReadUserLog::isInitialized method should be invoked to verify that
this constructor was initialized successfully.
NOTE: This constructor will be removed in the future.

• ReadUserLog::ReadUserLog(const char *filename, bool
read_only)
Synopsis:Constructor to read a specific log file
Returns: None
Constructor parameters:

– const char * filename
Path to the log file to read

– bool read_only (Optional with default= false)
If true , the reader will open the file read-only and disable locking.

NOTE: This constructor will be removed in the future.

• ReadUserLog::ReadUserLog(const FileState &state, bool
read_only)
Synopsis:Constructor to continue from a persisted reader state
Returns: None
Constructor parameters:

– const FileState & state
Reference to the persisted state to restore from

– bool read_only (Optional with default= false)
If true , the reader will open the file read-only and disable locking.

Condor Version 7.7.6 Manual

4.5. Application Program Interfaces 509

NOTE: TheReadUserLog::isInitialized method should be invoked to verify that
this constructor was initialized successfully.
NOTE: This constructor will be removed in the future.

• ReadUserLog::˜ReadUserLog(void)
Synopsis:Destructor
Returns: None
Destructor parameters:

– None.

Initializers

These methods are used to perform the initialization of theReadUserLog objects. These initializ-
ers are used by all constructors that do real work. Applications should never use those constructors,
should use the default constructor, and should instead use one of these initializer methods.

All of these functions will returnfalse if there are problems such as being unable to open the
log file, or true if successful.

• bool ReadUserLog::initialize(void)
Synopsis:Initialize to read the EventLog file.
NOTE: This method will likely be eliminated in the future, and this functionality will be
moved to a newReadEventLog class.
Returns: bool ; true : success,false : failed
Method parameters:

– None.

• bool ReadUserLog::initialize(const char *filename, bool
handle_rotation, bool check_for_rotated, bool read_only)
Synopsis:Initialize to read a specific log file.
Returns: bool ; true : success,false : failed
Method parameters:

– const char * filename
Path to the log file to read

– bool handle_rotation (Optional with default= false)
If true , enable the reader to handle rotating log files, which is onlyuseful for global
user logs

– bool check_for_rotated (Optional with default= false)
If true , try to open the rotated files (with file names appended with.old or .1 , .2 ,
. . .) first.

– bool read_only (Optional with default= false)
If true , the reader will open the file read-only and disable locking.

Condor Version 7.7.6 Manual

4.5. Application Program Interfaces 510

• bool ReadUserLog::initialize(const char *filename, int
max_rotation, bool check_for_rotated, bool read_only)
Synopsis:Initialize to read a specific log file.
Returns: bool ; true : success,false : failed
Method parameters:

– const char * filename
Path to the log file to read

– int max_rotation
Limits what previously rotated files will be considered by the number given in the file
name suffix. A value of 0 disables looking for rotated files. A value of 1 limits the
rotated file to be that with the file name suffix of.old . As only event logs are rotated,
this parameter is only useful for event logs.

– bool check_for_rotated (Optional with default= false)
If true , try to open the rotated files (with file names appended with.old or .1 , .2 ,
. . .) first.

– bool read_only (Optional with default= false)
If true , the reader will open the file read-only and disable locking.

• bool ReadUserLog::initialize(const FileState &state, bo ol
read_only)
Synopsis:Initialize to continue from a persisted reader state.
Returns: bool ; true : success,false : failed
Method parameters:

– const FileState & state
Reference to the persisted state to restore from

– bool read_only (Optional with default= false)
If true , the reader will open the file read-only and disable locking.

• bool ReadUserLog::initialize(const FileState &state, in t
max_rotation, bool read_only)
Synopsis:Initialize to continue from a persisted reader state and setthe rotation parameters.
Returns: bool ; true : success,false : failed
Method parameters:

– const FileState & state
Reference to the persisted state to restore from

– int max_rotation
Limits what previously rotated files will be considered by the number given in the file
name suffix. A value of 0 disables looking for rotated files. A value of 1 limits the
rotated file to be that with the file name suffix of.old . As only event logs are rotated,
this parameter is only useful for event logs.

– bool read_only (Optional with default= false)
If true , the reader will open the file read-only and disable locking.

Condor Version 7.7.6 Manual

4.5. Application Program Interfaces 511

Primary Methods

• ULogEventOutcome ReadUserLog::readEvent(ULogEvent ∗& event)
Synopsis:Read the next event from the log file.
Returns: ULogEventOutcome ; Outcome of the log read attempt.ULogEventOutcome
is an enumerated type.
Method parameters:

– ULogEvent ∗& event
Pointer to an ULogEvent that is allocated by this call to
ReadUserLog::readEvent . If no event is allocated, this pointer is set to
NULL. Otherwise the event needs to bedelete()ed by the application.

• bool ReadUserLog::synchronize(void)
Synopsis:Synchronize the log file if the last event read was an error. This safe guard function
should be called if there is some error reading an event, but there are events after it in the file.
It will skip over the bad event, meaning it will read up to and including the event separator, so
that the rest of the events can be read.
Returns: bool ; true : success,false : failed
Method parameters:

– None.

Accessors

• ReadUserLog::FileStatus ReadUserLog::CheckFileStatus (void)
Synopsis:Check the status of the file, and whether it has grown, shrunk,etc.
Returns: ReadUserLog::FileStatus ; the status of the log file, an enumerated type.
Method parameters:

– None.

• ReadUserLog::FileStatus ReadUserLog::CheckFileStatus (bool
&is_empty)
Synopsis:Check the status of the file, and whether it has grown, shrunk,etc.
Returns: ReadUserLog::FileStatus ; the status of the log file, an enumerated type.
Method parameters:

– bool & is_empty
Set totrue if the file is empty,false otherwise.

Methods for saving and restoring persistent reader state

The ReadUserLog::FileState structure is used to save and restore the state of the
ReadUserLog state for persistence. The application should always useInitFileState()
to initialize this structure.

Condor Version 7.7.6 Manual

4.5. Application Program Interfaces 512

All of these methods take a reference to a state buffer as their only parameter.

All of these methods returntrue upon success.

Save state to persistent storage

To save the state, do something like this:

ReadUserLog reader;
ReadUserLog::FileState statebuf;

status = ReadUserLog::InitFileState(statebuf);

status = reader.GetFileState(statebuf);
write(fd, statebuf.buf, statebuf.size);
...
status = reader.GetFileState(statebuf);
write(fd, statebuf.buf, statebuf.size);
...

status = UninitFileState(statebuf);

Restore state from persistent storage

To restore the state, do something like this:

ReadUserLog::FileState statebuf;
status = ReadUserLog::InitFileState(statebuf);

read(fd, statebuf.buf, statebuf.size);

ReadUserLog reader;
status = reader.initialize(statebuf);

status = UninitFileState(statebuf);
....

API Reference

• static bool ReadUserLog::InitFileState(ReadUserLog::F ileState
&state)
Synopsis:Initialize a file state buffer
Returns: bool ; true if successful,false otherwise
Method parameters:

– ReadUserLog::FileState & state
The file state buffer to initialize.

Condor Version 7.7.6 Manual

4.5. Application Program Interfaces 513

• static bool ReadUserLog::UninitFileState(ReadUserLog: :FileState
&state)
Synopsis:Clean up a file state buffer and free allocated memory
Returns: bool ; true if successful,false otherwise
Method parameters:

– ReadUserLog::FileState & state
The file state buffer to un-initialize.

• bool ReadUserLog::GetFileState(ReadUserLog::FileStat e &state)
const
Synopsis:Get the current state to persist it or save it off to disk
Returns: bool ; true if successful,false otherwise
Method parameters:

– ReadUserLog::FileState & state
The file state buffer to read the state into.

• bool ReadUserLog::SetFileState(const ReadUserLog::Fil eState
&state)
Synopsis:Use this method to set the current state, after restoring it.
NOTE: The state buffer isNOT automatically updated; a callMUST be made to the
GetFileState() method each time before persisting the buffer to disk, or however else
is chosen to persist its contents.
Returns: bool ; true if successful,false otherwise
Method parameters:

– const ReadUserLog::FileState & state
The file state buffer to restore from.

Access to the persistent state data

If the application needs access to the data elements in a persistent state, it should instantiate a
ReadUserLogStateAccess object.

• Constructors / Destructors

– ReadUserLogStateAccess::ReadUserLogStateAccess(cons t
ReadUserLog::FileState &state)
Synopsis:Constructor default
Returns: None
Constructor parameters:

* const ReadUserLog::FileState & state
Reference to the persistent state data to initialize from.

Condor Version 7.7.6 Manual

4.5. Application Program Interfaces 514

– ReadUserLogStateAccess::˜ReadUserLogStateAccess(voi d)
Synopsis:Destructor
Returns: None
Destructor parameters:

* None.

• Accessor Methods

– bool ReadUserLogFileState::isInitialized(void) const
Synopsis:Checks if the buffer initialized
Returns: bool ; true if successfully initialized,false otherwise
Method parameters:

* None.

– bool ReadUserLogFileState::isValid(void) const
Synopsis:Checks if the buffer is valid for use byReadUserLog::initialize()
Returns: bool ; true if successful,false otherwise
Method parameters:

* None.

– bool ReadUserLogFileState::getFileOffset(unsigned lon g
&pos) const
Synopsis:Get position within individual file.
NOTE: Can return an error if the result is too large to be stored in along .
Returns: bool ; true if successful,false otherwise
Method parameters:

* unsigned long & pos
Byte position within the current log file

– bool ReadUserLogFileState::getFileEventNum(unsigned l ong
&num) const
Synopsis:Get event number in individual file.
NOTE: Can return an error if the result is too large to be stored in along .
Returns: bool ; true if successful,false otherwise
Method parameters:

* unsigned long & num
Event number of the current event in the current log file

– bool ReadUserLogFileState::getLogPosition(unsigned lo ng
&pos) const
Synopsis:Position of the start of the current file in overall log.
NOTE: Can return an error if the result is too large to be stored in along .
Returns: bool ; true if successful,false otherwise
Method parameters:

* unsigned long & pos
Byte offset of the start of the current file in the overall logical log stream.

Condor Version 7.7.6 Manual

4.5. Application Program Interfaces 515

– bool ReadUserLogFileState::getEventNumber(unsigned lo ng
&num) const
Synopsis:Get the event number of the first event in the current file
NOTE: Can return an error if the result is too large to be stored in along .
Returns: bool; true if successful,false otherwise
Method parameters:

* unsigned long & num
This is the absolute event number of the first event in the current file in the overall
logical log stream.

– bool ReadUserLogFileState::getUniqId(char *buf, int siz e)
const
Synopsis:Get the unique ID of the associated state file.
Returns: bool; true if successful,false otherwise
Method parameters:

* char ∗ buf
Buffer to fill with the unique ID of the current file.

* int size
Size in bytes ofbuf .
This is to preventReadUserLogFileState::getUniqId from writing past
the end ofbuf .

– bool ReadUserLogFileState::getSequenceNumber(int &seq no)
const
Synopsis:Get the sequence number of the associated state file.
Returns: bool ; true if successful,false otherwise
Method parameters:

* int & seqno
Sequence number of the current file

• Comparison Methods

– bool ReadUserLogFileState::getFileOffsetDiff(const
ReadUserLogStateAccess &other, unsigned long &pos) const
Synopsis:Get the position difference of two states given bythis andother .
NOTE: Can return an error if the result is too large to be stored in along .
Returns: bool ; true if successful,false otherwise
Method parameters:

* const ReadUserLogStateAccess & other
Reference to the state to compare to.

* long & diff
Difference in the positions

– bool ReadUserLogFileState::getFileEventNumDiff(const
ReadUserLogStateAccess &other, long &diff) const
Synopsis:Get event number in individual file.
NOTE: Can return an error if the result is too large to be stored in along .

Condor Version 7.7.6 Manual

4.5. Application Program Interfaces 516

Returns: bool; true if successful,false otherwise
Method parameters:

* const ReadUserLogStateAccess & other
Reference to the state to compare to.

* long & diff
Event number of the current event in the current log file

– bool ReadUserLogFileState::getLogPosition(const
ReadUserLogStateAccess &other, long &diff) const
Synopsis:Get the position difference of two states given bythis andother .
NOTE: Can return an error if the result is too large to be stored in along .
Returns: bool; true if successful,false otherwise
Method parameters:

* const ReadUserLogStateAccess & other
Reference to the state to compare to.

* long & diff
Difference between the byte offset of the start of the current file in the overall logical
log stream and that ofother .

– bool ReadUserLogFileState::getEventNumber(const
ReadUserLogStateAccess &other, long &diff) const
Synopsis: Get the difference between the event number of the first eventin two state
buffers (this - other).
NOTE: Can return an error if the result is too large to be stored in along .
Returns: bool; true if successful,false otherwise
Method parameters:

* const ReadUserLogStateAccess & other
Reference to the state to compare to.

* long & diff
Difference between the absolute event number of the first event in the current file in
the overall logical log stream and that ofother .

Future persistence API

The ReadUserLog::FileState will likely be replaced with a new C++
ReadUserLog::NewFileState , or a similarly named class that will self initialize.

Additionally, the functionality ofReadUserLogStateAccess will be integrated into this
class.

4.5.4 Chirp

This section has not yet been written

Condor Version 7.7.6 Manual

4.5. Application Program Interfaces 517

4.5.5 The Command Line Interface

This section has not yet been written

4.5.6 The Condor GAHP

This section has not yet been written

4.5.7 The Condor Perl Module

The Condor Perl module facilitates automatic submitting and monitoring of Condor jobs, along
with automated administration of Condor. The most common use of this module is the monitoring
of Condor jobs. The Condor Perl module can be used as a meta scheduler for the submission of
Condor jobs.

The Condor Perl module provides several subroutines. Some of the subroutines are used as
callbacks; an event triggers the execution of a specific subroutine. Other of the subroutines denote
actions to be taken by Perl. Some of these subroutines take other subroutines as arguments.

Subroutines

Submit(submit_description_file)This subroutine takes the action of submitting a job
to Condor. The argument is the name of a submit description file. Thecondor_submitprogram
should be in the path of the user. If the user wishes to monitorthe job with condor they must
specify a log file in the command file. The cluster submitted isreturned. For more information
see thecondor_submitman page.

Vacate(machine)This subroutine takes the action of sending acondor_vacatecommand to
the machine specified as an argument. The machine may be specified either by host name, or
by sinful string. For more information see thecondor_vacateman page.

Reschedule(machine)This subroutine takes the action of sending acondor_reschedulecom-
mand to the machine specified as an argument. The machine may be specified either by host
name, or bysinful string. For more information see thecondor_rescheduleman page.

Monitor(cluster)Takes the action of monitoring this cluster. It returns whenall jobs in
cluster terminate.

Wait() Takes the action of waiting until all monitor subroutines finish, and then exits the Perl
script.

DebugOn() Takes the action of turning debug messages on. This may be useful when attempting
to debug the Perl script.

DebugOff() Takes the action of turning debug messages off.

Condor Version 7.7.6 Manual

4.5. Application Program Interfaces 518

RegisterEvicted(sub)Register a subroutine (calledsub) to be used as a callback when a
job from a specified cluster is evicted. The subroutine will be called with two arguments:
cluster and job. The cluster and job are the cluster number and process number of the job that
was evicted.

RegisterEvictedWithCheckpoint(sub)Same as RegisterEvicted except that the han-
dler is called when the evicted job was checkpointed.

RegisterEvictedWithoutCheckpoint(sub)Same as RegisterEvicted except that the
handler is called when the evicted job was not checkpointed.

RegisterExit(sub)Register a termination handler that is called when a job exits. The termi-
nation handler will be called with two arguments: cluster and job. The cluster and job are the
cluster and process numbers of the existing job.

RegisterExitSuccess(sub)Register a termination handler that is called when a job exits
without errors. The termination handler will be called withtwo arguments: cluster and job
The cluster and job are the cluster and process numbers of theexisting job.

RegisterExitFailure(sub)Register a termination handler that is called when a job exits
with errors. The termination handler will be called with three arguments: cluster, job and
retval. The cluster and job are the cluster and process numbers of the existing job and the
retval is the exit code of the job.

RegisterExitAbnormal(sub)Register an termination handler that is called when a job ab-
normally exits (segmentation fault, bus error, ...). The termination handler will be called with
four arguments: cluster, job signal and core. The cluster and job are the cluster and process
numbers of the existing job. The signal indicates the signalthat the job died with and core
indicates whether a core file was created and if so, what the full path to the core file is.

RegisterAbort(sub)Register a handler that is called when a job is aborted by a user.

RegisterJobErr(sub)Register a handler that is called when a job is not executable.

RegisterExecute(sub)Register an execution handler that is called whenever a job starts
running on a given host. The handler is called with four arguments: cluster, job host, and
sinful. Cluster and job are the cluster and process numbers for the job, host is the Internet
address of the machine running the job, and sinful is the Internet address and command port
of thecondor_startersupervising the job.

RegisterSubmit(sub)Register a submit handler that is called whenever a job is submitted
with the given cluster. The handler is called with cluster, job host, and sinful. Cluster and job
are the cluster and process numbers for the job, host is the Internet address of the machine
running the job, and sinful is the Internet address and command port of thecondor_schedd
responsible for the job.

Monitor(cluster)Begin monitoring this cluster. Returns when all jobs in cluster terminate.

Wait() Wait until all monitors finish and exit.

Condor Version 7.7.6 Manual

4.5. Application Program Interfaces 519

DebugOn() Turn debug messages on. This may be useful if you don’t understand what your script
is doing.

DebugOff() Turn debug messages off.

TestSubmit(command_file)This subroutine submits a job to Condor for testing, and places
all variables from the command file into the Perl hash%submit_info . Does not reset the
state of variables, so that testing preserves callbacks.

SubmitDagman(DAG_file, DAGMan_args)Takes the action of submitting a DAG using
condor_dagman. The first argument is the name of the DAG input file, and the second ar-
gument is the command line arguments forcondor_dagman. Information from the submit
description file generated bycondor_dagmanis placed into the Perl hash%submit_info
for access during callbacks.

TestSubmitDagman(DAG_file, DAGMan_args)This subroutine submits acon-
dor_dagmanto Condor for testing, and places information from the submit description
file generated bycondor_dagmaninto the Perl hash%submit_info for access during
callbacks. The first argument is the name of the DAG input file,and the second argument is
the command line arguments forcondor_dagman. Does not reset the state of variables, so
that testing preserves callbacks.

RegisterEvictedWithRequeue(sub)Register a subroutine (calledsub) to be used as a
callback when a job from a specified cluster is requeued. The subroutine will be called with
two arguments: cluster and job. The cluster and job are the cluster number and process number
of the job that was requeued.

RegisterShadow(sub)Register a subroutine (calledsub) to be used as a callback when a
shadow exception occurs.

RegisterHold(sub)Register a subroutine (calledsub) to be used as a callback when a job
enters the hold state.

RegisterRelease(sub)Register a subroutine (calledsub) to be used as a callback when a
job is released.

RegisterWantError(sub)Register a subroutine (calledsub) to be used as a callback when
a system call invoked usingrunCommand experiences an error.

runCommand(string)string identifies a syscall that is invoked. If the syscall exits abnor-
mally or exits with an error, the callback registered withRegisterWantError() is called,
and an error message is issued.

RegisterTimed(sub, seconds)Register a subroutine (calledsub) to be called back at a
delay ofseconds time from this registration time. Only one callback may be registered, as
subsequent calls modify the timer only.

RemoveTimed()Remove the single, timed callback registered withRegisterTimed() .

Condor Version 7.7.6 Manual

4.5. Application Program Interfaces 520

Examples

The following is an example that uses the Condor Perl module.The example uses the submit de-
scription filemycmdfile.cmd to specify the submission of a job. As the job is matched with
a machine and begins to execute, a callback subroutine (calledexecute) sends acondor_vacate
signal to the job, and it increments a counter which keeps track of the number of times this callback
executes. A second callback keeps a count of the number of times that the job was evicted before
the job completes. After the job completes, the terminationcallback (callednormal) prints out a
summary of what happened.

#!/usr/bin/perl
use Condor;

$CMD_FILE = 'mycmdfile.cmd';
$evicts = 0;
$vacates = 0;

A subroutine that will be used as the normal execution callb ack
$normal = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

print "Job $cluster.$job exited normally without errors.\ n";
print "Job was vacated $vacates times and evicted $evicts ti mes\n";
exit(0);

};

$evicted = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

print "Job $cluster, $job was evicted.\n";
$evicts++;
&Condor::Reschedule();

};

$execute = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};
$host = $parameters{'host'};
$sinful = $parameters{'sinful'};

print "Job running on $sinful, vacating...\n";
&Condor::Vacate($sinful);
$vacates++;

};

$cluster = Condor::Submit($CMD_FILE);
printf("Could not open. Access Denied\n");

Condor Version 7.7.6 Manual

4.5. Application Program Interfaces 521

break;
&Condor::RegisterExitSuccess($normal);
&Condor::RegisterEvicted($evicted);
&Condor::RegisterExecute($execute);
&Condor::Monitor($cluster);
&Condor::Wait();

This example program will submit the command file ’mycmdfile.cmd’ and attempt to vacate
any machine that the job runs on. The termination handler then prints out a summary of what has
happened.

A second example Perl script facilitates the meta-scheduling of two of Condor jobs. It submits
a second job if the first job successfully completes.

#!/s/std/bin/perl

tell Perl where to find the Condor library
use lib '/unsup/condor/lib';
tell Perl to use what it finds in the Condor library
use Condor;

$SUBMIT_FILE1 = 'Asubmit.cmd';
$SUBMIT_FILE2 = 'Bsubmit.cmd';

Callback used when first job exits without errors.
$firstOK = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

$cluster = Condor::Submit($SUBMIT_FILE2);
if (($cluster) == 0)
{

printf("Could not open $SUBMIT_FILE2.\n");
}

&Condor::RegisterExitSuccess($secondOK);
&Condor::RegisterExitFailure($secondfails);
&Condor::Monitor($cluster);

};

$firstfails = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

print "The first job, $cluster.$job failed, exiting with an error. \n";
exit(0);

};

Callback used when second job exits without errors.
$secondOK = sub
{

%parameters = @_;

Condor Version 7.7.6 Manual

4.5. Application Program Interfaces 522

$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

print "The second job, $cluster.$job successfully complet ed. \n";
exit(0);

};

Callback used when second job exits WITH an error.
$secondfails = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

print "The second job ($cluster.$job) failed. \n";
exit(0);

};

$cluster = Condor::Submit($SUBMIT_FILE1);
if (($cluster) == 0)
{

printf("Could not open $SUBMIT_FILE1. \n");
}
&Condor::RegisterExitSuccess($firstOK);
&Condor::RegisterExitFailure($firstfails);

&Condor::Monitor($cluster);
&Condor::Wait();

Some notes are in order about this example. The same task could be accomplished using the
Condor DAGMan metascheduler. The first job is the parent, andthe second job is the child. The
input file to DAGMan is significantly simpler than this Perl script.

A third example using the Condor Perl module expands upon thesecond example. Whereas
the second example could have been more easily implemented using DAGMan, this third example
shows the versatility of using Perl as a metascheduler.

In this example, the result generated from the successful completion of the first job are used to
decide which subsequent job should be submitted. This is a very simple example of a branch and
bound technique, to focus the search for a problem solution.

#!/s/std/bin/perl

tell Perl where to find the Condor library
use lib '/unsup/condor/lib';
tell Perl to use what it finds in the Condor library
use Condor;

$SUBMIT_FILE1 = 'Asubmit.cmd';
$SUBMIT_FILE2 = 'Bsubmit.cmd';
$SUBMIT_FILE3 = 'Csubmit.cmd';

Callback used when first job exits without errors.

Condor Version 7.7.6 Manual

4.5. Application Program Interfaces 523

$firstOK = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

open output file from first job, and read the result
if (-f "A.output")
{

open(RESULTFILE, "A.output") or die "Could not open result file.";
$result = <RESULTFILE>;
close(RESULTFILE);
next job to submit is based on output from first job
if ($result < 100)
{

$cluster = Condor::Submit($SUBMIT_FILE2);
if (($cluster) == 0)
{

printf("Could not open $SUBMIT_FILE2.\n");
}

&Condor::RegisterExitSuccess($secondOK);
&Condor::RegisterExitFailure($secondfails);
&Condor::Monitor($cluster);

}
else
{

$cluster = Condor::Submit($SUBMIT_FILE3);
if (($cluster) == 0)
{

printf("Could not open $SUBMIT_FILE3.\n");
}

&Condor::RegisterExitSuccess($thirdOK);
&Condor::RegisterExitFailure($thirdfails);
&Condor::Monitor($cluster);

}
}
else
{

printf("Results file does not exist.\n");
}

};

$firstfails = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

print "The first job, $cluster.$job failed, exiting with an error. \n";
exit(0);

};

Callback used when second job exits without errors.
$secondOK = sub

Condor Version 7.7.6 Manual

4.5. Application Program Interfaces 524

{
%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

print "The second job, $cluster.$job successfully complet ed. \n";
exit(0);

};

Callback used when third job exits without errors.
$thirdOK = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

print "The third job, $cluster.$job successfully complete d. \n";
exit(0);

};

Callback used when second job exits WITH an error.
$secondfails = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

print "The second job ($cluster.$job) failed. \n";
exit(0);

};

Callback used when third job exits WITH an error.
$thirdfails = sub
{

%parameters = @_;
$cluster = $parameters{'cluster'};
$job = $parameters{'job'};

print "The third job ($cluster.$job) failed. \n";
exit(0);

};

$cluster = Condor::Submit($SUBMIT_FILE1);
if (($cluster) == 0)
{

printf("Could not open $SUBMIT_FILE1. \n");
}
&Condor::RegisterExitSuccess($firstOK);
&Condor::RegisterExitFailure($firstfails);

&Condor::Monitor($cluster);
&Condor::Wait();

Condor Version 7.7.6 Manual

CHAPTER

FIVE

Grid Computing

5.1 Introduction

A goal of grid computing is to allow the utilization of resources that span many administrative
domains. A Condor pool often includes resources owned and controlled by many different people.
Yet collaborating researchers from different organizations may not find it feasible to combine all of
their computers into a single, large Condor pool. Condor shines in grid computing, continuing to
evolve with the field.

Due to the field’s rapid evolution, Condor has its own native mechanisms for grid computing as
well as developing interactions with other grid systems.

Flocking is a native mechanism that allows Condor jobs submitted fromwithin one pool to
execute on another, separate Condor pool. Flocking is enabled by configuration within each of
the pools. An advantage to flocking is that jobs migrate from one pool to another based on the
availability of machines to execute jobs. When the local Condor pool is not able to run the job (due
to a lack of currently available machines), the job flocks to another pool. A second advantage to
using flocking is that the user (who submits the job) does not need to be concerned with any aspects
of the job. The user’s submit description file (and the job’suniverse) are independent of the flocking
mechanism.

Other forms of grid computing are enabled by using thegrid universe and further specified with
thegrid_type. For any Condor job, the job is submitted on a machine in the local Condor pool. The
location where it is executed is identified as the remote machine or remote resource. These various
grid computing mechanisms offered by Condor are distinguished by the software running on the
remote resource.

When Condor is running on the remote resource, and the desired grid computing mechanism is

525

5.2. Connecting Condor Pools with Flocking 526

to move the job from the local pool’s job queue to the remote pool’s job queue, it is called Condor-C.
The job is submitted using thegrid universe, and thegrid_type is condor. Condor-C jobs have the
advantage that once the job has moved to the remote pool’s jobqueue, a network partition does not
affect the execution of the job. A further advantage of Condor-C jobs is that theuniverseof the job
at the remote resource is not restricted.

When other middleware is running on the remote resource, such as Globus, Condor can still
submit and manage jobs to be executed on remote resources. Agrid universe job, with agrid_type
of gt2 or gt5 calls on Globus software to execute the job on a remote resource. Like Condor-C jobs,
a network partition does not affect the execution of the job.The remote resource must have Globus
software running.

Condor also facilitates the temporary addition of a Globus-controlled resource to a local pool.
This is calledglidein. Globus software is utilized to execute Condor daemons on the remote re-
source. The remote resource appears to have joined the localCondor pool. A user submitting a job
may then explicitly specify the remote resource as the execution site of a job.

Starting with Condor Version 6.7.0, thegrid universe replaces theglobusuniverse. Further spec-
ification of agrid universe job is done within thegrid_resourcecommand in a submit description
file.

5.2 Connecting Condor Pools with Flocking

Flocking is Condor’s way of allowing jobs that cannot immediately run (within the pool of machines
where the job was submitted) to instead run on a different Condor pool. If a machine within Condor
pool A can send jobs to be run on Condor pool B, then we say that jobs from machine A flock to
pool B. Flocking can occur in a one way manner, such as jobs from machine A flocking to pool B, or
it can be set up to flock in both directions. Configuration variables allow thecondor_schedddaemon
(which runs on each machine that may submit jobs) to implement flocking.

NOTE: Flocking to pools which use Condor’s high availability mechanims is not adviced in
current verions of Condor. See section 3.11.2 “High Availability of the Central Manager” of the
Condor manual for a discussion of these problems.

5.2.1 Flocking Configuration

The simplest flocking configuration sets a few configuration variables. If jobs from machine A are
to flock to pool B, then in machine A’s configuration, set the following configuration variables:

FLOCK_TO is a comma separated list of the central manager machines of the pools that jobs from
machine A may flock to.

FLOCK_COLLECTOR_HOSTS is the list ofcondor_collectordaemons within the pools that jobs
from machine A may flock to. In most cases, it is the same asFLOCK_TO, and it would be

Condor Version 7.7.6 Manual

5.2. Connecting Condor Pools with Flocking 527

defined with

FLOCK_COLLECTOR_HOSTS = $(FLOCK_TO)

FLOCK_NEGOTIATOR_HOSTS is the list of condor_negotiatordaemons within the pools that
jobs from machine A may flock to. In most cases, it is the same asFLOCK_TO, and it would
be defined with

FLOCK_NEGOTIATOR_HOSTS = $(FLOCK_TO)

HOSTALLOW_NEGOTIATOR_SCHEDDprovides a host-based access level and authorization list
for thecondor_schedddaemon to allow negotiation (for security reasons) with themachines
within the pools that jobs from machine A may flock to. This configuration variable will not
likely need to change from its default value as given in the sample configuration:

Now, with flocking we need to let the SCHEDD trust the other
negotiators we are flocking with as well. You should norma lly
not have to change this either.
HOSTALLOW_NEGOTIATOR_SCHEDD = $(COLLECTOR_HOST), $(FLOCK_NEGOTIATOR_HOSTS)

This example configuration presumes that thecondor_collectorandcondor_negotiatordae-
mons are running on the same machine. See section 3.6.7 on page 347 for a discussion of
security macros and their use.

The configuration macros that must be set in pool B are ones that authorize jobs from machine
A to flock to pool B.

The host-based configuration macros are more easily set by introducing a list of machines where
the jobs may flock from.FLOCK_FROMis a comma separated list of machines, and it is used in the
default configuration setting of the security macros that dohost-based authorization:

HOSTALLOW_WRITE_COLLECTOR = $(HOSTALLOW_WRITE), $(FLOCK_FROM)
HOSTALLOW_WRITE_STARTD = $(HOSTALLOW_WRITE), $(FLOCK_FROM)
HOSTALLOW_READ_COLLECTOR = $(HOSTALLOW_READ), $(FLOCK_FROM)
HOSTALLOW_READ_STARTD = $(HOSTALLOW_READ), $(FLOCK_FROM)

Wild cards may be used when setting theFLOCK_FROMconfiguration variable. For example,
*.cs.wisc.edu specifies all hosts from thecs.wisc.edu domain.

If the user-based configuration macros for security are used, then the default will be:

ALLOW_NEGOTIATOR = $(COLLECTOR_HOST), $(FLOCK_NEGOTIATOR_HOSTS)

Further, if using Kerberos or GSI authentication, then the setting becomes:

ALLOW_NEGOTIATOR = condor@$(UID_DOMAIN)/$(COLLECTOR_HOST)

To enable flocking in both directions, consider each direction separately, following the guidelines
given.

Condor Version 7.7.6 Manual

5.3. The Grid Universe 528

5.2.2 Job Considerations

A particular job will only flock to another pool when it cannotcurrently run in the current pool.

At one point, all jobs that utilized flocking were standard universe jobs. This is no longer the
case. The submission of jobs under other universes must consider the location of input, output and
error files. The common case will be that machines within separate pools do not have a shared file
system. Therefore, when submitting jobs, the user will needto consider file transfer mechanisms.
These mechanisms are discussed in section 2.5.4 on page 25.

5.3 The Grid Universe

5.3.1 Condor-C, The condor Grid Type

Condor-C allows jobs in one machine’s job queue to be moved toanother machine’s job queue.
These machines may be far removed from each other, providingpowerful grid computation mecha-
nisms, while requiring only Condor software and its configuration.

Condor-C is highly resistant to network disconnections andmachine failures on both the sub-
mission and remote sides. An expected usage sets up PersonalCondor on a laptop, submits some
jobs that are sent to a Condor pool, waits until the jobs are staged on the pool, then turns off the
laptop. When the laptop reconnects at a later time, any results can be pulled back.

Condor-C scales gracefully when compared with Condor’s flocking mechanism. The machine
upon which jobs are submitted maintains a single process andnetwork connection to a remote ma-
chine, without regard to the number of jobs queued or running.

Condor-C Configuration

There are two aspects to configuration to enable the submission and execution of Condor-C jobs.
These two aspects correspond to the endpoints of the communication: there is the machine from
which jobs are submitted, and there is the remote machine upon which the jobs are placed in the
queue (executed).

Configuration of a machine from which jobs are submitted requires a few extra configuration
variables:

CONDOR_GAHP=$(SBIN)/condor_c-gahp
C_GAHP_LOG=/tmp/CGAHPLog.$(USERNAME)
C_GAHP_WORKER_THREAD_LOG=/tmp/CGAHPWorkerLog.$(USERNAME)

The acronym GAHP stands for Grid ASCII Helper Protocol. A GAHP server provides grid-
related services for a variety of underlying middle-ware systems. The configuration variable

Condor Version 7.7.6 Manual

5.3. The Grid Universe 529

CONDOR_GAHPgives a full path to the GAHP server utilized by Condor-C. Theconfiguration
variableC_GAHP_LOGdefines the location of the log that the Condor GAHP server writes. The
log for the Condor GAHP is written as the user on whose behalf it is running; thus theC_GAHP_LOG
configuration variable must point to a location the end user can write to.

A submit machine must also have acondor_collectordaemon to which thecondor_schedddae-
mon can submit a query. The query is for the location (IP address and port) of the intended remote
machine’scondor_schedddaemon. This facilitates communication between the two machines. This
condor_collectordoes not need to be the same collector that the localcondor_schedddaemon re-
ports to.

The machine upon which jobs are executed must also be configured correctly. This machine must
be running acondor_schedddaemon. Unless specified explicitly in a submit file,CONDOR_HOST
must point to acondor_collectordaemon that it can write to, and the machine upon which jobs are
submitted can read from. This facilitates communication between the two machines.

An important aspect of configuration is the security configuration relating to authentication.
Condor-C on the remote machine relies on an authentication protocol to know the identity of the
user under which to run a job. The following is a working example of the security configuration for
authentication. This authentication method, CLAIMTOBE, trusts the identity claimed by a host or
IP address.

SEC_DEFAULT_NEGOTIATION = OPTIONAL
SEC_DEFAULT_AUTHENTICATION_METHODS = CLAIMTOBE

Condor-C Job Submission

Job submission of Condor-C jobs is the same as for any Condor job. Theuniverse is grid .
grid_resourcespecifies the remotecondor_schedddaemon to which the job should be submitted,
and its value consists of three fields. The first field is the grid type, which iscondor. The second
field is the name of the remotecondor_schedddaemon. Its value is the same as thecondor_schedd
ClassAd attributeNameon the remote machine. The third field is the name of the remotepool’s
condor_collector.

The following represents a minimal submit description file for a job.

minimal submit description file for a Condor-C job
universe = grid
executable = myjob
output = myoutput
error = myerror
log = mylog

grid_resource = condor joe@remotemachine.example.com re motecentralmanager.example.com
+remote_jobuniverse = 5
+remote_requirements = True
+remote_ShouldTransferFiles = "YES"
+remote_WhenToTransferOutput = "ON_EXIT"
queue

Condor Version 7.7.6 Manual

5.3. The Grid Universe 530

The remote machine needs to understand the attributes of thejob. These are specified in the
submit description file using the ’+’ syntax, followed by thestring remote_. At a minimum, this
will be the job’suniverse and the job’srequirements. It is likely that other attributes specific to
the job’suniverse (on the remote pool) will also be necessary. Note that attributes set with ’+’ are
inserted directly into the job’s ClassAd. Specify attributes as they must appear in the job’s ClassAd,
not the submit description file. For example, theuniverse is specified using an integer assigned for
a job ClassAdJobUniverse . Similarly, place quotation marks around string expressions. As an
example, a submit description file would ordinarily contain

when_to_transfer_output = ON_EXIT

This must appear in the Condor-C job submit description file as

+remote_WhenToTransferOutput = "ON_EXIT"

For convenience, the specific entries ofuniverse, remote_grid_resource, globus_rsl, and
globus_xmlmay be specified asremote_commands without the leading ’+’. Instead of

+remote_universe = 5

the submit description file command may appear as

remote_universe = vanilla

Similarly, the command

+remote_gridresource = "condor schedd.example.com cm.ex ample.com"

may be given as

remote_grid_resource = condor schedd.example.com cm.exa mple.com

For the given example, the job is to be run as avanilla universe job at the remote pool. The
(remote pool’s)condor_schedddaemon is likely to place its job queue data on a local disk and
execute the job on another machine within the pool of machines. This implies that the file systems for
the resulting submit machine (the machine specified byremote_schedd) and the execute machine
(the machine that runs the job) willnot be shared. Thus, the two inserted ClassAds

+remote_ShouldTransferFiles = "YES"
+remote_WhenToTransferOutput = "ON_EXIT"

are used to invoke Condor’s file transfer mechanism.

As Condor-C is a recent addition to Condor, the universes, associated integer assignments, and
notes about the existence of functionality are given in Table 5.1. The note "untested" implies that
submissions under the given universe have not yet been throughly tested. They may already work.

Condor Version 7.7.6 Manual

5.3. The Grid Universe 531

Universe Name Value Notes

standard 1 untested
vanilla 5 works well
scheduler 7 works well
grid 9

grid_resource is condor works well
grid_resource is cream untested
grid_resource is gt2 works well
grid_resource is gt5 untested
grid_resource is nordugrid untested
grid_resource is unicore untested
grid_resource is lsf works well
grid_resource is pbs works well

java 10 untested
parallel 11 untested
local 12 works well

Table 5.1: Functionality of remote job universes with Condor-C

For communication betweencondor_schedddaemons on the submit and remote machines, the
location of the remotecondor_schedddaemon is needed. This information resides in thecon-
dor_collectorof the remote machine’s pool. The third field of thegrid_resourcecommand in the
submit description file says whichcondor_collectorshould be queried for the remotecondor_schedd
daemon’s location. An example of this submit command is

grid_resource = condor schedd.example.com machine1.exam ple.com

If the remotecondor_collectoris not listening on the standard port (9618), then the port itis listening
on needs to be specified:

grid_resource = condor schedd.example.comd machine1.exa mple.com:12345

File transfer of a job’s executable,stdin , stdout , andstderr are automatic. When other
files need to be transferred using Condor’s file transfer mechanism (see section 2.5.4 on page 25),
the mechanism is applied based on the resulting job universeon the remote machine.

Condor-C Jobs Between Differing Platforms

Condor-C jobs given to a remote machine running Windows mustspecify the Windows domain of
the remote machine. This is accomplished by defining a ClassAd attribute for the job. Where the
Windows domain is different at the submit machine from the remote machine, the submit description
file defines the Windows domain of the remote machine with

+remote_NTDomain = "DomainAtRemoteMachine"

Condor Version 7.7.6 Manual

5.3. The Grid Universe 532

A Windows machine not part of a domain defines the Windows domain as the machine name.

Current Limitations in Condor-C

Submitting jobs to run under the grid universe has not yet been perfected. The following is a list of
known limitations with Condor-C:

1. Authentication methods other thanCLAIMTOBE, such asGSI andKERBEROS, are untested,
and may not yet work.

5.3.2 Condor-G, the gt2, and gt5 Grid Types

Condor-G is the name given to Condor whengrid universe jobs are sent to grid resources utilizing
Globus software for job execution. The Globus Toolkit provides a framework for building grid sys-
tems and applications. See the Globus Alliance web page at http://www.globus.org for descriptions
and details of the Globus software.

Condor provides the same job management capabilities for Condor-G jobs as for other jobs.
From Condor, a user may effectively submit jobs, manage jobs, and have jobs execute on widely
distributed machines.

It may appear that Condor-G is a simple replacement for the Globus Toolkit’sglobusruncom-
mand. However, Condor-G does much more. It allows the submission of many jobs at once, along
with the monitoring of those jobs with a convenient interface. There is notification when jobs com-
plete or fail and maintenance of Globus credentials that mayexpire while a job is running. On top
of this, Condor-G is a fault-tolerant system; if a machine crashes, all of these functions are again
available as the machine returns.

Globus Protocols and Terminology

The Globus software provides a well-defined set of protocolsthat allow authentication, data transfer,
and remote job execution. Authentication is a mechanism by which an identity is verified. Given
proper authentication, authorization to use a resource is required. Authorization is a policy that
determines who is allowed to do what.

Condor (and Globus) utilize the following protocols and terminology. The protocols allow Con-
dor to interact with grid machines toward the end result of executing jobs.

GSI The Globus Toolkit’s Grid Security Infrastructure (GSI) provides essential building blocks for
other grid protocols and Condor-G. This authentication andauthorization system makes it
possible to authenticate a user just once, using public key infrastructure (PKI) mechanisms to
verify a user-supplied grid credential. GSI then handles the mapping of the grid credential to

Condor Version 7.7.6 Manual

http://www.globus.org

5.3. The Grid Universe 533

the diverse local credentials and authentication/authorization mechanisms that apply at each
site.

GRAM The Grid Resource Allocation and Management (GRAM) protocol supports remote sub-
mission of a computational request (for example, to run a program) to a remote computational
resource, and it supports subsequent monitoring and control of the computation. GRAM is
the Globus protocol that Condor-G uses to talk to remote Globus jobmanagers.

GASS The Globus Toolkit’s Global Access to Secondary Storage (GASS) service provides mech-
anisms for transferring data to and from a remote HTTP, FTP, or GASS server. GASS is used
by Condor for thegt2 grid type to transfer a job’s files to and from the machine where the job
is submitted and the remote resource.

GridFTP GridFTP is an extension of FTP that provides strong securityand high-performance op-
tions for large data transfers.

RSL RSL (Resource Specification Language) is the language GRAM accepts to specify job infor-
mation.

gatekeeper A gatekeeper is a software daemon executing on a remote machine on the grid. It is
relevant only to thegt2 grid type, and this daemon handles the initial communication between
Condor and a remote resource.

jobmanager A jobmanager is the Globus service that is initiated at a remote resource to submit,
keep track of, and manage grid I/O for jobs running on an underlying batch system. There
is a specific jobmanager for each type of batch system supported by Globus (examples are
Condor, LSF, and PBS).

Figure 5.1 shows how Condor interacts with Globus software towards running jobs. The diagram
is specific to thegt2 type of grid. Condor contains a GASS server, used to transferthe executable,
stdin , stdout , andstderr to and from the remote job execution site. Condor uses the GRAM
protocol to contact the remote gatekeeper and request that anew jobmanager be started. The GRAM
protocol is also used to when monitoring the job’s progress.Condor detects and intelligently handles
cases such as if the remote resource crashes.

There are now two different versions of the GRAM protocol in common usage:gt2 andgt5.
Condor supports both of them.

gt2 This initial GRAM protocol is used in Globus Toolkit versions 1 and 2. It is still used by many
production systems. Where available in the other, more recent versions of the protocol,gt2 is
referred to as the pre-web services GRAM (or pre-WS GRAM) or GRAM2.

gt5 This latest GRAM protocol is an extension of GRAM2 that is intended to be more scalable and
robust. It’s usually referred to as GRAM5.

Condor Version 7.7.6 Manual

5.3. The Grid Universe 534

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

Job Submission Machine Job Execution Site

Globus
GateKeeper

Condor-G
Scheduler

Globus
JobManager

Site Job Scheduler

(PBS, Condor, LSF, LoadLeveler, NQE, etc.)

Job X

Globus
JobManager

Job Y

S
ubm

it

Condor-G
GridManager

GASS
Server

S
ubm

it

Fork

Fo
rk

 Fork

Persistant
Job Queue

End User
Requests

Figure 5.1: Condor-G interaction with Globus-managed resources

The gt2 Grid Type

Condor-G supports submitting jobs to remote resources running the Globus Toolkit’s GRAM2 (or
pre-WS GRAM) service. This flavor of GRAM is the most common. These Condor-G jobs are
submitted the same as any other Condor job. Theuniverseis grid , and the pre-web services GRAM
protocol is specified by setting the type of grid asgt2 in thegrid_resourcecommand.

Under Condor, successful job submission to thegrid universe with gt2 requires credentials. An
X.509 certificate is used to create a proxy, and an account, authorization, or allocation to use a grid
resource is required. For general information on proxies and certificates, please consult the Globus
page at

http://www-unix.globus.org/toolkit/docs/4.0/security/key-index.html

Before submitting a job to Condor under thegrid universe, usegrid-proxy-init to create a proxy.

Here is a simple submit description file. The example specifies agt2 job to be run on an NCSA
machine.

Condor Version 7.7.6 Manual

http://www-unix.globus.org/toolkit/docs/4.0/security/key-index.html

5.3. The Grid Universe 535

executable = test
universe = grid
grid_resource = gt2 modi4.ncsa.uiuc.edu/jobmanager
output = test.out
log = test.log
queue

Theexecutablefor this example is transferred from the local machine to theremote machine.
By default, Condor transfers the executable, as well as any files specified by aninput command.
Note that the executable must be compiled for its intended platform.

The commandgrid_resource is a required command for grid universe jobs. The second field
specifies the scheduling software to be used on the remote resource. There is a specific jobmanager
for each type of batch system supported by Globus. The full syntax for this command line appears
as

grid_resource = gt2 machinename[:port]/jobmanagername[:X.509 distinguished name]

The portions of this syntax specification enclosed within square brackets ([and]) are optional. On
a machine where the jobmanager is listening on a nonstandardport, include the port number. The
jobmanagername is a site-specific string. The most common one isjobmanager-fork , but
others are

jobmanager
jobmanager-condor
jobmanager-pbs
jobmanager-lsf
jobmanager-sge

The Globus software running on the remote resource uses thisstring to identify and select the cor-
rect service to perform. Otherjobmanagername strings are used, where additional services are
defined and implemented.

The job log file is maintained on the submit machine.

Example output fromcondor_qfor this submission looks like:

% condor_q

-- Submitter: wireless48.cs.wisc.edu : <128.105.48.148: 33012> : wireless48.cs.wi

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
7.0 smith 3/26 14:08 0+00:00:00 I 0 0.0 test

1 jobs; 1 idle, 0 running, 0 held

After a short time, the Globus resource accepts the job. Again runningcondor_qwill now result
in

Condor Version 7.7.6 Manual

5.3. The Grid Universe 536

% condor_q

-- Submitter: wireless48.cs.wisc.edu : <128.105.48.148: 33012> : wireless48.cs.wi

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
7.0 smith 3/26 14:08 0+00:01:15 R 0 0.0 test

1 jobs; 0 idle, 1 running, 0 held

Then, very shortly after that, the queue will be empty again,because the job has finished:

% condor_q

-- Submitter: wireless48.cs.wisc.edu : <128.105.48.148: 33012> : wireless48.cs.wi

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

0 jobs; 0 idle, 0 running, 0 held

A second example of a submit description file runs the Unixls program on a different Globus
resource.

executable = /bin/ls
transfer_executable = false
universe = grid
grid_resource = gt2 vulture.cs.wisc.edu/jobmanager
output = ls-test.out
log = ls-test.log
queue

In this example, the executable (the binary) has been pre-staged. The executable is on the remote
machine, and it is not to be transferred before execution. Note that the requiredgrid_resourceand
universecommands are present. The command

transfer_executable = false

within the submit description file identifies the executableas being pre-staged. In this case, the
executablecommand gives the path to the executable on the remote machine.

A third example submits a Perl script to be run as a submitted Condor job. The Perl script
both lists and sets environment variables for a job. Save thefollowing Perl script with the name
env-test.pl , to be used as a Condor job executable.

#!/usr/bin/env perl

foreach $key (sort keys(%ENV))

Condor Version 7.7.6 Manual

5.3. The Grid Universe 537

{
print "$key = $ENV{$key}\n"

}

exit 0;

Run the Unix command

chmod 755 env-test.pl

to make the Perl script executable.

Now create the following submit description file. Replace
example.cs.wisc.edu/jobmanager with a resource you are authorized to use.

executable = env-test.pl
universe = grid
grid_resource = gt2 example.cs.wisc.edu/jobmanager
environment = foo=bar; zot=qux
output = env-test.out
log = env-test.log
queue

When the job has completed, the output file,env-test.out , should contain something like
this:

GLOBUS_GRAM_JOB_CONTACT = https://example.cs.wisc.edu :36213/30905/1020633947/
GLOBUS_GRAM_MYJOB_CONTACT = URLx-nexus://example.cs.w isc.edu:36214
GLOBUS_LOCATION = /usr/local/globus
GLOBUS_REMOTE_IO_URL = /home/smith/.globus/.gass_cach e/globus_gass_cache_1020633948
HOME = /home/smith
LANG = en_US
LOGNAME = smith
X509_USER_PROXY = /home/smith/.globus/.gass_cache/glo bus_gass_cache_1020633951
foo = bar
zot = qux

Of particular interest is theGLOBUS_REMOTE_IO_URLenvironment variable. Condor-G au-
tomatically starts up a GASS remote I/O server on the submit machine. Because of the potential
for either side of the connection to fail, the URL for the server cannot be passed directly to the job.
Instead, it is placed into a file, and theGLOBUS_REMOTE_IO_URLenvironment variable points
to this file. Remote jobs can read this file and use the URL it contains to access the remote GASS
server running inside Condor-G. If the location of the GASS server changes (for example, if Condor-
G restarts), Condor-G will contact the Globus gatekeeper and update this file on the machine where
the job is running. It is therefore important that all accesses to the remote GASS server check this
file for the latest location.

The following example is a Perl script that uses the GASS server in Condor-G to copy input files
to the execute machine. In this example, the remote job counts the number of lines in a file.

Condor Version 7.7.6 Manual

5.3. The Grid Universe 538

#!/usr/bin/env perl
use FileHandle;
use Cwd;

STDOUT->autoflush();
$gassUrl = `cat $ENV{GLOBUS_REMOTE_IO_URL}`;
chomp $gassUrl;

$ENV{LD_LIBRARY_PATH} = $ENV{GLOBUS_LOCATION}. "/lib";
$urlCopy = $ENV{GLOBUS_LOCATION}."/bin/globus-url-cop y";

globus-url-copy needs a full path name
$pwd = getcwd();
print "$urlCopy $gassUrl/etc/hosts file://$pwd/tempora ry.hosts\n\n";
`$urlCopy $gassUrl/etc/hosts file://$pwd/temporary.ho sts`;

open(file, "temporary.hosts");
while(<file>) {
print $_;
}

exit 0;

The submit description file used to submit the Perl script as aCondor job appears as:

executable = gass-example.pl
universe = grid
grid_resource = gt2 example.cs.wisc.edu/jobmanager
output = gass.out
log = gass.log
queue

There are two optional submit description file commands of note: x509userproxy and
globus_rsl. The x509userproxycommand specifies the path to an X.509 proxy. The command
is of the form:

x509userproxy = /path/to/proxy

If this optional command is not present in the submit description file, then Condor-G checks
the value of the environment variableX509_USER_PROXYfor the location of the proxy.
If this environment variable is not present, then Condor-G looks for the proxy in the file
/tmp/x509up_uXXXX , where the charactersXXXXin this file name are replaced with the Unix
user id.

Theglobus_rslcommand is used to add additional attribute settings to a job’s RSL string. The
format of theglobus_rslcommand is

globus_rsl = (name=value)(name=value)

Here is an example of this command from a submit description file:

Condor Version 7.7.6 Manual

5.3. The Grid Universe 539

globus_rsl = (project=Test_Project)

This example’s attribute name for the additional RSL isproject , and the value assigned is
Test_Project .

The gt5 Grid Type

The Globus GRAM5 protocol works the same as the gt2 grid type.Its implementation differs from
gt2 in the following 3 items:

• The Grid Monitor is disabled.

• Globus job managers are not stopped and restarted.

• The configuration variableGRIDMANAGER_MAX_JOBMANAGERS_PER_RESOURCEis not
applied (for gt5 jobs).

Normally, Condor will automatically detect whether a service is GRAM2 or GRAM5 and inter-
act with it accordingly. It doesn’t matter whether you say the resource is gt2 or gt5. You can disable
this detection by setting the configuation parameterGRAM_VERSION_DETECTIONto False .
But then you must accurately identify each resource as either gt2 or gt5 in yourgrid_resource
submit attribute.

Credential Management withMyProxy

Condor-G can useMyProxysoftware to automatically renew GSI proxies forgrid universe jobs with
grid typegt2. MyProxyis a software component developed at NCSA and used widely throughout
the grid community. For more information see: http://myproxy.ncsa.uiuc.edu/

Difficulties with proxy expiration occur in two cases. The first case are long running jobs,
which do not complete before the proxy expires. The second case occurs when great numbers
of jobs are submitted. Some of the jobs may not yet be started or not yet completed before the
proxy expires. One proposed solution to these difficulties is to generate longer-lived proxies. This,
however, presents a greater security problem. Remember that a GSI proxy is sent to the remote
Globus resource. If a proxy falls into the hands of a malicious user at the remote site, the malicious
user can impersonate the proxy owner for the duration of the proxy’s lifetime. The longer the
proxy’s lifetime, the more time a malicious user has to misuse the owner’s credentials. To minimize
the window of opportunity of a malicious user, it is recommended that proxies have a short lifetime
(on the order of several hours).

The MyProxy software generates proxies using credentials (a user certificate or a long-lived
proxy) located on a secureMyProxyserver. Condor-G talks to the MyProxy server, renewing a
proxy as it is about to expire. Another advantage that this presents is it relieves the user from having
to store a GSI user certificate and private key on the machine where jobs are submitted. This may
be particularly important if a shared Condor-G submit machine is used by several users.

Condor Version 7.7.6 Manual

http://myproxy.ncsa.uiuc.edu/

5.3. The Grid Universe 540

In the a typical case, the following steps occur:

1. The user creates a long-lived credential on a secureMyProxyserver, using themyproxy-init
command. Each organization generally has their ownMyProxyserver.

2. The user creates a short-lived proxy on a local submit machine, usinggrid-proxy-init or
myproxy-get-delegation.

3. The user submits a Condor-G job, specifying:

MyProxyserver name (host:port)

MyProxycredential name (optional)

MyProxypassword

4. At the short-lived proxy expiration Condor-G talks to theMyProxyserver to refresh the proxy.

Condor-G keeps track of the password to theMyProxyserver for credential renewal. Although
Condor-G tries to keep the password encrypted and secure, itis still possible (although highly un-
likely) for the password to be intercepted from the Condor-Gmachine (more precisely, from the
machine that thecondor_schedddaemon that manages the grid universe jobs runs on, which may
be distinct from the machine from where jobs are submitted).The following safeguard practices are
recommended.

1. Provide time limits for credentials on theMyProxyserver. The default is one week, but you
may want to make it shorter.

2. Create several differentMyProxy credentials, maybe as many as one for each sub-
mitted job. Each credential has a unique name, which is identified with the
MyProxyCredentialName command in the submit description file.

3. Use the following options when initializing the credential on theMyProxyserver:

myproxy-init -s <host> -x -r <cert subject> -k <cred name>

The option-x -r <cert subject>essentially tells theMyProxyserver to require two forms of
authentication:

(a) a password (initially set withmyproxy-init)

(b) an existing proxy (the proxy to be renewed)

4. A submit description file may include the password. An example contains commands of the
form:

executable = /usr/bin/my-executable
universe = grid
grid_resource = gt2 condor-unsup-7
MyProxyHost = example.cs.wisc.edu:7512
MyProxyServerDN = /O=doesciencegrid.org/OU=People/CN= Jane Doe 25900
MyProxyPassword = password
MyProxyCredentialName = my_executable_run
queue

Condor Version 7.7.6 Manual

5.3. The Grid Universe 541

Note that placing the password within the submit file is not really secure, as it relies upon
whatever file system security there is. This may still be better than option 5.

5. Use the-p option tocondor_submit. The submit command appears as

condor_submit -p mypassword /home/user/myjob.submit

The argument list forcondor_submitdefaults to being publicly available. An attacker with a
log in to the local machine could generate a simple shell script to watch for the password.

Currently, Condor-G calls themyproxy-get-delegationcommand-line tool, passing it the nec-
essary arguments. The location of themyproxy-get-delegationexecutable is determined by the
configuration variableMYPROXY_GET_DELEGATIONin the configuration file on the Condor-
G machine. This variable is read by thecondor_gridmanager. If myproxy-get-delegationis
a dynamically-linked executable (verify this withldd myproxy-get-delegation), point
MYPROXY_GET_DELEGATIONto a wrapper shell script that setsLD_LIBRARY_PATHto the
correctMyProxylibrary or Globus library directory and then callsmyproxy-get-delegation. Here is
an example of such a wrapper script:

#!/bin/sh
export LD_LIBRARY_PATH=/opt/myglobus/lib
exec /opt/myglobus/bin/myproxy-get-delegation $@

The Grid Monitor

Condor’s Grid Monitor is designed to improve the scalability of machines running the Globus
Toolkit’s GRAM2 gatekeeper. Normally, this service runs a jobmanager process for every job sub-
mitted to the gatekeeper. This includes both currently running jobs and jobs waiting in the queue.
Each jobmanager runs a Perl script at frequent intervals (every 10 seconds) to poll the state of its job
in the local batch system. For example, with 400 jobs submitted to a gatekeeper, there will be 400
jobmanagers running, each regularly starting a Perl script. When a large number of jobs have been
submitted to a single gatekeeper, this frequent polling canheavily load the gatekeeper. When the
gatekeeper is under heavy load, the system can become non-responsive, and a variety of problems
can occur.

Condor’s Grid Monitor temporarily replaces these jobmanagers. It is named the Grid Monitor,
because it replaces the monitoring (polling) duties previously done by jobmanagers. When the Grid
Monitor runs, Condor attempts to start a single process to poll all of a user’s jobs at a given gate-
keeper. While a job is waiting in the queue, but not yet running, Condor shuts down the associated
jobmanager, and instead relies on the Grid Monitor to reportchanges in status. The jobmanager
started to add the job to the remote batch system queue is shutdown. The jobmanager restarts when
the job begins running.

The Grid Monitor requires that the gatekeeper support the fork jobmanager with the name
jobmanager-fork. If the gatekeeper does not support the fork jobmanager, theGrid Monitor will
not be used for that site. Thecondor_gridmanagerlog file reports any problems using the Grid
Monitor.

Condor Version 7.7.6 Manual

5.3. The Grid Universe 542

The Grid Monitor is enabled by default, and the configurationmacroGRID_MONITORidenti-
fies the location of the executable.

Limitations of Condor-G

Submitting jobs to run under the grid universe has not yet been perfected. The following is a list of
known limitations:

1. No checkpoints.

2. No job exit codes. Job exit codes are not available when usinggt2.

3. Limited platform availability. Windows support is not yet available.

5.3.3 The nordugrid Grid Type

NorduGrid is a project to develop free grid middleware namedthe Advanced Resource Connec-
tor (ARC). See the NorduGrid web page (http://www.nordugrid.org) for more information about
NorduGrid software.

Condor jobs may be submitted to NorduGrid resources using the grid universe. The
grid_resourcecommand specifies the name of the NorduGrid resource as follows:

grid_resource = nordugrid ng.example.com

NorduGrid uses X.509 credentials for authentication, usually in the form a proxy certificate.
For more information about proxies and certificates, pleaseconsult the Alliance PKI pages at
http://archive.ncsa.uiuc.edu/SCD/Alliance/GridSecurity/. condor_submitlooks in default locations
for the proxy. The submit description file commandx509userproxy is used to give the full path
name to the directory containing the proxy, when the proxy isnot in a default location. If this
optional command is not present in the submit description file, then the value of the environment
variableX509_USER_PROXYis checked for the location of the proxy. If this environmentvari-
able is not present, then the proxy in the file/tmp/x509up_uXXXX is used, where the characters
XXXXin this file name are replaced with the Unix user id.

NorduGrid uses RSL syntax to describe jobs. The submit description file commandnor-
dugrid_rsl adds additional attributes to the job RSL that Condor constructs. The format this submit
description file command is

nordugrid_rsl = (name=value)(name=value)

Condor Version 7.7.6 Manual

http://www.nordugrid.org
http://archive.ncsa.uiuc.edu/SCD/Alliance/GridSecurity/

5.3. The Grid Universe 543

5.3.4 The unicore Grid Type

Unicore is a Java-based grid scheduling system. See http://unicore.sourceforge.net for more infor-
mation about Unicore.

Condor jobs may be submitted to Unicore resources using thegrid universe. Thegrid_resource
command specifies the name of the Unicore resource as follows:

grid_resource = unicore usite.example.com vsite

usite.example.comis the host name of the Unicore gateway machine to which the Condor job is
to be submitted.vsite is the name of the Unicore virtual resource to which the Condor job is to be
submitted.

Unicore uses certificates stored in a Java keystore file for authentication. The following submit
description file commands are required to properly use the keystore file.

keystore_file Specifies the complete path and file name of the Java keystore file to use.

keystore_aliasA string that specifies which certificate in the Java keystorefile to use.

keystore_passphrase_fileSpecifies the complete path and file name of the file containingthe
passphrase protecting the certificate in the Java keystore file.

5.3.5 The pbs Grid Type

The popular PBS (Portable Batch System) comes in several varieties: OpenPBS
(http://www.openpbs.org), PBS Pro (http://www.altair.com/software/pbspro.htm), and Torque
(http://www.clusterresources.com/pages/products/torque-resource-manager.php).

Condor jobs are submitted to a local PBS system using thegrid universe and thegrid_resource
command by placing the following into the submit description file.

grid_resource = pbs

The pbs grid type requires two variables to be set in the Condor configuration file.PBS_GAHPis
the path to the PBS GAHP server binary that is to be used to submit PBS jobs.GLITE_LOCATION
is the path to the directory containing the GAHP’s configuration file and auxillary binaries. In the
Condor distribution, these files are located in$(LIB)/glite . The PBS GAHP’s configuration
file is in $(GLITE_LOCATION)/etc/batch_gahp.config . The PBS GAHP’s auxillary
binaries are to be in the directory$(GLITE_LOCATION)/bin . The Condor configuration file
appears

GLITE_LOCATION = $(LIB)/glite
PBS_GAHP = $(GLITE_LOCATION)/bin/batch_gahp

Condor Version 7.7.6 Manual

http://unicore.sourceforge.net
http://www.openpbs.org
http://www.altair.com/software/pbspro.htm
http://www.clusterresources.com/pages/products/torque-resource-manager.php

5.3. The Grid Universe 544

The PBS GAHP’s configuration file contains two variables thatmust be modified to tell it where
to find PBS on the local system.pbs_binpath is the directory that contains the PBS binaries.
pbs_spoolpath is the PBS spool directory.

5.3.6 The lsf Grid Type

Condor jobs may be submitted to the Platform LSF batch system. See the Products page of the
Platform web page at http://www.platform.com/Products/ for more information about Platform LSF.

Condor jobs are submitted to a local Platform LSF system using the grid universe and the
grid_resourcecommand by placing the following into the submit description file.

grid_resource = lsf

The lsf grid type requires two variables to be set in the Condor configuration file.LSF_GAHP
is the path to the LSF GAHP server binary that is to be used to submit Platform LSF jobs.

GLITE_LOCATION is the path to the directory containing the GAHP’s configuration file and aux-
illary binaries. In the Condor distribution, these files arelocated in$(LIB)/glite . The LSF
GAHP’s configuration file is in$(GLITE_LOCATION)/etc/batch_gahp.config . The
LSF GAHP’s auxillary binaries are to be in the directory$(GLITE_LOCATION)/bin . The Con-
dor configuration file appears

GLITE_LOCATION = $(LIB)/glite
LSF_GAHP = $(GLITE_LOCATION)/bin/batch_gahp

The LSF GAHP’s configuration file contains two variables thatmust be modified to tell it where
to find LSF on the local system.lsf_binpath is the directory that contains the LSF binaries.
lsf_confpath is the location of the LSF configuration file.

5.3.7 The sge Grid Type

The popular Grid Engine batch system (formerly known as Sun Grid En-
gine and abbreviated SGE) is available in two varieties: Oracle Grid Engine
(http://http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html) and Univa
Grid Engine (http://www.univa.com/?gclid=CLXg6-OEy6wCFWICQAodl0lm9Q).

Condor jobs are submitted to a local SGE system using thegrid universe and adding the
grid_resourcecommand by placing into the submit description file:

grid_resource = sge

The sge grid type requires two variables to be set in the Condor configuration file.SGE_GAHPis
the path to the SGE GAHP server binary that is to be used to submit SGE jobs.GLITE_LOCATION

Condor Version 7.7.6 Manual

http://www.platform.com/Products/
http://http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html
http://www.univa.com/?gclid=CLXg6-OEy6wCFWICQAodl0lm9Q

5.3. The Grid Universe 545

specifies the path to the directory containing the SGE GAHP’sconfiguration file and aux-
iliary binaries. In the Condor distribution, this configuration and the auxiliary binaries are
located in the directory$(LIB)/glite/ . The SGE GAHP’s configuration file will be at
$(GLITE_LOCATION)/etc/batch_gahp.config . The SGE GAHP’s auxiliary binaries are
in the directory$(GLITE_LOCATION)/bin/ . The Condor configuration file appears

GLITE_LOCATION = $(LIB)/glite
SGE_GAHP = $(GLITE_LOCATION)/bin/batch_gahp

5.3.8 The EC2 Grid Type

Condor jobs may be submitted to clouds supporting Amazon’s Elastic Compute Cloud (EC2) inter-
face. Amazon’s EC2 is an on-line commercial service that allows the rental of computers by the
hour to run computational applications. It runs virtual machine images that have been uploaded to
Amazon’s online storage service (S3 or EBS). More information about Amazon’s EC2 service is
available at http://aws.amazon.com/ec2.

Theec2grid type uses the EC2 Query API, also called the EC2 REST API.

Amazon EC2 Job Submission

Condor jobs are submitted to Amazon’s EC2 with thegrid universe, and setting thegrid_resource
command toec2, followed by the service’s URL. For example, partial contents of the submit de-
scription file may be

grid_resource = ec2 https://ec2.amazonaws.com/

Since the job is a virtual machine image, most of the submit description file commands specify-
ing input or output files are not applicable. Theexecutablecommand is still required, but its value
is ignored. It can be used to identify different jobs in the output ofcondor_q.

The VM image for the job must already reside in one of Amazon’sstorage service (S3 or EBS)
and be registered with EC2. In the submit description file, provide the identifier for the image using
eitherec2_ami_id.

This grid type requires access to user authentication information, in the form of path names to
files containing the appropriate keys.

Theec2grid type has two different authentication methods. The first authentication method uses
the EC2 API’s built-in authentication. Specify the servicewith expectedhttp:// or https://
URL, and set the EC2 access key and secret access key as follows:

ec2_access_key_id = /path/to/access.key
ec2_secret_access_key = /path/to/secret.key

Condor Version 7.7.6 Manual

http://aws.amazon.com/ec2

5.3. The Grid Universe 546

While both pairs of files may be associated with the same account, the credentials are not the
same.

The second authentication method for the EC2 grid type is X.509. Specify the service with an
x509:// URL, even if the URL was given in another form. Useec2_access_key_idto specify
the path to the X.509 public key (certificate), andec2_secret_access_keyspecifies the path to the
X.509 private key as in the following example:

grid_resource = ec2 x509://service.example
ec2_access_key_id = /path/to/x.509/public.key
ec2_secret_access_key = /path/to/x.509/private.key

If using an X.509 proxy, specify the proxy in both places.

An EC2 service uses a firewall to restrict network access to the virtual machine instances it runs.
Typically, no incoming connections are allowed. One can define sets of firewall rules and give them
names. The EC2 API calls these security groups. If utilized,tell Condor what set of security groups
should be applied to each VM using theec2_security_groupssubmit description file command. If
not provided, Condor uses the security groupdefault.

The EC2 API allows the choice of different hardware configurations for instances to run on. Se-
lect which configuration to use for theec2grid type with theec2_instance_typesubmit description
file command. Condor provides no default.

Each virtual machine instance can be given up to 16Kbytes of unique data, accessible by the
instance by connecting to a well-known address. This makes it easy for many instances to share
the same VM image, but perform different work. This data can be specified to Condor in one
of two ways. First, the data can be provided directly in the submit description file using the
ec2_user_datacommand. Second, the data can be stored in a file, and the file name is specified
with theec2_user_data_filesubmit description file command. This second option allows the use of
binary data. If both options are used, the two blocks of data are concatenated, with the data from
ec2_user_dataoccurring first. Condor performs the base64 encoding that EC2 expects on the data.

EC2 Configuration Variables

Theec2grid type requires these configuration variables to be set inthe Condor configuration file:

EC2_GAHP = $(SBIN)/ec2_gahp
EC2_GAHP_LOG = /tmp/EC2GahpLog.$(USERNAME)

Theec2grid type does not presently permit the explicit use of an HTTP proxy.

Condor Version 7.7.6 Manual

5.3. The Grid Universe 547

5.3.9 The cream Grid Type

CREAM is a job submission interface being developed at INFN for the gLite software stack. The
CREAM homepage is http://grid.pd.infn.it/cream/. The protocol is based on web services.

The protocol requires an X.509 proxy for the job, so the submit description file command
x509userproxywill be used.

A CREAM resource specification is of the form:

grid_resource = cream <web-services-address> <batch-sys tem> <queue-name>

The<web-services-address> appears the same for most servers, differing only in the host
name, as

<machinename[:port]>/ce-cream/services/CREAM2

Future versions of Condor may require only the host name, filling in other aspects of the web service
for the user.

The<batch-system> is the name of the batch system that sits behind the CREAM server,
into which it submits the jobs. Normal values arepbs , lsf , andcondor .

The<queue-name> identifies which queue within the batch system should be used. Values
for this will vary by site, with no typical values.

A full example for the specification of a CREAMgrid_resourceis

grid_resource = cream https://cream-12.pd.infn.it:8443 /ce-cream/services/CREAM2
pbs cream_1

This is a single line within the submit description file, although it is shown here on two lines for
formatting reasons.

5.3.10 The deltacloud Grid Type

Condor jobs may be submitted to Deltacloud services. Deltacloud is a translation service for cloud
services. Cloud services allow the rental of computers by the hour to run computation applications.
Many cloud services define their own protocol for users to communicate with them. Deltacloud
defines its own simple protocol and translates a user’s commands into the appropriate protocol for the
cloud service the user specifies. Anyone can set up a Deltacloud service and configure it to translate
for a specific cloud service. See the Deltacloud web page at http://incubator.apache.org/deltacloud
for more information about Deltacloud.

Condor Version 7.7.6 Manual

http://grid.pd.infn.it/cream/
http://incubator.apache.org/deltacloud

5.3. The Grid Universe 548

Deltacloud Job Submission

Condor jobs are submitted to Deltacloud using thegrid universe and thegrid_resourcecommand
into the submit description file following this example:

grid_resource = deltacloud https://deltacloud.foo.org/ api

The URL in this example will be replaced with the URL of the Deltacloud service desired.

Since the job is a virtual machine image, most of the submit description file commands specify-
ing input or output files are not applicable. Theexecutablecommand is still required, but its value
is ignored. It can be used to identify different jobs in the output ofcondor_q.

The VM image for the job must already be stored and registeredwith the cloud service. In the
submit description file, provide the identifier for the imageusing thedeltacloud_image_idcom-
mand.

To authenticate with Deltacloud, Condor needs your credentials for the cloud service that the
Deltacloud server is representing. The credentials are presented as a user name and the name of a
file that holds a secret key. Both are specified in the submit description file:

deltacloud_username = your_username
deltacloud_password_file = /path/to/password/file

You can create and register an SSH key pair with the cloud service, which you can then use
to securely log in to virtual machines, once running. The commanddeltacloud_keynamein the
submit description file specifies the identifier of the SSH keypair to use.

The cloud service may have multiple locations where the virtual machine can run. The submit
description file commanddeltacloud_realm_idselects one. If not specified, the service will select
a sensible default.

The cloud service may offer several hardware configurationsfor instances to run on. Se-
lect which configuration to use with thedeltacloud_hardware_profile submit description file
command. If not specified, the cloud service will select a sensible default. The optional com-
mandsdeltacloud_hardware_profile_memory, deltacloud_hardware_profile_cpu, and delta-
cloud_hardware_profile_storagecustomize the selected hardware profile.

Each virtual machine instance can be given some unique data,accessible by the instance connect-
ing to a well-known address. This makes it easy for many instances to share the same VM image,
but perform different work. This data can be specified with the submit description file command
deltacloud_user_data. The amount of data that can be provided depends on the cloud service. EC2
services allow up to 16Kb of data.

Condor Version 7.7.6 Manual

5.3. The Grid Universe 549

Configuration for Deltacloud

The deltacloud grid type requires one configuration variable to be set, to specify the path and exe-
cutable of thedeltacloud_gahp:

DELTACLOUD_GAHP=$(SBIN)/deltacloud_gahp

5.3.11 Matchmaking in the Grid Universe

In a simple usage, the grid universe allows users to specify asingle grid site as a destination for
jobs. This is sufficient when a user knows exactly which grid site they wish to use, or a higher-level
resource broker (such as the European Data Grid’s resource broker) has decided which grid site
should be used.

When a user has a variety of grid sites to choose from, Condor allows matchmaking of grid
universe jobs to decide which grid resource a job should run on. Please note that this form of
matchmaking is relatively new. There are some rough edges ascontinual improvement occurs.

To facilitate Condor’s matching of jobs with grid resources, both the jobs and the grid resources
are involved. The job’s submit description file provides allcommands needed to make the job work
on a matched grid resource. The grid resource identifies itself to Condor by advertising a ClassAd.
This ClassAd specifies all necessary attributes, such that Condor can properly make matches. The
grid resource identification is accomplished by usingcondor_advertiseto send a ClassAd represent-
ing the grid resource, which is then used by Condor to make matches.

Job Submission

To submit a grid universe job intended for a single, specificgt2 resource, the submit description file
for the job explicitly specifies the resource:

grid_resource = gt2 grid.example.com/jobmanager-pbs

If there were multiplegt2 resources that might be matched to the job, the submit description file
changes:

grid_resource = $$(resource_name)
requirements = TARGET.resource_name =!= UNDEFINED

The grid_resource command uses a substitution macro. The substitution macro defines the
value of resource_name using attributes as specified by the matched grid resource. The re-
quirements command further restricts that the job may only run on a machine (grid resource) that
definesgrid_resource . Note that this attribute name is invented for this example.To make

Condor Version 7.7.6 Manual

5.3. The Grid Universe 550

matchmaking work in this way, both the job (as used here within the submit description file) and the
grid resource (in its created and advertised ClassAd) must agree upon the name of the attribute.

As a more complex example, consider a job that wants to run notonly on agt2 resource, but on
one that has the Bamboozle software installed. The completesubmit description file might appear:

universe = grid
executable = analyze_bamboozle_data
output = aaa.$(Cluster).out
error = aaa.$(Cluster).err
log = aaa.log
grid_resource = $$(resource_name)
requirements = (TARGET.HaveBamboozle == True) && (TARGET. resource_name =!= UNDEFINED)
queue

Any grid resource which has theHaveBamboozle attribute defined as well as set toTrue is
further checked to have theresource_name attribute defined. Where this occurs, a match may
be made (from the job’s point of view). A grid resource that has one of these attributes defined, but
not the other results in no match being made.

Note that the entire value ofgrid_resourcecomes from the grid resource’s ad. This means that
the job can be matched with a resource of any type, not justgt2.

Advertising Grid Resources to Condor

Any grid resource that wishes to be matched by Condor with a job must advertise itself to Condor
using a ClassAd. To properly advertise, a ClassAd is sent periodically to thecondor_collector
daemon. A ClassAd is a list of pairs, where each pair consistsof an attribute name and value that
describes an entity. There are two entities relevant to Condor: a job, and a machine. A grid resource
is a machine. The ClassAd describes the grid resource, as well as identifying the capabilities of the
grid resource. It may also state both requirements and preferences (calledrank) for the jobs it will
run. See Section 2.3 for an overview of the interaction between matchmaking and ClassAds. A list
of common machine ClassAd attributes is given in the Appendix on page 969.

To advertise a grid site, place the attributes in a file. Here is a sample ClassAd that describes a
grid resource that is capable of running agt2 job.

example grid resource ClassAd for a gt2 job
MyType = "Machine"
TargetType = "Job"
Name = "Example1_Gatekeeper"
Machine = "Example1_Gatekeeper"
resource_name = "gt2 grid.example.com/jobmanager-pbs"
UpdateSequenceNumber = 4
Requirements = (TARGET.JobUniverse == 9)
Rank = 0.000000
CurrentRank = 0.000000

Condor Version 7.7.6 Manual

5.3. The Grid Universe 551

Some attributes are defined as expressions, while others areintegers, floating point values, or
strings. The type is important, and must be correct for the ClassAd to be effective. The attributes

MyType = "Machine"
TargetType = "Job"

identify the grid resource as a machine, and that the machineis to be matched with a job. In Condor,
machines are matched with jobs, and jobs are matched with machines. These attributes are strings.
Strings are surrounded by double quote marks.

The attributesNameandMachine are likely to be defined to be the same string value as in the
example:

Name = "Example1_Gatekeeper"
Machine = "Example1_Gatekeeper"

Both give the fully qualified host name for the resource. TheNamemay be different on an SMP
machine, where the individual CPUs are given names that can be distinguished from each other.
Each separate grid resource must have a unique name.

Where the job depends on the resource to specify the value of thegrid_resourcecommand by
the use of the substitution macro, the ClassAd for the grid resource (machine) defines this value.
The example given as

grid_resource = "gt2 grid.example.com/jobmanager-pbs"

defines this value. Note that the invented name of this variable must match the one utilized within
the submit description file. To make the matchmaking work, both the job (as used within the submit
description file) and the grid resource (in this created and advertised ClassAd) must agree upon the
name of the attribute.

A machine’s ClassAd information can be time sensitive, and may change over time. Therefore,
ClassAds expire and are thrown away. In addition, the communication method by which ClassAds
are sent implies that entire ads may be lost without notice ormay arrive out of order. Out of order
arrival leads to the definition of an attribute which provides an ordering. This positive integer value
is given in the example ClassAd as

UpdateSequenceNumber = 4

This value must increase for each subsequent ClassAd. If state information for the ClassAd is kept
in a file, a script executed each time the ClassAd is to be sent may use a counter for this value.
An alternative for a stateless implementation sends the current time in seconds (since the epoch, as
given by the Ctime() function call).

The requirements that the grid resource sets for any job thatit will accept are given as

Requirements = (TARGET.JobUniverse == 9)

Condor Version 7.7.6 Manual

5.3. The Grid Universe 552

This set of requirements state that any job is required to be for thegrid universe.

The attributes

Rank = 0.000000
CurrentRank = 0.000000

are both necessary for Condor’s negotiation to proceed, butare not relevant to grid matchmaking.
Set both to the floating point value 0.0.

The example machine ClassAd becomes more complex for the case where the grid resource
allows matches with more than one job:

example grid resource ClassAd for a gt2 job
MyType = "Machine"
TargetType = "Job"
Name = "Example1_Gatekeeper"
Machine = "Example1_Gatekeeper"
resource_name = "gt2 grid.example.com/jobmanager-pbs"
UpdateSequenceNumber = 4
Requirements = (CurMatches < 10) && (TARGET.JobUniverse == 9)
Rank = 0.000000
CurrentRank = 0.000000
WantAdRevaluate = True
CurMatches = 1

In this example, the two attributesWantAdRevaluate andCurMatches appear, and the
Requirements expression has changed.

WantAdRevaluate is a boolean value, and may be set to eitherTrue orFalse . WhenTrue
in the ClassAd and a match is made (of a job to the grid resource), the machine (grid resource) is not
removed from the set of machines to be considered for furthermatches. This implements the ability
for a single grid resource to be matched to more than one job ata time. Note that the spelling of this
attribute is incorrect, and remains incorrect to maintain backward compatibility.

To limit the number of matches made to the single grid resource, the resource must have the
ability to keep track of the number of Condor jobs it has. Thisinteger value is given as the
CurMatches attribute in the advertised ClassAd. It is then compared in order to limit the number
of jobs matched with the grid resource.

Requirements = (CurMatches < 10) && (TARGET.JobUniverse == 9)
CurMatches = 1

This example assumes that the grid resource already has one job, and is willing to accept a
maximum of 9 jobs. IfCurMatches does not appear in the ClassAd, Condor uses a default value
of 0.

For multiple matching of a site ClassAd to work correctly, itis also necessary to add the follow-
ing to the configuration file read by thecondor_negotiator:

NEGOTIATOR_MATCHLIST_CACHING = False
NEGOTIATOR_IGNORE_USER_PRIORITIES = True

Condor Version 7.7.6 Manual

5.3. The Grid Universe 553

This ClassAd (likely in a file) is to be periodically sent to the condor_collectordaemon using
condor_advertise. A recommended implementation uses a script to create or modify the ClassAd
together withcron to send the ClassAd every five minutes. Thecondor_advertiseprogram must
be installed on the machine sending the ClassAd, but the remainder of Condor does not need to be
installed. The required argument for thecondor_advertisecommand isUPDATE_STARTD_AD.

condor_advertiseuses UDP to transmit the ClassAd. Where this is insufficient,specify the-tcp
option tocondor_advertiseto use TCP for communication.

Advanced usage

What if a job fails to run at a grid site due to an error? It will be returned to the queue, and Condor
will attempt to match it and re-run it at another site. Condorisn’t very clever about avoiding sites
that may be bad, but you can give it some assistance. Let’s saythat you want to avoid running at the
last grid site you ran at. You could add this to your job description:

match_list_length = 1
Rank = TARGET.Name != LastMatchName0

This will prefer to run at a grid site that was not just tried, but it will allow the job to be run there
if there is no other option.

When you specifymatch_list_length, you provide an integer N, and Condor will keep track
of the last N matches. The oldest match will be LastMatchName0, and next oldest will be Last-
MatchName1, and so on. (See thecondor_submitmanual page for more details.) The Rank ex-
pression allows you to specify a numerical ranking for different matches. When combined with
match_list_length, you can prefer to avoid sites that you have already run at.

In addition,condor_submithas two options to help control grid universe job resubmissions and
rematching. See the definitions of the submit description file commandsglobus_resubmit and
globus_rematchat page 893 and page 894. These options are independent ofmatch_list_length.

There are some new attributes that will be added to the Job ClassAd, and may be useful to you
when you write your rank, requirements, globus_resubmit orglobus_rematch option. Please refer to
the Appendix on page 956 to see a list containing the following attributes:

• NumJobMatches

• NumGlobusSubmits

• NumSystemHolds

• HoldReason

• ReleaseReason

• EnteredCurrentStatus

Condor Version 7.7.6 Manual

5.4. Glidein 554

• LastMatchTime

• LastRejMatchTime

• LastRejMatchReason

The following example of a command within the submit description file releases jobs 5 minutes
after being held, increasing the time between releases by 5 minutes each time. It will continue to
retry up to 4 times per Globus submission, plus 4. The plus 4 isnecessary in case the job goes on
hold before being submitted to Globus, although this is unlikely.

periodic_release = (NumSystemHolds <= ((NumGlobusSubmit s * 4) + 4)) \
&& (NumGlobusSubmits < 4) && \
(HoldReason != "via condor_hold (by user $ENV(USER))") && \
((CurrentTime - EnteredCurrentStatus) > (NumSystemHolds *60*5))

The following example forces Globus resubmission after a job has been held 4 times per Globus
submission.

globus_resubmit = NumSystemHolds == (NumGlobusSubmits + 1) * 4

If you are concerned about unknown or malicious grid sites reporting to yourcondor_collector,
you should use Condor’s security options, documented in Section 3.6.

5.4 Glidein

Glidein is a mechanism by which one or more grid resources (remote machines) temporarily join a
local Condor pool. The programcondor_glideinis used to add a machine to a Condor pool. During
the period of time when the added resource is part of the localpool, the resource is visible to users
of the pool. But, by default, the resource is only available for use by the user that added the resource
to the pool.

After glidein, the user may submit jobs for execution on the added resource the same way that
all Condor jobs are submitted. To force a submitted job to runon the added resource, the submit
description file could contain a requirement that the job runspecifically on the added resource.

5.4.1 Whatcondor_glideinDoes

condor_glideinworks by installing and executing necessary Condor daemonsand configuration on
the remote resource, such that the resource reports to and joins the local pool. condor_glidein
accomplishes two separate tasks towards having a remote grid resource join the local Condor pool.
They are the set up task and the execution task.

Condor Version 7.7.6 Manual

5.4. Glidein 555

The set up task generates necessary configuration files and locates proper platform-dependent
binaries for the Condor daemons. A script is also generated that can be used during the execution
task to invoke the proper Condor daemons. These files are copied to the remote resource as neces-
sary. The configuration variableGLIDEIN_SERVER_URLSdefines a list of locations from which
the necessary binaries are obtained. Default values cause binaries to be downloaded from the UW
site. See section 3.3.24 on page 254 for a full definition of this configuration variable.

When the files are correctly in place, the execution task starts the Condor daemons.con-
dor_glideindoes this by submitting a Condor job to run under the grid universe. The job runs
thecondor_masteron the remote grid resource. Thecondor_masterinvokes other daemons, which
contact the local pool’scondor_collectorto join the pool. The Condor daemons exit gracefully when
no jobs run on the daemons for a preset period of time.

Here is an example of how a glidein resource appears, similarto how any other machine appears.
The name has a slightly different form, in order to handle thepossibility of multiple instances of
glidein daemons inhabiting a multi-processor machine.

% condor_status | grep denal
7591386@denal LINUX INTEL Unclaimed Idle 3.700 24064 0+00: 06:35

5.4.2 Configuration Requirements in the Local Pool

As remote grid resources join the local pool, these resources must report to the local pool’scon-
dor_collectordaemon. Security demands that the local pool’scondor_collectorlist all hosts from
which they will accept communication. Therefore, all remote grid resources accepted for glidein
must be givenHOSTALLOW_WRITEpermission. An expected way to do this is to modify the
empty variable (within the sample configuration file)GLIDEIN_SITES to list all remote grid re-
sources accepted for glidein. The list is a space or comma separated list of hosts. This list is then
given the proper permissions by an additional redefinition of the HOSTALLOW_WRITEconfigura-
tion variable, to also include the list of hosts as in the following example.

GLIDEIN_SITES = A.example.com, B.example.com, C.example .com
HOSTALLOW_WRITE = $(HOSTALLOW_WRITE) $(GLIDEIN_SITES)

Recall that for configuration file changes to take effect,condor_reconfigmust be run.

If this configuration change to the security settings on the local Condor pool cannot be made, an
additional Condor pool that utilizes personal Condor may bedefined. The single machine pool may
coexist with other instances of Condor.condor_glideinis executed to have the remote grid resources
join this personal Condor pool.

Condor Version 7.7.6 Manual

5.5. Dynamic Deployment 556

5.4.3 Running Jobs on the Remote Grid Resource After Glidein

Once the Globus resource has been added to the local Condor pool with condor_glidein, job(s) may
be submitted. To force a job to run on the Globus resource, specify that Globus resource as a machine
requirement in the submit description file. Here is an example from within the submit description
file that forces submission to the Globus resource denali.mcs.anl.gov:

requirements = (machine == "denali.mcs.anl.gov") \
&& FileSystemDomain != "" \
&& Arch != "" && OpSys != ""

This example requires that the job run only on denali.mcs.anl.gov, and it prevents Condor from
inserting the file system domain, architecture, and operating system attributes as requirements in the
matchmaking process. Condor must be told not to use the submission machine’s attributes in those
cases where the Globus resource’s attributes do not match the submission machine’s attributes and
your job really is capable of running on the target machine. You may want to use Condor’s file-
transfer capabilities in order to copy input and output filesback and forth between the submission
and execution machine.

5.5 Dynamic Deployment

See section 3.2.9 for a complete description of Condor’s dynamic deployment tools.

Condor’s dynamic deployment tools (condor_cold_startandcondor_glidein) allow new pools
of resources to be incorporated on the fly. While Condor is able to manage compute jobs remotely
through Globus and other grid-computing protocols, dynamic deployment of Condor makes it pos-
sible to go one step further. Condor remotely installs and runs portions of itself. This process
of Condor gliding in to inhabit computing resources on demand leverages the lowest common de-
nominator of grid middleware systems, simple program execution, to bind together resources in
a heterogeneous computing grid, with different managementpolicies and different job execution
methods, into a full-fledged Condor system.

The mobility of Condor services also benefits from the development of Condor-C, which pro-
vides a richer tool set for interlinking Condor-managed computers. Condor-C is a protocol that
allows one Condor scheduler to delegate jobs to another Condor scheduler. The second scheduler
could be at a remote site and/or an entry point into a restricted network. Delegating details of man-
aging a job achieves greater flexibility with respect to network architecture, as well as fault tolerance
and scalability. In the context of glide in deployments, thebeach-head for each compute site is a
dynamically deployed Condor scheduler which then serves asa target for Condor-C traffic.

In general, the mobility of the Condor scheduler and job execution agents, and the flexibility
in how these are interconnected provide a uniform and feature-rich platform that can expand onto
diverse resources and environments when the user requires it.

Condor Version 7.7.6 Manual

5.6. The Condor Job Router 557

5.6 The Condor Job Router

The Condor Job Router is an add-on to thecondor_scheddthat transforms jobs from one type into
another according to a configurable policy. This process of transforming the jobs is calledjob
routing.

One example of how the Job Router can be used is for the task of sending excess jobs to one
or more remote grid sites. The Job Router can transform the jobs such as vanilla universe jobs into
grid universe jobs that use any of the grid types supported byCondor. The rate at which jobs are
routed can be matched roughly to the rate at which the site is able to start running them. This makes
it possible to balance a large work flow across multiple grid sites, a local Condor pool, and any
flocked Condor pools, without having to guess in advance how quickly jobs will run and complete
in each of the different sites.

Job Routing is most appropriate for high throughput work flows, where there are many more jobs
than computers, and the goal is to keep as many of the computers busy as possible. Job Routing is
less suitable when there are a small number of jobs, and the scheduler needs to choose the best place
for each job, in order to finish them as quickly as possible. The Job Router does not know which
site will run the jobs faster, but it can decide whether to send more jobs to a site, based on whether
jobs already submitted to that site are sitting idle or not, as well as whether the site has experienced
recent job failures.

5.6.1 Routing Mechanism

Thecondor_job_routerdaemon and configuration determine a policy for which jobs may be trans-
formed and sent to grid sites. A job is transformed into a griduniverse job by making a copy of the
original job ClassAd, modifying some attributes of the job.The copy is called the routed copy, and
it shows up in the job queue under a new job id.

Until the routed copy finishes or is removed, the original copy of the job passively mirrors the
state of the routed job. During this time, the original job isnot available for matchmaking, because
it is tied to the routed copy. The original jobs also does not evaluate periodic expressions, such as
PeriodicHold . Periodic expressions are evaluated for the routed copy. When the routed copy
completes, the original job ClassAd is updated such that it reflects the final status of the job. If
the routed copy is removed, the original job returns to the normal idle state, and is available for
matchmaking or rerouting. If, instead, the original job is removed or goes on hold, the routed copy
is removed.

The condor_job_routerdaemon utilizes arouting table, in which a ClassAd describes
each site to where jobs may be sent. The routing table is givenin the New ClassAd
language, as currently used by Condor internally. A good place to learn about the syn-
tax of New ClassAds is the Informal Language Description in the C++ ClassAds tutorial:
http://www.cs.wisc.edu/condor/classad/c++tut.html.

Two essential differences distinguish the New ClassAd language from the current one. In the

Condor Version 7.7.6 Manual

http://www.cs.wisc.edu/condor/classad/c++tut.html

5.6. The Condor Job Router 558

New ClassAd language, each ClassAd is surrounded by square brackets. And, in the New ClassAd
language, each assignment statement ends with a semicolon.When the New ClassAd is embedded in
a Condor configuration file, it may appear all on a single line,but the readability is often improved by
inserting line continuation characters after each assignment statement. This is done in the examples.
Unfortunately, this makes the insertion of comments into the configuration file awkward, because
of the interaction between comments and line continuation characters in configuration files. An
alternative is to use C-style comments (/* . . .*/). Another alternative is to read in the routing
table entries from a separate file, rather than embedding them in the Condor configuration file.

5.6.2 Job Submission with Job Routing Capability

If Job Routing is set up, then the following items ought to be considered for jobs to have the neces-
sary prerequisites to be considered for routing.

• Jobs appropriate for routing to the grid must not rely on access to a shared file system, or
other services that are only available on the local pool. Thejob will use Condor’s file transfer
mechanism, rather than relying on a shared file system to access input files and write output
files. In the submit description file, to enable file transfer,there will be a set of commands
similar to

should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = input1, input2
transfer_output_files = output1, output2

Vanilla universe jobs and most types of grid universe jobs differ in the set of files transferred
back when the job completes. Vanilla universe jobs transferback all files created or modified,
while all grid universe jobs except for Condor-C only transfer back theoutput file, as well
as those explicitly listed withtransfer_output_files. Therefore, when routing jobs to grid
universes other than Condor-C, it is important to explicitly specify all output files that must
be transferred upon job completion.

An additional difference between the vanilla universe jobsandgt2 grid universe jobs is that
gt2 jobs do not return any information about the job’s exit status. The exit status as reported
in the job ClassAd and user log are always 0. Therefore, jobs that may be routed to agt2 grid
site must not rely upon a non-zero job exit status.

• One configuration for routed jobs requires the jobs to identify themselves as candidates for Job
Routing. This may be accomplished by inventing a ClassAd attribute that the configuration
utilizes in setting the policy for job identification, and the job defines this attribute to identify
itself. If the invented attribute is calledWantJobRouter , then the job identifies itself as a
job that may be routed by placing in the submit description file:

+WantJobRouter = True

Condor Version 7.7.6 Manual

5.6. The Condor Job Router 559

This implementation can be taken further, allowing the job to first be rejected within the local
pool, before being a candidate for Job Routing:

+WantJobRouter = LastRejMatchTime =!= UNDEFINED

• As appropriate to the potential grid site, create a grid proxy, and specify it in the submit
description file:

x509userproxy = /tmp/x509up_u275

This is not necessary if thecondor_job_routerdaemon is configured to add a grid proxy on
behalf of jobs.

Job submission does not change for jobs that may be routed.

$ condor_submit job1.sub

wherejob1.sub might contain:

universe = vanilla
executable = my_executable
output = job1.stdout
error = job1.stderr
log = job1.ulog
should_transfer_files = YES
when_to_transfer_output = ON_EXIT
+WantJobRouter = LastRejMatchTime =!= UNDEFINED
x509userproxy = /tmp/x509up_u275
queue

The status of the job may be observed as with any other Condor job, for example by looking in
the job’s log file. Before the job completes,condor_qshows the job’s status. Should the job become
routed, a second job will enter the job queue. This is the routed copy of the original job. The
commandcondor_router_qshows a more specialized view of routed jobs, as this exampleshows:

$ condor_router_q -S
JOBS ST Route GridResource

40 I Site1 site1.edu/jobmanager-condor
10 I Site2 site2.edu/jobmanager-pbs

2 R Site3 condor submit.site3.edu condor.site3.edu

condor_router_historysummarizes the history of routed jobs, as this example shows:

Condor Version 7.7.6 Manual

5.6. The Condor Job Router 560

$ condor_router_history
Routed job history from 2007-06-27 23:38 to 2007-06-28 23:3 8

Site Hours Jobs Runs
Completed Aborted

--- ----
Site1 10 2 0
Site2 8 2 1
Site3 40 6 0
--- ----
TOTAL 58 10 1

5.6.3 An Example Configuration

The following sample configuration sets up potential job routing to three routes (grid sites). Defini-
tions of the configuration variables specific to the Job Router are in section 3.3.21. One route is a
Condor site accessed via the Globus gt2 protocol. A second route is a PBS site, also accessed via
Globus gt2. The third site is a Condor site accessed by Condor-C. Thecondor_job_routerdaemon
does not know which site will be best for a given job. The policy implemented in this sample con-
figuration stops sending more jobs to a site, if ten jobs that have already been sent to that site are
idle.

These configuration settings belong in the local configuration file of the machine where jobs are
submitted. Check that the machine can successfully submit grid jobs before setting up and using
the Job Router. Typically, the single required element thatneeds to be added for GSI authentication
is an X.509 trusted certification authority directory, in a place recognized by Condor (for example,
/etc/grid-security/certificates). The VDT (http://vdt.cs.wisc.edu) project provides
a convenient way to set up and install a trusted CAs, if needed.

These settings become the default settings for all routes
JOB_ROUTER_DEFAULTS = \

[\
requirements=target.WantJobRouter is True; \
MaxIdleJobs = 10; \
MaxJobs = 200; \

\
/* now modify routed job attributes */ \
/* remove routed job if it goes on hold or stays idle for over 6 h ours */ \
set_PeriodicRemove = JobStatus == 5 || \

(JobStatus == 1 && (CurrentTime - QDate) > 3600*6); \
delete_WantJobRouter = true; \
set_requirements = true; \

]

This could be made an attribute of the job, rather than being hard-coded
ROUTED_JOB_MAX_TIME = 1440

Now we define each of the routes to send jobs on

Condor Version 7.7.6 Manual

http://vdt.cs.wisc.edu

5.6. The Condor Job Router 561

JOB_ROUTER_ENTRIES = \
[GridResource = "gt2 site1.edu/jobmanager-condor"; \

name = "Site 1"; \
] \
[GridResource = "gt2 site2.edu/jobmanager-pbs"; \

name = "Site 2"; \
set_GlobusRSL = "(maxwalltime=$(ROUTED_JOB_MAX_TIME)) (jobType=single)"; \

] \
[GridResource = "condor submit.site3.edu condor.site3.e du"; \

name = "Site 3"; \
set_remote_jobuniverse = 5; \

]

Reminder: you must restart Condor for changes to DAEMON_LI ST to take effect.
DAEMON_LIST = $(DAEMON_LIST) JOB_ROUTER

For testing, set this to a small value to speed things up.
Once you are running at large scale, set it to a higher value
to prevent the JobRouter from using too much cpu.
JOB_ROUTER_POLLING_PERIOD = 10

#It is good to save lots of schedd queue history
#for use with the router_history command.
MAX_HISTORY_ROTATIONS = 20

5.6.4 Routing Table Entry ClassAd Attributes

The conversion of a job to a routed copy may require the job ClassAd to be modified. The Routing
Table specifies attributes of the different possible routesand it may specify specific modifications
that should be made to the job when it is sent along a specific route.

The following attributes and instructions for modifying job attributes may appear in a Routing
Table entry.

GridResource Specifies the value for theGridResource attribute that will be inserted into the
routed copy of the job’s ClassAd.

Name An optional identifier that will be used in log messages concerning this route. If no name
is specified, the default used will be the value ofGridResource . Thecondor_job_router
distinguishes routes and advertises statistics based on this attribute’s value.

Requirements A Requirements expression in New ClassAd syntax that identifies jobs that may
be matched to the route. Note that, as with all settings, requirements specified in the configura-
tion variableJOB_ROUTER_ENTRIESoverride the setting ofJOB_ROUTER_DEFAULTS.
To specify global requirements that are not overridden byJOB_ROUTER_ENTRIES, use
JOB_ROUTER_SOURCE_JOB_CONSTRAINT.

MaxJobs An integer maximum number of jobs permitted on the route at one time. The default is
100.

Condor Version 7.7.6 Manual

5.6. The Condor Job Router 562

MaxIdleJobs An integer maximum number of routed jobs in the idle state. Ator above this value,
no more jobs will be sent to this site. This is intended to prevent too many jobs from being
sent to sites which are too busy to run them. If the value set for this attribute is too small,
the rate of job submission to the site will slow, because thecondor_job_routerdaemon will
submit jobs up to this limit, wait to see some of the jobs enterthe running state, and then
submit more. The disadvantage of setting this attribute’s value too high is that a lot of jobs
may be sent to a site, only to site idle for hours or days. The default value is 50.

FailureRateThreshold A maximum tolerated rate of job failures. Failure is determined by the
expression sets for the attributeJobFailureTest expression. The default threshold is
0.03 jobs/second. If the threshold is exceeded, submissionof new jobs is throttled until jobs
begin succeeding, such that the failure rate is less than thethreshold. This attribute implements
black hole throttling, such that a site at which jobs are sent only to fail (a black hole) receives
fewer jobs.

JobFailureTest An expression in New ClassAds syntax evaluated for each job that finishes, to
determine whether it was a failure. The default value if no expression is defined as-
sumes all jobs are successful. Routed jobs that are removed are considered to be fail-
ures. An example expression to treat all jobs running for less than 30 minutes as failures
is target.RemoteWallClockTime < 1800 . A more flexible expression might refer-
ence a property or expression of the job that specifies a failure condition specific to the type
of job.

TargetUniverse An integer value specifying the desired universe for the routed copy of the job.
The default value is 9, which is thegrid universe.

UseSharedX509UserProxyA boolean expression in New ClassAds syntax, that whenTrue
causes the value ofSharedX509UserProxy to be the X.509 user proxy for the routed
job. Note that if thecondor_job_routerdaemon is running as root, the copy of this file that is
given to the job will have its ownership set to that of the userrunning the job. This requires
the trust of the user. It is therefore recommended to avoid this mechanism when possible.
Instead, require users to submit jobs withX509UserProxy set in the submit description
file. If this feature is needed, use the boolean expression toonly allow specific values of
target.Owner to use this shared proxy file. The shared proxy file should be owned by
thecondor user. Currently, to use a shared proxy, the job must also turnon sandboxing by
having the attributeJobShouldBeSandboxed .

SharedX509UserProxyA string representing file containing the X.509 user proxy for the routed
job.

JobShouldBeSandboxedA boolean expression in New ClassAd syntax, that whenTrue causes
the created copy of the job to be sandboxed. A copy of the inputfiles will be placed in the
condor_schedddaemon’s spool area for the target job, and when the job runs,the output will
be staged back into the spool area. Once all of the output has been successfully staged back,
it will be copied again, this time from the spool area of the sandboxed job back to the original
job’s output locations. By default, sandboxing is turned off. Only to turn it on if using a shared
X.509 user proxy or if direct staging of remote output files back to the final output locations
is not desired.

Condor Version 7.7.6 Manual

5.6. The Condor Job Router 563

OverrideRoutingEntry A boolean value that whenTrue , indicates that this entry in the routing
table replaces any previous entry in the table with the same name. WhenFalse , it indicates
that if there is a previous entry by the same name, the previous entry should be retained and
this entry should be ignored. The default value isTrue .

Set_<ATTR> Sets the value of<ATTR> in the routed job ClassAd to the specified value. An
example of an attribute that might be set isPeriodicRemove . For example, if the routed
job goes on hold or stays idle for too long, remove it and return the original copy of the job to
a normal state.

Eval_Set_<ATTR> Defines an expression written in New ClassAd syntax. The expression is evalu-
ated, and the resulting value sets the value of the routed copy’s job ClassAd attribute<ATTR>.
An expected usage is where a New ClassAd expression evaluation is required. Recall that the
condor_job_routerdaemon evaluates using New ClassAd syntax, but the routed copy is rep-
resented by the current ClassAd language.

Copy_<ATTR> Defined with the name of a routed copy ClassAd attribute. Copies the value of
<ATTR>from the original job ClassAd into the specified attribute named of the routed copy.
Useful to save the value of an expression, before replacing it with something else that refer-
ences the original expression.

Delete_<ATTR> Deletes<ATTR>from the routed copy ClassAd. A value assigned to this attribute
in the routing table entry is ignored.

5.6.5 Example: constructing the routing table from ReSS

The Open Science Grid has a service called ReSS (Resource Selection Service). It presents grid
sites as ClassAds in a Condor collector. This example buildsa routing table from the site ClassAds
in the ReSS collector.

Using JOB_ROUTER_ENTRIES_CMD, we tell the condor_job_routerdaemon to call a
simple script which queries the collector and outputs a routing table. The script, called
osg_ress_routing_table.sh , is just this:

#!/bin/sh

you _MUST_ change this:
export condor_status=/path/to/condor_status
if no command line arguments specify -pool, use this:
export _CONDOR_COLLECTOR_HOST=osg-ress-1.fnal.gov

$condor_status -format '[' BeginAd \
-format 'GridResource = "gt2 %s"; ' GlueCEInfoContactStri ng \

-format ']\n' EndAd "$@" | uniq

Save this script to a file and make sure the permissions on the file mark it as executable. Test
this script by calling it by hand before trying to use it with thecondor_job_routerdaemon. You may
supply additional arguments such as-constraint to limit the sites which are returned.

Condor Version 7.7.6 Manual

5.6. The Condor Job Router 564

Once you are satisfied that the routing table constructed by the script is what you want, configure
thecondor_job_routerdaemon to use it:

command to build the routing table
JOB_ROUTER_ENTRIES_CMD = /path/to/osg_ress_routing_ta ble.sh <extra arguments>

how often to rebuild the routing table:
JOB_ROUTER_ENTRIES_REFRESH = 3600

Using the example configuration, use the above settings to replaceJOB_ROUTER_ENTRIES
. Or, leaveJOB_ROUTER_ENTRIESthere and have a routing table containing entries from both
sources. When you restart or reconfigure thecondor_job_routerdaemon, you should see messages
in the Job Router’s log indicating that it is adding more routes to the table.

Condor Version 7.7.6 Manual

CHAPTER

SIX

Platform-Specific Information

The Condor Team strives to make Condor work the same way across all supported platforms. How-
ever, because Condor is a very low-level system which interacts closely with the internals of the op-
erating systems on which it runs, this goal is not always possible to achieve. The following sections
provide detailed information about using Condor on different computing platforms and operating
systems.

6.1 Linux

This section provides information specific to the Linux portof Condor. Linux is a difficult platform
to support. It changes very frequently, and Condor has some extremely system-dependent code (for
example, the checkpointing library).

Condor is sensitive to changes in the following elements of the system:

• The kernel version

• The version of the GNU C library (glibc)

• the version of GNU C Compiler (GCC) used to build and link Condor jobs (this only matters
for Condor’s Standard universe which provides checkpointing and remote system calls)

The Condor Team tries to provide support for various releases of the distribution of Linux. Red
Hat is probably the most popular Linux distribution, and it provides a common set of versions for
the above system components at which Condor can aim support.Condor will often work with Linux
distributions other than Red Hat (for example, Debian or SuSE) that have the same versions of the

565

6.1. Linux 566

above components. However, we do not usually test Condor on other Linux distributions and we do
not provide any guarantees about this.

New releases of Red Hat usually change the versions of some orall of the above system-level
components. A version of Condor that works with one release of Red Hat might not work with
newer releases. The following sections describe the details of Condor’s support for the currently
available versions of Red Hat Linux on x86 architecture machines.

6.1.1 Linux Kernel-specific Information

Distributions that rely on the Linux 2.4.x and all Linux 2.6.x kernels through version 2.6.10 do not
modify theatime of the input device file. This leads to difficulty when Condor is run using one
of these kernels. The problem manifests itself in that Condor cannot properly detect keyboard or
mouse activity. Therefore, using the activity in policy setting cannot signal that Condor should stop
running a job on a machine.

Condor version 6.6.8 implements a workaround for PS/2 devices. A bet-
ter fix is the Linux 2.6.10 kernel patch linked to from the directions posted at
http://www.cs.wisc.edu/condor/kernel.patch.html. This patch works better for PS/2 devices,
and may also work for USB devices. A future version of Condor will implement better recognition
of USB devices, such that the kernel patch will also definitively work for USB devices.

Condor additionally has problems running on some older Xen kernels, which interact badly with
assumptions made by thecondor_procddaemon. See the FAQ entry in section 7.7 for details.

6.1.2 Address Space Randomization

Modern versions of Red Hat and Fedora do address space randomization, which randomizes the
memory layout of a process to reduce the possibility of security exploits. This makes it impossible
for standard universe jobs to resume execution using a checkpoint. When starting or resuming a
standard universe job, Condor disables the randomization.

To run a binary compiled withcondor_compilein standalone mode, either initially or in re-
sumption mode, manually disable the address space randomization by modifying the command line.
For a 32-bit architecture, assuming a Condor-linked binarycalled myapp, invoke the standalone
executable with:

setarch i386 -L -R ./myapp

For a 64-bit architecture, the resumption command will be:

setarch x86_64 -L -R ./myapp

Some applications will also need the-B option.

Condor Version 7.7.6 Manual

http://www.cs.wisc.edu/condor/kernel.patch.html

6.2. Microsoft Windows 567

The command to resume execution using the checkpoint must also disable address space ran-
domization, as the 32-bit architecture example:

setarch i386 -L -R myapp -_condor_restart myapp.ckpt

6.2 Microsoft Windows

Windows is a strategic platform for Condor, and therefore wehave been working toward a complete
port to Windows. Our goal is to make Condor every bit as capable on Windows as it is on Unix – or
even more capable.

Porting Condor from Unix to Windows is a formidable task, because many components of Con-
dor must interact closely with the underlying operating system. Provided is a clipped version of
Condor for Windows. A clipped version is one in which there isno checkpointing and there are no
remote system calls.

This section contains additional information specific to running Condor on Windows. In or-
der to effectively use Condor, first read the overview chapter (section 1.1) and the user’s manual
(section 2.1). If administrating or customizing the policyand set up of Condor, also read the ad-
ministrator’s manual chapter (section 3.1). After readingthese chapters, review the information in
this chapter for important information and differences when using and administrating Condor on
Windows. For information on installing Condor for Windows,see section 3.2.5.

6.2.1 Limitations under Windows

In general, this release for Windows works the same as the release of Condor for Unix. However,
the following items are not supported in this version:

• The standard job universe is not present. This means transparent process checkpoint/migration
and remote system calls are not supported.

• Forgrid universe jobs, the only supported grid type iscondor.

• Accessing files via a network share that requires a Kerberosticket (such as AFS) is not yet
supported.

6.2.2 Supported Features under Windows

Except for those items listed above, most everything works the same way in Condor as it does in the
Unix release. This release is based on the Condor Version 7.7.6 source tree, and thus the feature set
is the same as Condor Version 7.7.6 for Unix. For instance, all of the following work in Condor:

Condor Version 7.7.6 Manual

6.2. Microsoft Windows 568

• The ability to submit, run, and manage queues of jobs running on a cluster of Windows ma-
chines.

• All tools such ascondor_q, condor_status, condor_userprio, are included. Onlycon-
dor_compileis not included.

• The ability to customize job policy using ClassAds. The machine ClassAds contain all the
information included in the Unix version, including current load average, RAM and virtual
memory sizes, integer and floating-point performance, keyboard/mouse idle time, etc. Like-
wise, job ClassAds contain a full complement of information, including system dependent
entries such as dynamic updates of the job’s image size and CPU usage.

• Everything necessary to run a Condor central manager on Windows.

• Security mechanisms.

• Support for SMP machines.

• Condor for Windows can run jobs at a lower operating system priority level. Jobs can be
suspended, soft-killed by using a WM_CLOSE message, or hard-killed automatically based
upon policy expressions. For example, Condor can automatically suspend a job whenever
keyboard/mouse or non-Condor created CPU activity is detected, and continue the job after
the machine has been idle for a specified amount of time.

• Condor correctly manages jobs which create multiple processes. For instance, if a Condor job
spawns multiple processes and Condor needs to kill the job, all processes created by the job
will be terminated.

• In addition to interactive tools, users and administrators can receive information from Condor
by e-mail (standard SMTP) and/or by log files.

• Condor includes a friendly GUI installation and set up program, which can perform a full
install or deinstall of Condor. Information specified by theuser in the set up program is stored
in the system registry. The set up program can update a current installation with a new release
using a minimal amount of effort.

• Condor can give a job access to the running user’s Registry hive.

6.2.3 Secure Password Storage

In order for Condor to operate properly, it must at times be able to act on behalf of users who submit
jobs. This is required on submit machines, so that Condor canaccess a job’s input files, create
and access the job’s output files, and write to the job’s log file from within the appropriate security
context. On Unix systems, arbitrarily changing what user Condor performs its actions as is easily
done when Condor is started with root privileges. On Windows, however, performing an action as
a particular user or on behalf of a particular user requires knowledge of that user’s password, even
when running at the maximum privilege level. Condor provides secure password storage through
the use of thecondor_store_credtool. Passwords managed by Condor are encrypted and stored in

Condor Version 7.7.6 Manual

6.2. Microsoft Windows 569

a secure location within the Windows registry. When Condor needs to perform an action as or on
behalf of a particular user, it uses the securely stored password to do so. This implies that a password
is stored for every user that will submit jobs from the Windows submit machine.

A further feature permits Condor to execute the job itself under the security context of its sub-
mitting user, specifying therun_as_ownercommand in the job’s submit description file. With this
feature, it is necessary to configure and run a centralizedcondor_credddaemon to manage the se-
cure password storage. This makes each user’s password available, via an encrypted connection to
thecondor_credd, to any execute machine that may need it.

By default, the secure password store for a submit machine when nocondor_creddis running is
managed by thecondor_schedd. This approach works in environments where the user’s password is
only needed on the submit machine.

6.2.4 Executing Jobs as the Submitting User

By default, Condor executes jobs on Windows using dedicatedrun accounts that have minimal
access rights and privileges, and which are recreated for each new job. As an alternative, Condor
can be configured to allow users to run jobs using their Windows login accounts. This may be useful
if jobs need access to files on a network share, or to other resources that are not available to the
low-privilege run account.

This feature requires use of acondor_credddaemon for secure password storage and re-
trieval. With thecondor_credddaemon running, the user’s password must be stored, using the
condor_store_credtool. Then, a user that wants a job to run using their own account places into the
job’s submit description file

run_as_owner = True

6.2.5 The condor_credd Daemon

The condor_credddaemon manages secure password storage. A single running instance of the
condor_creddwithin a Condor pool is necessary in order to provide the feature described in section
6.2.4, where a job runs as the submitting user, instead of as atemporary user that has strictly limited
access capabilities.

It is first necessary to select the single machine on which to run thecondor_credd. Often, the
machine acting as the pool’s central manager is a good choice. An important restriction, however, is
that thecondor_creddhost must be a machine running Windows.

All configuration settings necessary to enable thecondor_creddare contained in the example file
etc\condor_config.local.credd from the Condor distribution. Copy these settings into
a local configuration file for the machine that will run thecondor_credd. Runcondor_restart
for these new settings to take effect, then verify (via Task Manager) that acondor_creddprocess is
running.

Condor Version 7.7.6 Manual

6.2. Microsoft Windows 570

A second set of configuration variables specify security forthe communication among Condor
daemons. These variables must be set for all machines in the pool. The following example set-
tings are in the comments contained in theetc\condor_config.local.credd example file.
These sample settings rely on thePASSWORDmethod for authentication among daemons, including
communication with thecondor_credddaemon. TheLOCAL_CREDDvariable must be customized
to point to the machine hosting thecondor_creddand theALLOW_CONFIGvariable will be cus-
tomized, if needed, to refer to an administrative account that exists on all Condor nodes.

CREDD_HOST = credd.cs.wisc.edu
CREDD_CACHE_LOCALLY = True

STARTER_ALLOW_RUNAS_OWNER = True

ALLOW_CONFIG = Administrator@*
SEC_CLIENT_AUTHENTICATION_METHODS = NTSSPI, PASSWORD
SEC_CONFIG_NEGOTIATION = REQUIRED
SEC_CONFIG_AUTHENTICATION = REQUIRED
SEC_CONFIG_ENCRYPTION = REQUIRED
SEC_CONFIG_INTEGRITY = REQUIRED

In order forPASSWORDauthenticated communication to work, apool passwordmust be chosen
and distributed. The chosen pool password must be stored identically for each machine. The pool
password first should be stored on thecondor_creddhost, then on the other machines in the pool.

To store the pool password on a Windows machine, run

condor_store_cred add -c

when logged in with the administrative account on that machine, and enter the password when
prompted. If the administrative account is shared across all machines, that is if it is a domain account
or has the same password on all machines, logging in separately to each machine in the pool can be
avoided. Instead, the pool password can be securely pushed out for each Windows machine using a
command of the form

condor_store_cred add -c -n exec01.cs.wisc.edu

Once the pool password is distributed, but before submitting jobs, all machines must reevaluate
their configuration, so execute

condor_reconfig -all

from the central manager. This will cause each execute machine to test its ability to authenticate with
thecondor_credd. To see whether this test worked for each machine in the pool,run the command

condor_status -f "%s\t" Name -f "%s\n" ifThenElse(isUndef ined(LocalCredd),\"UNDEF\",LocalCredd)

Condor Version 7.7.6 Manual

6.2. Microsoft Windows 571

Any rows in the output with theUNDEFstring indicate machines where secure communication is
not working properly. Verify that the pool password is stored correctly on these machines.

6.2.6 Executing Jobs with the User’s Profile Loaded

Condor can be configured when using dedicated run accounts, to load the account’s pro-
file. A user’s profile includes a set of personal directories and a registry hive loaded under
HKEY_CURRENT_USER.

This may be useful if the job requires direct access to the user’s registry entries. It also may
be useful when the job requires an application, and the application requires registry access. This
feature is always enabled on thecondor_startd, but it is limited to the dedicated run account. For
security reasons, the profiles are removed after the job has completed and exited. This ensures that
malicious jobs cannot discover what any previous job has done, nor sabotage the registry for future
jobs. It also ensures the next job has a fresh registry hive.

A user that then wants a job to run with a profile uses theload_profile command in the job’s
submit description file:

load_profile = True

This feature is currently not compatible withrun_as_owner, and will be ignored if both are
specified.

6.2.7 Using Windows Scripts as Job Executables

Condor has added support for scripting jobs on Windows. Previously, Condor jobs on Windows were
limited to executables or batch files. With this new support,Condor determines how to interpret the
script using the file name’s extension. Without a file name extension, the file will be treated as it has
been in the past: as a Windows executable.

This feature may not require any modifications to Condor’s configuration. An example that does
not require administrative intervention are Perl scripts usingActivePerl.

Windows Scripting Hostscripts do require configuration to work correctly. The configuration
variables set values to be used in registry look up, which results in a command that invokes the
correct interpreter, with the correct command line arguments for the specific scripting language.
In Microsoft nomenclature,verbsare actions that can be taken upon a given a file. The familiar
examples ofOpen, Print , andEdit , can be found on the context menu when a user right clicks on
a file. The command lines to be used for each of these verbs are stored in the registry under the
HKEY_CLASSES_ROOThive. In general, a registry look up uses the form:

HKEY_CLASSES_ROOT\<FileType>\Shell\<OpenVerb>\Comma nd

Condor Version 7.7.6 Manual

6.2. Microsoft Windows 572

Within this specification,<FileType> is the name of a file type (and therefore a scripting
language), and is obtained from the file name extension.<OpenVerb> identifies the verb, and is
obtained from the Condor configuration.

The Condor configuration sets the selection of a verb, to aid in the registry look up. The file
name extension sets the name of the Condor configuration variable. This variable name is of the
form:

OPEN_VERB_FOR_<EXT>_FILES

<EXT> represents the file name extension. The following configuration example uses theOpen2
verb for aWindows Scripting Hostregistry look up for several scripting languages:

OPEN_VERB_FOR_JS_FILES = Open2
OPEN_VERB_FOR_VBS_FILES = Open2
OPEN_VERB_FOR_VBE_FILES = Open2
OPEN_VERB_FOR_JSE_FILES = Open2
OPEN_VERB_FOR_WSF_FILES = Open2
OPEN_VERB_FOR_WSH_FILES = Open2

In this example, Condor specifies theOpen2 verb, instead of the defaultOpen verb, for a script
with the file name extension ofwsh. TheWindows Scripting Host’s Open2 verb allows standard
input, standard output, and standard error to be redirectedas needed for Condor jobs.

A common difficulty is encountered when a script interpreterrequires access to the user’s reg-
istry. Note that the user’s registry is different than the root registry. If not given access to the user’s
registry, some scripts, such asWindows Scripting Hostscripts, will fail. The failure error message
appears as:

CScript Error: Loading your settings failed. (Access is den ied.)

The fix for this error is to give explicit access to the submitting user’s registry hive. This can be
accomplished with the addition of theload_profile command in the job’s submit description file:

load_profile = True

With this command, there should be no registry access errors. This command should also work
for other interpreters. Note that not all interpreters willrequire access. For example,ActivePerldoes
not by default require access to the user’s registry hive.

6.2.8 How Condor for Windows Starts and Stops a Job

This section provides some details on how Condor starts and stops jobs. This discussion is geared
for the Condor administrator or advanced user who is alreadyfamiliar with the material in the Ad-

Condor Version 7.7.6 Manual

6.2. Microsoft Windows 573

ministrator’s Manual and wishes to know detailed information on what Condor does when starting
and stopping jobs.

When Condor is about to start a job, thecondor_startdon the execute machine spawns acon-
dor_starterprocess. Thecondor_starterthen creates:

1. a run account on the machine with a login name ofcondor-reuse-slot<X> , where<X>
is the slot number of thecondor_starter. This account is added to group Users. This step is
skipped if the job is to be run using the submitting user’s account, as specified in section 6.2.4.

2. a new temporary working directory for the job on the execute machine. This directory is
nameddir_XXX , whereXXXis the process ID of thecondor_starter. The directory is created
in the$(EXECUTE) directory, as specified in Condor’s configuration file. Condor then grants
write permission to this directory for the user account newly created for the job.

3. a new, non-visible Window Station and Desktop for the job.Permissions are set so that
only the account that will run the job has access rights to this Desktop. Any windows
created by this job are not seen by anyone; the job is run in thebackground. Setting
USE_VISIBLE_DESKTOP to True will allow the job to access the default desktop instead
of a newly created one.

Next, thecondor_starterdaemon contacts thecondor_shadowdaemon, which is running on the
submitting machine, and thecondor_starterpulls over the job’s executable and input files. These
files are placed into the temporary working directory for thejob. After all files have been received,
thecondor_starterspawns the user’s executable. Its current working directory set to the temporary
working directory.

While the job is running, thecondor_starterclosely monitors the CPU usage and image size
of all processes started by the job. Every 20 minutes thecondor_startersends this information,
along with the total size of all files contained in the job’s temporary working directory, to thecon-
dor_shadow. Thecondor_shadowthen inserts this information into the job’s ClassAd so thatpolicy
and scheduling expressions can make use of this dynamic information.

If the job exits of its own accord (that is, the job completes), thecondor_starterfirst terminates
any processes started by the job which could still be around if the job did not clean up after itself.
Thecondor_starterexamines the job’s temporary working directory for any fileswhich have been
created or modified and sends these files back to thecondor_shadowrunning on the submit machine.
Thecondor_shadowplaces these files into theinitialdir specified in the submit description file; if
no initialdir was specified, the files go into the directory where the user invokedcondor_submit.
Once all the output files are safely transferred back, the jobis removed from the queue. If, however,
the condor_startdforcibly kills the job before all output files could be transferred, the job is not
removed from the queue but instead switches back to the Idle state.

If the condor_startd decides to vacate a job prematurely, thecondor_starter sends a
WM_CLOSE message to the job. If the job spawned multiple child processes, the WM_CLOSE
message is only sent to the parent process. This is the one started by thecondor_starter. The
WM_CLOSE message is the preferred way to terminate a processon Windows, since this method
allows the job to clean up and free any resources it may have allocated. When the job exits, the

Condor Version 7.7.6 Manual

6.2. Microsoft Windows 574

condor_startercleans up any processes left behind. At this point, ifwhen_to_transfer_output
is set to ON_EXIT (the default) in the job’s submit description file, the job switches states,
from Running to Idle, and no files are transferred back. Ifwhen_to_transfer_output is set to
ON_EXIT_OR_EVICT, then any files in the job’s temporary working directory which were changed
or modified are first sent back to the submitting machine. But this time, thecondor_shadowplaces
these intermediate files into a subdirectory created in the$(SPOOL) directory on the submitting
machine. The job is then switched back to the Idle state untilCondor finds a different machine
on which to run. When the job is started again, Condor places into the job’s temporary working
directory the executable and input files as before,plus any files stored in the submit machine’s
$(SPOOL) directory for that job.

NOTE: A Windows console process can intercept a WM_CLOSE messagevia the Win32
SetConsoleCtrlHandler() function, if it needs to do special cleanup work at vacate time; a
WM_CLOSE message generates a CTRL_CLOSE_EVENT. SeeSetConsoleCtrlHandler()
in the Win32 documentation for more info.

NOTE: The default handler in Windows for a WM_CLOSE message is forthe process to exit.
Of course, the job could be coded to ignore it and not exit, buteventually thecondor_startdwill
become impatient and hard-kill the job, if that is the policydesired by the administrator.

Finally, after the job has left and any files transferred back, thecondor_starterdeletes the tem-
porary working directory, the temporary account if one was created, the Window Station and the
Desktop before exiting. If thecondor_startershould terminate abnormally, thecondor_startdat-
tempts the clean up. If for some reason thecondor_startdshould disappear as well (that is, if the
entire machine was power-cycled hard), thecondor_startdwill clean up when Condor is restarted.

6.2.9 Security Considerations in Condor for Windows

On the execute machine (by default), the user job is run usingthe access token of an account dy-
namically created by Condor which has bare-bones access rights and privileges. For instance, if
your machines are configured so that only Administrators have write access toC:\WINNT , then
certainly no Condor job run on that machine would be able to write anything there. The only files
the job should be able to access on the execute machine are files accessible by the Users and Every-
one groups, and files in the job’s temporary working directory. Of course, if the job is configured
to run using the account of the submitting user (as describedin section 6.2.4), it will be able to do
anything that the user is able to do on the execute machine it runs on.

On the submit machine, Condor impersonates the submitting user, therefore the File Transfer
mechanism has the same access rights as the submitting user.For example, say only Administrators
can write toC:\WINNT on the submit machine, and a user gives the following tocondor_submit:

executable = mytrojan.exe
initialdir = c:\winnt
output = explorer.exe
queue

Condor Version 7.7.6 Manual

6.2. Microsoft Windows 575

Unless that user is in group Administrators, Condor will notpermit explorer.exe to be over-
written.

If for some reason the submitting user’s account disappearsbetween the timecondor_submit
was run and when the job runs, Condor is not able to check and see if the now-defunct submitting
user has read/write access to a given file. In this case, Condor will ensure that group “Everyone” has
read or write access to any file the job subsequently tries to read or write. This is in consideration
for some network setups, where the user account only exists for as long as the user is logged in.

Condor also provides protection to the job queue. It would bebad if the integrity of the job
queue is compromised, because a malicious user could removeother user’s jobs or even change
what executable a user’s job will run. To guard against this,in Condor’s default configuration all
connections to thecondor_schedd(the process which manages the job queue on a given machine)
are authenticated using Windows’ eSSPI security layer. Theuser is then authenticated using the
same challenge-response protocol that Windows uses to authenticate users to Windows file servers.
Once authenticated, the only users allowed to edit job entryin the queue are:

1. the user who originally submitted that job (i.e. Condor allows users to remove or edit their
own jobs)

2. users listed in thecondor_config file parameterQUEUE_SUPER_USERS. In the default
configuration, only the “SYSTEM” (LocalSystem) account is listed here.

WARNING: Do not remove “SYSTEM” fromQUEUE_SUPER_USERS, or Condor itself will not
be able to access the job queue when needed. If the LocalSystem account on your machine is
compromised, you have all sorts of problems!

To protect the actual job queue files themselves, the Condor installation program will automati-
cally set permissions on the entire Condor release directory so that only Administrators have write
access.

Finally, Condor has all the IP/Host-based security mechanisms present in the full-blown version
of Condor. See section 3.6.9 starting on page 353 for complete information on how to allow/deny
access to Condor based upon machine host name or IP address.

6.2.10 Network files and Condor

Condor can work well with a network file server. The recommended approach to having jobs access
files on network shares is to configure jobs to run using the security context of the submitting user
(see section 6.2.4). If this is done, the job will be able to access resources on the network in the
same way as the user can when logged in interactively.

In some environments, running jobs as their submitting users is not a feasible option. This
section outlines some possible alternatives. The heart of the difficulty in this case is that on the
execute machine, Condor creates a temporary user that will run the job. The file server has never
heard of this user before.

Condor Version 7.7.6 Manual

6.2. Microsoft Windows 576

Choose one of these methods to make it work:

• METHOD A: access the file server as a different user via a net use command with a login and
password

• METHOD B: access the file server as guest

• METHOD C: access the file server with a "NULL" descriptor

• METHOD D: create and have Condor use a special account

All of these methods have advantages and disadvantages.

Here are the methods in more detail:

METHOD A - access the file server as a different user via a net use command with a login and
password

Example: you want to copy a file off of a server before running it....

@echo off
net use \\myserver\someshare MYPASSWORD /USER:MYLOGIN
copy \\myserver\someshare\my-program.exe
my-program.exe

The idea here is to simply authenticate to the file server witha different login than the temporary
Condor login. This is easy with the "net use" command as shownabove. Of course, the obvious
disadvantage is this user’s password is stored and transferred as clear text.

METHOD B - access the file server as guest

Example: you want to copy a file off of a server before running it as GUEST

@echo off
net use \\myserver\someshare
copy \\myserver\someshare\my-program.exe
my-program.exe

In this example, you’d contact the server MYSERVER as the Condor temporary user. However,
if you have the GUEST account enabled on MYSERVER, you will beauthenticated to the server
as user "GUEST". If your file permissions (ACLs) are setup so that either user GUEST (or group
EVERYONE) has access the share "someshare" and the directories/files that live there, you can use
this method. The downside of this method is you need to enablethe GUEST account on your file
server. WARNING: This should be done *with extreme caution* and only if your file server is well
protected behind a firewall that blocks SMB traffic.

METHOD C - access the file server with a "NULL" descriptor

Condor Version 7.7.6 Manual

6.2. Microsoft Windows 577

One more option is to use NULL Security Descriptors. In this way, you can specify which shares
are accessible by NULL Descriptor by adding them to your registry. You can then use the batch file
wrapper like:

net use z: \\myserver\someshare /USER:""
z:\my-program.exe

so long as ’someshare’ is in the list of allowed NULL session shares. To edit this list, run
regedit.exe and navigate to the key:

HKEY_LOCAL_MACHINE\
SYSTEM\

CurrentControlSet\
Services\

LanmanServer\
Parameters\

NullSessionShares

and edit it. unfortunately it is a binary value, so you’ll then need to type in the hex ASCII codes
to spell out your share. each share is separated by a null (0x00) and the last in the list is terminated
with two nulls.

although a little more difficult to set up, this method of sharing is a relatively safe way to have
one quasi-public share without opening the whole guest account. you can control specifically which
shares can be accessed or not via the registry value mentioned above.

METHOD D - create and have Condor use a special account

Create a permanent account (called condor-guest in this description) under which Condor will
run jobs. On all Windows machines, and on the file server, create the condor-guest account.

On the network file server, give the condor-guest user permissions to access files needed to run
Condor jobs.

Securely store the password of the condor-guest user in the Windows registry usingcon-
dor_store_credon all Windows machines.

Tell Condor to use the condor-guest user as the owner of jobs,when required. Details for this
are in section 3.6.13.

6.2.11 Interoperability between Condor for Unix and Condorfor Windows

Unix machines and Windows machines running Condor can happily co-exist in the same Condor
pool without any problems. Jobs submitted on Windows can runon Windows or Unix, and jobs sub-
mitted on Unix can run on Unix or Windows. Without any specification (using therequirements

Condor Version 7.7.6 Manual

6.3. Macintosh OS X 578

expression in the submit description file), the default behavior will be to require the execute machine
to be of the same architecture and operating system as the submit machine.

There is absolutely no need to run more than one Condor central manager, even if you have
both Unix and Windows machines. The Condor central manager itself can run on either Unix or
Windows; there is no advantage to choosing one over the other. Here at University of Wisconsin-
Madison, for instance, we have hundreds of Unix and Windows machines in our Computer Science
Department Condor pool.

6.2.12 Some differences between Condor for Unix -vs- Condorfor Windows

• On Unix, we recommend the creation of a “condor” account when installing Condor. On
Windows, this is not necessary, as Condor is designed to run as a system service as user
LocalSystem.

• On Unix, Condor finds thecondor_config main configuration file by looking in ˜condor,
in /etc, or via an environment variable. On NT, the location of condor_config file is
determined via the registry keyHKEY_LOCAL_MACHINE/Software/Condor . You can
override this value by setting an environment variable named CONDOR_CONFIG.

• On Unix, in the VANILLA universe at job vacate time Condor sends the job a softkill sig-
nal defined in the submit-description file (defaults to SIGTERM). On NT, Condor sends a
WM_CLOSE message to the job at vacate time.

• On Unix, if one of the Condor daemons has a fault, a core file will be created in the$(Log)
directory. On Condor NT, a “core” file will also be created, but instead of a memory dump
of the process it will be a very short ASCII text file which describes what fault occurred and
where it happened. This information can be used by the Condordevelopers to fix the problem.

6.3 Macintosh OS X

This section provides information specific to the MacintoshOS X port of Condor. The Macintosh
port of Condor is more accurately a port of Condor to Darwin, the BSD core of OS X. Condor uses
the Carbon library only to detect keyboard activity, and it does not use Cocoa at all. Condor on the
Macintosh is a relatively new port, and it is not yet well-integrated into the Macintosh environment.

Condor on the Macintosh has a few shortcomings:

• Users connected to the Macintosh viasshare not noticed for console activity.

• The memory size of threaded programs is reported incorrectly.

• No Macintosh-based installer is provided.

• The example start up scripts do not follow Macintosh conventions.

Condor Version 7.7.6 Manual

6.3. Macintosh OS X 579

• Kerberos is not supported.

Condor Version 7.7.6 Manual

CHAPTER

SEVEN

Frequently Asked Questions (FAQ)

This is where you can find quick answers to some commonly askedquestions about Condor.

7.1 Obtaining & Installing Condor

Where can I download Condor?

Condor can be downloaded from the mirrors listed at http://www.cs.wisc.edu/condor/downloads.

When I click to download Condor, it sends me back to the downloads page!

If you are trying to download Condor through a web proxy, try disabling it. Our web site uses the
“referring page” as you navigate through our download menusin order to give you the right version
of Condor, but sometimes proxies block this information from reaching our web site.

What platforms are supported?

Supported platforms are listed in section 1.5, on page 5. There is also platform-specific information
at Chapter 6 on page 565.

580

http://www.cs.wisc.edu/condor/downloads

7.1. Obtaining & Installing Condor 581

Can I get the source code?

For Condor version 7.0.0 and later releases, the Condor source code is available for public download
with the binary distributions.

What is Personal Condor?

Personal Condor is a term used to describe a specific style of Condor installation suited for individual
users who do not have their own pool of machines, but want to submit Condor jobs to run elsewhere.

A Personal Condor is essentially a one-machine, self-contained Condor pool which can useflock-
ing to access resources in other Condor pools. See Section 5.2, on page 526 for more information
on flocking.

What do I do now? My installation of Condor does not work.

What to do to get Condor running properly depends on what sortof error occurs. One common error
category are communication errors. Condor daemon log files report a failure to bind. For example:

(date and time) Failed to bind to command ReliSock

Or, the errors in the various log files may be of the form:

(date and time) Error sending update to collector(s)
(date and time) Can't send end_of_message
(date and time) Error sending UDP update to the collector

(date and time) failed to update central manager

(date and time) Can't send EOM to the collector

This problem can also be observed by runningcondor_status. It will give a message of the form:

Error: Could not fetch ads --- error communication error

To solve this problem, understand that Condor uses the first network interface it sees on the
machine. Since machines often have more than one interface,this problem usually implies that the
wrong network interface is being used. It also may be the casethat the system simply has the wrong
IP address configured.

It is incorrect to use the localhost network interface. Thishas IP address 127.0.0.1 on all ma-
chines. To check if this incorrect IP address is being used, look at the contents of the CollectorLog
file on the pool’s your central manager right after it is started. The contents will be of the form:

Condor Version 7.7.6 Manual

7.1. Obtaining & Installing Condor 582

5/25 15:39:33 *************************************** ***************
5/25 15:39:33 ** condor_collector (CONDOR_COLLECTOR) STA RTING UP
5/25 15:39:33 ** $CondorVersion: 6.2.0 Mar 16 2001 $
5/25 15:39:33 ** $CondorPlatform: INTEL-LINUX-GLIBC21 $
5/25 15:39:33 ** PID = 18658
5/25 15:39:33 *************************************** ***************
5/25 15:39:33 DaemonCore: Command Socket at <128.105.101. 15:9618>

The last line tells the IP address and port the collector has bound to and is listening on. If the IP
address is 127.0.0.1, then Condor is definitely using the wrong network interface.

There are two solutions to this problem. One solution changes the order of the network in-
terfaces. The preferred solution sets which network interface Condor should use by adding the
following parameter to the local Condor configuration file:

NETWORK_INTERFACE = machine-ip-address

Wheremachine-ip-address is the IP address of the interface you wish Condor to use.

After an installation of Condor, why do the daemons refuse tostart?

This message appears in the log files:

ERROR "The following configuration macros appear to contai n default values
that must be changed before Condor will run. These macros are :
hostallow_write
(found on line 1853 of /scratch/adesmet/TRUNK/work/src/l ocaldir/condor_config)"
at line 217 in file condor_config.C

As of Condor 6.8.0, if Condor sees the bare key word:
YOU_MUST_CHANGE_THIS_INVALID_CONDOR_CONFIGURATION_VALUE as the value
of a configuration file entry, Condor daemons will log the given error message and exit.

By default, an installation of Condor 6.8.0 and later releases will have the configuration file
entry HOSTALLOW_WRITEset to the above sentinel value. The Condor administrator must alter
this value to be the correct domain or IP addresses that the administrator desires. The wild card
character (*) may be used to define this entry, but that allows anyone, fromanywhere, to submit
jobs into the pool. A better value will be of the form*.domainname.com .

Why do standard universe jobs never run after an upgrade?

Standard universe jobs that remain in the job queue across anupgrade from any Condor release
previous to 6.7.15 to any Condor release of 6.7.15 or more recent cannot run. They are missing a
required ClassAd attribute (LastCheckpointPlatform) added for all standard universe jobs
as of Condor version 6.7.15. This new attribute describes the platform where a job was running

Condor Version 7.7.6 Manual

7.2. Setting up Condor 583

when it produced a checkpoint. The attribute is utilized to identify platforms capable of continuing
the job (using the checkpoint).

This attribute becomes necessary due to bugs in some Linux kernels. A standard universe job
may be continued on some, but not all Linux machines. And, theCkptOpSys attribute is not
specific enough to be utilized.

There are two possible solutions for these standard universe jobs that cannot run, yet are in the
queue:

1. Remove and resubmit the standard universe jobs that remain in the queue across the upgrade.
This includes all standard universe jobs that have flocked into the pool. Note that the resub-
mitted jobs will start over again from the beginning.

2. For each standard universe job in the queue, modify its jobClassAd such that it can
possibly run within the upgraded pool. If the job has alreadyrun and produced a
checkpoint on a machine before the upgrade, determine the machine that produced the
checkpoint using theLastRemoteHost attribute in the job’s ClassAd. Then look at
that machine’s ClassAd (after the upgrade) to determine andextract the value of the
CheckpointPlatform attribute. Add this (usingcondor_qedit) as the value of the new
attributeLastCheckpointPlatform in the job’s ClassAd. Note that this operation must
also have to be performed on standard universe jobs flocking in to an upgraded pool. It is
recommended that pools that flock between each other upgradeto a post 6.7.15 version of
Condor.

Note that if the upgrade to Condor takes place at the same timeas a platform change (such as
booting an upgraded kernel), there is no way to properly set the LastCheckpointPlatform
attribute. The only option is to remove and resubmit the standard universe jobs.

7.2 Setting up Condor

How do I set up a central manager on a machine with multiple network inter-
faces?

Please see section 3.7.3 on page 375.

How do I get more than one job to run on my SMP machine?

Condor will automatically recognize a SMP machine and advertise each CPU of the machine sepa-
rately. For more details, see section 3.12.8 on page 412.

Condor Version 7.7.6 Manual

7.2. Setting up Condor 584

How do I configure a separate policy for the CPUs of an SMP machine?

Please see section 3.12.8 on page 412 for a lengthy discussion on this topic.

How do I set up my machines so that only specific users’ jobs will run on them?

Restrictions on what jobs will run on a given resource are enforced by only starting jobs that meet
specific constraints, and these constraints are specified aspart of the configuration.

To specify that a given machine should only run certain users’ jobs, and always run the jobs
regardless of other activity on the machine, load average, etc., place the following entry in the
machine’s Condor configuration file:

START = ((User == "userfoo@baz.edu") || \
(User == "userbar@baz.edu"))

A more likely scenario is that the machine is restricted to run only specific users’ jobs, contingent
on the machine not having other interactive activity and notbeing heavily loaded. The following
entries are in the machine’s Condor configuration file. Note that extra configuration variables are
defined to make theSTARTvariable easier to read.

Only start jobs if:
1) the job is owned by the allowed users, AND
2) the keyboard has been idle long enough, AND
3) the load average is low enough OR the machine is currently
running a Condor job, and would therefore accept running
a different one
AllowedUser = ((User == "userfoo@baz.edu") || \

(User == "userbar@baz.edu"))
KeyboardUnused = (KeyboardIdle > $(StartIdleTime))
NoOwnerLoad = ($(CPUIdle) || (State != "Unclaimed" && State != "Owner"))
START = $(AllowedUser) && $(KeyboardUnused) && $(NoOwnerL oad)

To configure multiple machines to do so, create a common configuration file containing this
entry for them to share.

How do I configure Condor to run my jobs only on machines that have the
right packages installed?

This is a two-step process. First, you need to tell the machines to report that they have special
software installed, and second, you need to tell the jobs to require machines that have that software.

To tell the machines to report the presence of special software, first add a parameter to their
configuration files like so:

Condor Version 7.7.6 Manual

7.2. Setting up Condor 585

HAS_MY_SOFTWARE = True

And then, if there are alreadySTARTD_ATTRSdefined in that file, addHAS_MY_SOFTWARE
to them, or, if not, add the line:

STARTD_ATTRS = HAS_MY_SOFTWARE, $(STARTD_ATTRS)

NOTE: For these changes to take effect, eachcondor_startdyou update needs to be reconfigured
with condor_reconfig-startd.

Next, to tell your jobs to only run on machines that have this software, add a requirements
statement to their submit files like so:

Requirements = (HAS_MY_SOFTWARE =?= True)

NOTE: Be sure to use =?= instead of == so that if a machine doesn’t have the
HAS_MY_SOFTWARE parameter defined, the job’s Requirementsexpression will not evaluate
to “undefined”, preventing it from running anywhere!

How do I configure Condor to only run jobs at night?

A commonly requested policy for running batch jobs is to onlyallow them to run at night, or at
other pre-specified times of the day. Condor allows you to configure this policy with the use of
theClockMin andClockDay condor_startdattributes. A complete example of how to use these
attributes for this kind of policy is discussed in subsubsection 3.5.9 on page 319.

How do I configure Condor such that all machines do not producecheckpoints
at the same time?

If machines are configured to produce checkpoints at fixed intervals, a large number of jobs are
queued (submitted) at the same time, and these jobs start on machines at about the same time, then
all these jobs will be trying to write out their checkpoints at the same time. It is likely to cause rather
poor performance during this burst of writing.

The RANDOM_INTEGER() macro can help in this instance. Instead of defining
PERIODIC_CHECKPOINTto be a fixed interval, each machine is configured to randomly choose
one of a set of intervals. For example, to set a machine’s interval for producing checkpoints to within
the range of two to three hours, use the following configuration:

PERIODIC_CHECKPOINT = $(LastCkpt) > (2 * $(HOUR) + \
$RANDOM_INTEGER(0,60,10) * $(MINUTE))

Condor Version 7.7.6 Manual

7.3. Running Condor Jobs 586

The interval used is set at configuration time. Each machine is randomly assigned a different
interval (2 hours, 2 hours and 10 minutes, 2 hours and 20 minutes, etc.) at which to produce check-
points. Therefore, the various machines will not all attempt to produce checkpoints at the same
time.

Why will the condor_masternot run when a local configuration file is missing?

If a LOCAL_CONFIG_FILE is specified in the global configuration file, but the specifiedfile does
not exist, thecondor_masterwill not start up, and it prints a variation of the following example
message.

ERROR: Can't read config file /mnt/condor/hosts/bagel/co ndor_config.local

This is not a bug; it is a feature! Condor has always worked this way on purpose. There is a
potentially large security hole if Condor is configured to read from a file that does not exist. By
creating that file, a malicious user could change all sorts ofCondor settings. This is an easy way to
gain root access to a machine, where the daemons are running as root.

The intent is that if you’ve set up your global configuration file to read from a local configuration
file, and the local file is not there, then something is wrong. It is better for thecondor_masterto exit
right away and log an error message than to start up.

If the condor_mastercontinued with the local configuration file missing, either A) someone
could breach security or B) you will have potentially important configuration information missing.
Consider the example where the local configuration file was onan NFS partition and the server was
down. There would be all sorts of really important stuff in the local configuration file, and Condor
might do bad things if it started without those settings.

If supplied it with an empty file, thecondor_masterworks fine.

7.3 Running Condor Jobs

Why aren’t any or all of my jobs running?

Please see Section 2.6.5, on page 45 for information on why a job might not be running.

I’m at the University of Wisconsin-Madison Computer Science Dept., and I
am having problems!

Please see the web page http://www.cs.wisc.edu/condor/uwcs. As it explains, your home directory
is in AFS, which by default has access control restrictions which can prevent Condor jobs from
running properly. The above URL will explain how to solve theproblem.

Condor Version 7.7.6 Manual

http://www.cs.wisc.edu/condor/uwcs

7.3. Running Condor Jobs 587

I’m getting a lot of e-mail from Condor. Can I just delete it al l?

Generally you shouldn’t ignoreall of the mail Condor sends, but you can reduce the amount you get
by telling Condor that you don’t want to be notified every timea job successfully completes, only
when a job experiences an error. To do this, include a line in your submit file like the following:

Notification = Error

See the Notification parameter in thecondor_qman page on page 879 of this manual for more
information.

Why will my vanilla jobs only run on the machine where I submitted them
from?

Check the following:

1. Did you submit the job from a local file system that other computers can’t access?

See Section 3.3.7, on page 189.

2. Did you set a special requirements expression for vanillajobs that’s preventing them from
running but not other jobs?

See Section 3.3.7, on page 189.

3. Is Condor running as a non-root user?

See Section 3.6.13, on page 361.

Why does therequirementsexpression for the job I submitted
have extra things that I did not put in my submit description file?

There are several extensions to the submittedrequirements that are automatically added by
Condor. Here is a list:

• Condor automatically addsarch andopsys if not specified in the submit description file. It
is assumed that the executable needs to execute on the same platform as the machine on which
the job is submitted.

• Condor automatically adds the expression(Memory * 1024 > ImageSize) . This en-
sures that the job will run on a machine with at least as much physical memory as the memory
footprint of the job.

• Condor automatically adds the expression(Disk >= DiskUsage) if not already speci-
fied. This ensures that the job will run on a machine with enough disk space for the job’s local
I/O (if there is any).

Condor Version 7.7.6 Manual

7.3. Running Condor Jobs 588

• A pool administrator may define configuration variables that cause expressions to be
added torequirements . These configuration variables areAPPEND_REQUIREMENTS,
APPEND_REQ_VANILLA, andAPPEND_REQ_STANDARD. These configuration variables
give pool administrators the flexibility to set policy for a local pool.

• Older versions of Condor needed to add confusing clauses about WINNT and the FileSys-
temDomain to vanilla universe jobs. This made sure that the jobs ran on a machine where
files were accessible. The Windows version supported automatically transferring files with
the vanilla job, while the Unix version relied on a shared filesystem. Since the Unix ver-
sion of Condor now supports transferring files, these expressions are no longer added to the
requirements for a job.

When I usecondor_compileto produce a job, I get an error that says, "Internal
ld was not invoked!". What does this mean?

condor_compileenforces a specific behavior in the compilers and linkers that it supports (for exam-
ple gcc, g77, cc, CC, ld) where a special linker script provided by Condor must be invoked during
the final linking stages of the supplied compiler or linker.

In some rare cases, as withgcc compiled with the options–with-as or –with-ld , the enforce-
ment mechanism we rely upon to havegccchoose our supplied linker script is not honored by the
compiler. When this happens, an executable is produced, butthe executable is devoid of the Condor
libraries which both identify it as a Condor executable linked for the standard universe and imple-
ment the feature sets of remote I/O and transparent process checkpointing and migration.

Often, the only fix in order to use the compiler desired, is to reconfigure and recompile the
compiler itself, such that it does not use the errant optionsmentioned.

With Condor’s standard universe, we highly recommend that your source files are compiled with
the supported compiler for your platform. See section 1.5 for the list of supported compilers. For a
Linux platform, the supported compiler is the default compiler that came with the distribution. It is
often found in the directory/usr/bin .

Why might my job be preempted (evicted)?

There are four circumstances under which Condor may evict a job. They are controlled by different
expressions.

Reason number 1 is the user priority: controlled by thePREEMPTION_REQUIREMENTSex-
pression in the configuration file. If there is a job from a higher priority user sitting idle, thecon-
dor_negotiatordaemon may evict a currently running job submitted from a lower priority user if
PREEMPTION_REQUIREMENTSis True. For more on user priorities, see section 2.7 and sec-
tion 3.4.

Reason number 2 is the owner (machine) policy: controlled bythePREEMPTexpression in the

Condor Version 7.7.6 Manual

7.3. Running Condor Jobs 589

configuration file. When a job is running and thePREEMPTexpression evaluates to True, thecon-
dor_startdwill evict the job. ThePREEMPTexpression should reflect the requirements under which
the machine owner will not permit a job to continue to run. Forexample, a policy to evict a currently
running job when a key is hit or when it is the 9:00am work arrival time, would be expressed in the
PREEMPTexpression and enforced by thecondor_startd. For more on thePREEMPTexpression,
see section 3.5.

Reason number 3 is the owner (machine) preference: controlled by theRANKexpression in
the configuration file (sometimes called the startd rank or machine rank). TheRANKexpression is
evaluated as a floating point number. When one job is running,a second idle job that evaluates to
a higherRANKvalue tells thecondor_startdto prefer the second job over the first. Therefore, the
condor_startdwill evict the first job so that it can start running the second(preferred) job. For more
onRANK, see section 3.5.

Reason number 4 is if Condor is to be shutdown: on a machine that is currently running a job.
Condor evicts the currently running job before proceeding with the shutdown.

Condor does not stop the Condor jobs running on my Linux machine when I
use my keyboard and mouse. Is there a bug?

There is no bug in Condor. Unfortunately, recent Linux 2.4.xand all Linux 2.6.x kernels through
version 2.6.10 do not post proper state information, such that Condor can detect keyboard and mouse
activity. Condor implements workarounds to piece togetherthe needed state information for PS/2
devices. A better fix of the problem utilizes the kernel patchlinked to from the directions posted
at http://www.cs.wisc.edu/condor/kernel.patch.html. This patch works better for PS/2 devices, and
may also work for USB devices. A future version of Condor willimplement better recognition of
USB devices, such that the kernel patch will also definitively work for USB devices.

What signals get sent to my jobs when Condor needs to preempt or kill them,
or when I remove them from the queue? Can I tell Condor which signals to
send?

The answer is dependent on the universe of the jobs.

Under the scheduler universe, the signal jobs get uponcondor_rmcan be set by the user in the
submit description file with the form of

remove_kill_sig = SIGWHATEVER

If this command is not defined, Condor further looks for a command in the submit description file
with the form

kill_sig = SIGWHATEVER

Condor Version 7.7.6 Manual

http://www.cs.wisc.edu/condor/kernel.patch.html

7.3. Running Condor Jobs 590

And, if that command is also not given, Condor uses SIGTERM.

For all other universes, the jobs get the value of the submit description file commandkill_sig ,
which is SIGTERM by default.

If a job is killed or evicted, the job is sent akill_sig , unless it is on the receiving end of a
hard kill, in which case it gets SIGKILL.

Under all universes, the signal is sent only to the parent PIDof the job, namely, the first child
of the condor_starter. If the child itself is forking, the child must catch and forward signals as
appropriate. This in turn depends on the user’s desired behavior. The exception to this is (again)
where the job is receiving a hard kill. Condor sends the valueSIGKILL to all the PIDs in the family.

Why does my Linux job have an enormous ImageSize and refuse torun any-
more?

Sometimes Linux jobs run, are preempted and can not start again because Condor thinks the image
size of the job is too big. This is because Condor has a problemcalculating the image size of
a program on Linux that uses threads. It is particularly noticeable in the Java universe, but it also
happens in the vanilla universe. It is not an issue in the standard universe, because threaded programs
are not allowed.

On Linux, each thread appears to consume as much memory as theentire program consumes, so
the image size appears to be (number-of-threads * image-size-of-program). If your program uses a
lot of threads, your apparent image size balloons. You can see the image size that Condor believes
your program has by using the -l option tocondor_q, and looking at theImageSize attribute.

When you submit your job, Condor creates or extends the requirements for your job. In particu-
lar, it adds a requirement that you job must run on a machine with sufficient memory:

Requirements = ... ((Memory * 1024) >= ImageSize) ...

Note that memory is the execution machine’s memory in Mbytes, while ImageSize is in
Kbytes.ImageSize is not a perfect measure of the memory requirements of a job. It over-counts
memory that is shared between processes. It may appear quitelarge if the job usesmmap() on a
large file. It does not account for memory that the job uses indirectly in the operating system’s file
system cache.

In the Requirements expression above, Condor added(Memory * 1024) >=
ImageSize) on behalf of the job. To prevent Condor from doing this, provide your own
expression about memory in the submit description file, as inthis example:

Requirements = Memory > 1024

You will need to change the value 1024 to a reasonably good estimate of the actual memory
requirements of the program, in Mbytes. This example says that the program requires 1 Gbyte of

Condor Version 7.7.6 Manual

7.3. Running Condor Jobs 591

memory. If you underestimate the memory your application needs, you may have bad performance
if the job runs on machines that have insufficient memory.

In addition, if you have modified your machine policies to preempt jobs whenImageSize is
large, you will need to change those policies.

Why does the time output from condor_statusappear as [?????] ?

Condor collects timing information for a large variety of uses. Collection of the data relies on
accurate times. Being a distributed system, clock skew among machines causes errant timing cal-
culations. Values can be reported too large or too small, with the possibility of calculating negative
timing values.

This problem may be seen by the user when looking at the outputof condor_status. If the
ActivityTime field appears as [?????], then this calculated statistic wasnegative. condor_status
recognizes that a negative amount of time will be nonsense toreport, and instead displays this string.

The solution to the problem is to synchronize the clocks on these machines. An administrator
can do this using a tool such asntp.

The user condor’s home directory cannot be found. Why?

This problem may be observed after installation, when attempting to execute

~condor/condor/bin/condor_config_val -tilde

and there is a user named condor. The command prints a messagesuch as

Error: Specified -tilde but can't find condor's home direct ory

In this case, the difficulty stems from using NIS, because theCondor daemons fail to communi-
cate properly with NIS to get account information. To fix the problem, a dynamically linked version
of Condor must be installed.

Condor commands (includingcondor_q) are really slow. What is going on?

Some Condor programs will react slowly if they expect to find acondor_collectordaemon, yet can-
not contact one. Notably,condor_qcan be very slow. Thecondor_schedddaemon will also be slow,
and it will log lots of harmless messages complaining. If youare not running acondor_collector
daemon, it is important that the configuration variableCOLLECTOR_HOSTbe set to nothing. This
is typically done by settingCONDOR_HOSTwith

CONDOR_HOST=
COLLECTOR_HOST=$(CONDOR_HOST)

Condor Version 7.7.6 Manual

7.4. Condor on Windows 592

or

COLLECTOR_HOST=

Where are my missing files? The commandwhen_to_transfer_output
= ON_EXIT_OR_EVICTis in the submit description file.

Although it may appear as if files are missing, they are not. The transfer does take place whenever a
job is preempted by another job, vacates the machine, or is killed. Look for the files in the directory
defined by theSPOOLconfiguration variable. See section 2.5.4, on page 25 for details on the naming
of the intermediate files.

Why are my vm universe VMware jobs failing and being put on hold?

Strange behavior has been noted when Condor tries to run avm universe VMware job using a path
to a VMX file that contains a symbolic link. An example of an error message that may appear in
such a job’s user log:

Error from starter on master_vmuniverse_strtd@nostos.cs .wisc
.edu: register(/scratch/gquinn/condor/git/CONDOR_SRC /src/con
dor_tests/31426/31426vmuniverse/execute/dir_31534/v mN3hylp_c
ondor.vmx) = 1/Error: Command failed: A file was not found/(
ERROR) Can't create snapshot for vm(/scratch/gquinn/cond or/g
it/CONDOR_SRC/src/condor_tests/31426/31426vmunivers e/execute
/dir_31534/vmN3hylp_condor.vmx)

To work around this problem:

• If using file transfer (the submit description file containsvmware_should_transfer_files =
true), then modify any configuration variableEXECUTE values on all execute machines,
such that they do not contain symbolic link path components.

• If using a shared file system, ensure that the submit description file commandvmware_dir
does not use symbolic link path name components.

7.4 Condor on Windows

Will Condor work on a network of mixed Unix and Windows machines?

You can have a Condor pool that consists of both Unix and Windows machines.

Condor Version 7.7.6 Manual

7.4. Condor on Windows 593

Your central manager can be either Windows or Unix. For example, even if you had a pool
consisting strictly of Unix machines, you could use a Windows box for your central manager, and
vice versa.

Submitted jobs can originate from either a Windowsor a Unix machine, and be destined to run
on Windowsor a Unix machine. Note that there are still restrictions on thesupported universes for
jobs executed on Windows machines.

So, in summary:

1. A single Condor pool can consist of both Windows and Unix machines.

2. It does not matter at all if your Central Manager is Unix or Windows.

3. Unix machines can submit jobs to run on other Unix or Windows machines.

4. Windows machines can submit jobs to run on other Windows orUnix machines.

What versions of Windows will Condor run on?

See Section 1.5, on page 5.

My Windows program works fine when executed on its own, but it does not
work when submitted to Condor.

First, make sure that the program really does work outside of Condor under Windows, that the disk
is not full, and that the system is not out of user resources.

As the next consideration, know that some Windows programs do not run properly becausethey
are dynamically linked, and they cannot find the.dll files that they depend on. Version 6.4.x of
Condor sets thePATHto be empty when running a job. To avoid these difficulties, doone of the
following

1. statically link the application

2. wrap the job in a script that sets up the environment

3. submit the job from a correctly-set environment with the command

getenv = true

in the submit description file. This will copy your environment into the job’s environment.

4. send the required.dll files along with the job using the submit description file command
transfer_input_files.

Condor Version 7.7.6 Manual

7.4. Condor on Windows 594

Why is the condor_masterdaemon failing to start, giving an error about
"In StartServiceCtrlDispatcher, Error number: 1063"?

In Condor for Windows, thecondor_masterdaemon is started as a service. Therefore, starting the
condor_masterdaemon as you would on Unix will not work. Start Condor on Windows machines
using either

net start condor

or start the Condor service from the Service Control Managerlocated in the Windows Control Panel.

Jobs submitted from Windows give an error referring to a credential.

Jobs submitted from a Windows machine require a stashed password in order for Condor to perform
certain operations on the user’s behalf. Refer to section 6.2.3 for information about password storage
on Windows. The command which stashes a password for a user iscondor_store_cred. See the
manual page on on page 871 for usage details.

The error message that Condor gives if a user has not stashed apassword is of the form:

ERROR: No credential stored for username@machinename

Correct this by running:
condor_store_cred add

Jobs submitted from Unix to execute on Windows do not work properly.

A difficulty with defaults causes jobs submitted from Unix for execution on a Windows platform to
remain in the queue, but make no progress. For jobs with this problem, log files will contain error
messages pointing to shadow exceptions.

This difficulty stems from the defaults for whether file transfer takes place. The workaround for
this problem is to place the lines

should_transfer_files = YES
when_to_transfer_output = ON_EXIT

into the submit description file for jobs submitted from a Unix machine for execution on a Windows
machine.

Condor Version 7.7.6 Manual

7.4. Condor on Windows 595

When I run condor_statusI get a communication error, or the Condor daemon
log files report a failure to bind.

Condor uses the first network interface it sees on your machine. This problem usually means you
have an extra, inactive network interface (such as a RAS dialup interface) defined before the regular
network interface.

To solve this problem, either change the order of the networkinterfaces in the Control Panel, or
explicitly set which network interface Condor should use byadding the following definition to the
Condor configuration file:

NETWORK_INTERFACE = <ip-address>

Where<ip-address> is the IP address of the interface that Condor is to use.

My job starts but exits right away with status 128.

This can occur when the machine your job is running on is missing a DLL (Dynamically Linked
Library) required by your program. The solution is to find theDLL file the program needs and put
it in the TRANSFER_INPUT_FILES list in the job’s submit file.

To find out what DLLs your program depends on, right-click theprogram in Explorer, choose
Quickview, and look under “Import List”.

How can I access network files with Condor on Windows?

Five methods for making access of network files work with Condor are given in section 6.2.10.

What is wrong when condor_off cannot find my host, andcondor_statusdoes
not give me a complete host name?

Given the command

condor_off hostname2

an error message of the form

Can't find address for master hostname2.somewhere.edu

appears. Yet, when looking at the host names with

Condor Version 7.7.6 Manual

7.4. Condor on Windows 596

condor_status -master

the output is of the form

hostname1.somewhere.edu
hostname2
hostname3.somewhere.edu

To correct this incomplete host name, add an entry to the configuration file for
DEFAULT_DOMAIN_NAMEthat specifies the domain name to be used. For the example given,
the configuration entry will be

DEFAULT_DOMAIN_NAME = somewhere.edu

After adding this configuration file entry, usecondor_restartto restart the Condor daemons and
effect the change.

DoesUSER_JOB_WRAPPERwork on Windows machines?

TheUSER_JOB_WRAPPERconfiguration variable does work on Windows machines. The wrapper
must be either a batch script with a file name extension of.bat or .cmd , or an executable with a
file name extension of.exe or .com .

An example of a batch script sets environment variables:

REM set some environment variables
set LICENSE_SERVER=192.168.1.202:5012
set MY_PARAMS=2

REM Run the actual job now
%*

condor_store_credis failing, and I’m sure I’m typing my password correctly.

First, make sure thecondor_schedddaemon is running.

Next, check the log file written by thecondor_schedddaemon. It will contain more detailed
information about the failure. Frequently, the error is a result of PERMISSION DENIEDerrors.
More information about proper configuration of security settings is on page 353.

Condor Version 7.7.6 Manual

7.4. Condor on Windows 597

My submit machine cannot have more than 120 jobs running concurrently.
Why?

Windows is likely to be running out of desktop heap. Confirm this to be the case by looking in the
log for thecondor_schedddaemon to see ifcondor_shadowdaemons are immediately exiting with
status 128. If this is the case, increase the desktop heap size. Open the registry key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control \Session Manager\SubSystems\Windows

The SharedSection value can have three values separated by commas. The third value controls
the desktop heap size for non-interactive desktops, which the Condor service uses. The default is
512 (Kbytes). 60condor_shadowdaemons consume about 256 Kbytes, hence 120 shadows can run
with the default value. To be able to run a maximum of 300condor_shadowdaemons, set this value
at 1280.

Reboot the system for the changes to take effect. For more information, see Microsoft Article
Q184802.

Why do Condor daemons exit after logging a 10038 (WSAENOTSOCK) error
on some machines?

Usually when Condor daemons exit in this manner, it is because the system in question has a non-
standard Winsock Layered Service Provider (LSP) installedon it. An LSP is, in effect, a plug-in
for the TCP/IP protocol stack. LSPs have been installed as part of anti-virus software and other
security-related packages.

There are several tools available to check your system for the presence of LSPs. One with which
we have had success isLSP-Fix, available at http://www.cexx.org/lspfix.htm. Any non-Microsoft
LSPs identified by this tool may potentially be causing the WSAENOTSOCK error in Condor.
Although theLSP-Fixtool allows the direct removal of an LSP, it is likely advisable to completely
remove the application for which the LSP is a part via the Control Panel.

Another approach is to completely reset the TCP/IP stack to its original state. This can be done
using thenetsh tool:

netsh int ip reset reset-stack.log

The command will return the TCP/IP stack back to the state is was in when the OS was first installed.
The log file defined above will record all the configuration changes made bynetsh .

Condor Version 7.7.6 Manual

http://www.cexx.org/lspfix.htm

7.4. Condor on Windows 598

Why do Condor daemons exit with "Unexpected performance counter size",
"unable to spawn the ProcD" or "loadavg thread died, restarting. (exit
code=2)" errors?

Condor on Windows platforms relies on built-in performancecounters for its operation. If perfor-
mance counters that Condor requires are disabled, daemons may exit with a message such as

1/26 09:16:42 (fd:2) (pid:5732) ERROR: "Unexpected perfor mance counter
size for total CPU: 0 (expected: 8)" at line 2846 in file
..\src\condor_procapi\procapi.cpp

or

1/20 15:29:14 (pid:2484) ERROR "unable to spawn the ProcD" a t line 136
in file ..\src\condor_c++_util\proc_family_proxy.C

and even

4/16 10:49:13 loadavg thread died, restarting. (exit code= 2)

To enable the performance counters, check the registry key

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Service s\PerfProc\Performance

If a value forDisable Performance Counters exists, delete it or set it to0.

Why does the Windows Installer fail with “Error 2738. Could n ot access VB-
Script run time for custom action”?

This error results when the VBScript engine is not registered. Since Condor’s installer depends on
the VBScript engine for custom steps, the installer will fail if it cannot find the VBScript engine.

The fix is to register the VMScript engine. With Administrative privilege:

1. Launch the Command Prompt (cmd.exe) as the Administrator.

2. At the Command Prompt, change directories to theSystem32 folder, within the Windows
folder.

3. Issue the command

regsvr32 vbscript.dll

Condor Version 7.7.6 Manual

7.4. Condor on Windows 599

If successful, the message

DllRegisterServer in vbscript.dll succeeded.

is printed.

Why does Condor sometimes fail to parse floating point numbers?

Condor assumes that all floating point numbers are of the formx.y, which, depending on a com-
puter’s current locale, may not always be the case. This problem occurs even if Condor is running
under an account that has had the locale configured correctly. The problem lies in the template user
account which is used to create Condor’s dynamic accounts. Even if the entire system is configured
to use a new locale, this template account seems to retain theoriginal system locale. The following
steps can be used fix this problem.

To create a default user profile, you must be logged on asAdministrator or be a member of
theAdministrators group. Create a new user profile for all new user accounts on a computer to be
based on. To create subsequent profiles, you can use the new user account as a template. Here is
how to use the new user profile as a template account to use as a new user’s profile:

1. Log on to the computer as the new user, and customize the desktop if appropriate.

2. Optionally, install and configure any applications to be shared by user accounts made from
this template.

3. Log off, and then log on as theAdministrator .

4. In theControl Panel, open theSystemControl Panel applet.

• OnVista click on theAdvanced system settings Tasklisted in the left pane.

5. On theAdvancedtab, underUser Profiles, click Settings.

6. UnderProfiles stored on this computer, select the user you created to be the template, and
then clickCopy To.

7. To create the default user profile for the computer, type the path to the default user:

• On Windows 2000:%WinDir%\Profiles\Default ;

• On Windows XP:%SystemDrive%\Documents and Settings\Defualt ;

• On Vista:%SystemDrive%\Users\Default .

8. In theCopy To dialog box, underPermitted to use, click Change.

9. In theSelect User or Groupdialog box, in theEnter the object name to selecttext box,
type:Everyoneand clickOK .

10. ClickOK to dismiss theCopy To dialog box.

Condor Version 7.7.6 Manual

7.5. Grid Computing 600

11. ClickOK again to dismiss theUser Profilesdialog box.

12. Finally, clickOK one last time to dismiss theSystem Propertiesdialog.

If Condor has already created some dynamic accounts, you will need to remove them so that
Condor can re-create them with the new template account.

7.5 Grid Computing

What must be installed to access grid resources?

A single machine with Condor installed such that jobs may be submitted is the minimum software
necessary. If matchmaking or glidein is desired, then a single machine must not only be running
Condor such that jobs may be submitted, but also fill the role of a central manager. A Personal
Condor installation may satisfy both.

I am the administrator at Physics, and I have a 64-node cluster running Con-
dor. The administrator at Chemistry is also running Condor on her 64-node
cluster. We would like to be able to share resources. How do wedo this?

Condor’s flocking feature allows multiple Condor pools to share resources. By setting configuration
variables within each pool, jobs may be executed on either cluster. See the manual section on
flocking, section 5.2, for details.

What is glidein?

Glidein provides a way to temporarily add a resource to a local Condor pool. Glidein uses Globus
resource-management software to run jobs on the resource. Those jobs are initially portions of
Condor software, such that Condor is running on the resource, configured to be part of the local
pool. Then, Condor may execute the user’s jobs. There are several benefits to working in this way.
Standard universe jobs may be submitted to run on the resource. Condor can also dynamically
schedule jobs across the grid.

See the section on Glidein, section 5.4 of the manual for further information.

Using my Globus gatekeeper to submit jobs to the Condor pool does not work.
What is wrong?

The Condor configuration file is in a non-standard location, and the Globus software does not know
how to locate it, when you see either of the following error messages.

Condor Version 7.7.6 Manual

7.5. Grid Computing 601

first error message

% globus-job-run \
globus-gate-keeper.example.com/jobmanager-condor /bi n/date

Neither the environment variable CONDOR_CONFIG, /etc/con dor/,
nor ~condor/ contain a condor_config file. Either set
CONDOR_CONFIG to point to a valid config file, or put a
"condor_config" file in /etc/condor or ~condor/ Exiting.

GRAM Job failed because the job failed when the job manager
attempted to run it (error code 17)

second error message

% globus-job-run \
globus-gate-keeper.example.com/jobmanager-condor /bi n/date

ERROR: Can't find address of local schedd GRAM Job failed
because the job failed when the job manager attempted to run i t
(error code 17)

As described in section 3.2.2, Condor searches for its configuration file using the following
ordering.

1. File specified in theCONDOR_CONFIGenvironment variable

2. $(HOME)/.condor/condor_config

3. /etc/condor/condor_config

4. ˜condor/condor_config

5. $(GLOBUS_LOCATION)/etc/condor_config

Presuming the configuration file is not in a standard location, you will need to set the
CONDOR_CONFIGenvironment variable by hand, or set it in an initializationscript. One of the
following solutions for an initialization may be used.

1. Whereverglobus-gatekeeperis launched, replace it with a minimal shell script that sets
CONDOR_CONFIGand then startsglobus-gatekeeper. Something like the following should
work:

#! /bin/sh
CONDOR_CONFIG=/path/to/condor_config
export CONDOR_CONFIG
exec /path/to/globus/sbin/globus-gatekeeper "$@"

2. If you are startingglobus-gatekeeperusinginetd, xinetd, or a similar program, set the environ-
ment variable there. If you are usinginetd, you can use theenvprogram to set the environment.
This example does this; the example is shown on multiple lines, but it will be all on one line
in the inetdconfiguration.

Condor Version 7.7.6 Manual

7.6. Managing Large Workflows 602

globus-gatekeeper stream tcp nowait root /usr/bin/env
env CONDOR_CONFIG=/path/to/condor_config
/path/to/globus/sbin/globus-gatekeeper
-co /path/to/globus/etc/globus-gatekeeper.conf

If you’re usingxinetd, add an env setting something like the following:

service gsigatekeeper
{

env = CONDOR_CONFIG=/path/to/condor_config
cps = 1000 1
disable = no
instances = UNLIMITED
max_load = 300
nice = 10
protocol = tcp
server = /path/to/globus/sbin/globus-gatekeeper
server_args = -conf /path/to/globus/etc/globus-gatekee per.conf
socket_type = stream
user = root
wait = no

}

7.6 Managing Large Workflows

How do I get meaningful output from condor_q with so many jobs in the
queue?

There are several ways to constrain the output ofcondor_qwhen there are lots and lots of jobs in
the queue. To see only the jobs that are currently running:

condor_q -run

To see only the jobs that are currently on hold:

condor_q -hold

To see other output, combine options. For example, to see only running jobs submitted by A.
Einstein that belong to cluster 77:

condor_q -run einstein 77

Another example uses the-constraint option tocondor_q. To see only the jobs in the queue that
started running, but were interrupted and then started again from the beginning, perhaps more than
once:

condor_q -constraint 'NumJobStarts > 1'

Complete details ofcondor_qare contained in the manual page at page 819.

Condor Version 7.7.6 Manual

7.7. Troubleshooting 603

What does Condor offer that can help with running a large number of jobs?

Many of the features of DAGMan are targeted at helping with the administration and running of
large numbers of jobs. See section 2.10.13 at page 109.

7.7 Troubleshooting

If I see PERMISSION DENIEDin my log files, what does that mean?

Most likely, the Condor installation has been misconfiguredand Condor’s access control security
functionality is preventing daemons and tools from communicating with each other. Other symp-
toms of this problem include Condor tools (such ascondor_statusandcondor_q) not producing any
output, or commands that appear to have no effect (for example,condor_offor condor_on).

The solution is to properly configure theHOSTALLOW_*and HOSTDENY_* settings (for
host/IP based authentication) or to configure strong authentication and setALLOW_* andDENY_*
as appropriate. Host-based authentication is described insection 3.6.9 on page 353. Information

about other forms of authentication is provided in section 3.6.1 on page 326.

What happens if the central manager crashes?

If the central manager crashes, jobs that are already running will continue to run unaffected. Queued
jobs will remain in the queue unharmed, but can not begin running until the central manager is
restarted and begins matchmaking again. Nothing special needs to be done after the central manager
is brought back on line.

Why did the condor_schedddaemon die and restart?

Thecondor_schedddaemon receives signal 25, dies, and is restarted when the history file reaches
a 2 Gbyte size limit. On 32-bit OSes, Condor cannot write log files larger than 2 Gbytes. If you
need to keep more than 2 Gbytes of history, you can set a maximum history file size of 2 Gbytes and
multiple rotations of the file. For example, to keep 6 Gbytes of history, you would put these lines in
your Condor configuration file:

ENABLE_HISTORY_ROTATION = True
MAX_HISTORY_LOG = 2000000000
MAX_HISTORY_ROTATIONS = 2

Condor Version 7.7.6 Manual

7.7. Troubleshooting 604

When I ssh/telnet to a machine to check particulars of how Condor is doing
something, it is always vacating or unclaimed when I know a job had been
running there!

Depending on how your policy is set up, Condor will trackany tty on the machine for the purpose
of determining if a job is to be vacated or suspended on the machine. It could be the case that after
you ssh there, Condor notices activity on the tty allocated to your connection and then vacates the
job.

What is wrong? I get no output from condor_status, but the Condor daemons
are running.

One likely error messagewithin the collector log of the form

DaemonCore: PERMISSION DENIED to host <xxx.xxx.xxx.xxx> f or command 0 (UPDATE_STARTD_AD)

indicates a permissions problem. Thecondor_startddaemons do not have write permission
to the condor_collectordaemon. This could be because you used domain names in your
HOSTALLOW_WRITEand/or HOSTDENY_WRITEconfiguration macros, but the domain name
server (DNS) is not properly configured at your site. Withoutthe proper configuration, Condor
cannot resolve the IP addresses of your machines into fully-qualified domain names (an inverse look
up). If this is the problem, then the solution takes one of twoforms:

1. Fix the DNS so that inverse look ups (trying to get the domain name from an IP address) works
for your machines. You can either fix the DNS itself, or use theDEFAULT_DOMAIN_NAME
setting in your Condor configuration file.

2. Use numeric IP addresses in theHOSTALLOW_WRITEand/orHOSTDENY_WRITEconfigu-
ration macros instead of domain names. As an example of this,assume your site has a machine
such as foo.your.domain.com, and it has two subnets, with IPaddresses 129.131.133.10, and
129.131.132.10. If the configuration macro is set as

HOSTALLOW_WRITE = *.your.domain.com

and this does not work, use

HOSTALLOW_WRITE = 192.131.133.*, 192.131.132.*

Alternatively, this permissions problem may be caused by being too restrictive in the setting
of your HOSTALLOW_WRITEand/orHOSTDENY_WRITEconfiguration macros. If it is, then the
solution is to change the macros, for example from

HOSTALLOW_WRITE = condor.your.domain.com

Condor Version 7.7.6 Manual

7.7. Troubleshooting 605

to

HOSTALLOW_WRITE = *.your.domain.com

or possibly

HOSTALLOW_WRITE = condor.your.domain.com, foo.your.dom ain.com, \
bar.your.domain.com

Another likely error messagewithin the collector log of the form

DaemonCore: PERMISSION DENIED to host <xxx.xxx.xxx.xxx> f or command 5 (QUERY_STARTD_ADS)

indicates a similar problem as above, but read permission isthe problem (as opposed to write per-
mission). Use the solutions given above.

Why does Condor leave mail processes around?

Under FreeBSD and Mac OSX operating systems, misconfiguration of of a system’s outgoing mail
causes Condor to inadvertently leave paused and zombie mailprocesses around when Condor at-
tempts to send notification e-mail. The solution to this problem is to correct the mailer configuration.

Execute the following command as the user under which Condordaemons run to determine
whether outgoing e-mail works.

$ uname -a | mail -v your@emailaddress.com

If no e-mail arrives, then outgoing e-mail does not work correctly.

Note that this problem does not manifest itself on non-BSD Unix platforms, such as Linux.

Why are there spurious Condor errors on some machines running Xen ker-
nels?

Some older Xen kernels had a problem where the kernel’s jiffycounter could jump backwards in
time. This breaks an assumption made by thecondor_procd. This problem can only be worked
around by upgrading the Xen kernel to a version that fixes the issue with the jiffy counter. Running
Condor on an affected Xen kernel often results in failures ofthe following forms in Condor daemon
log files:

• error: parent process's birthday is later than our own

• ERROR: No family with the given PID is registered

Condor Version 7.7.6 Manual

7.8. Other questions 606

7.8 Other questions

Is there a Condor mailing-list?

Yes. There are two useful mailing lists. First, we run an extremely low traffic mailing list
solely to announce new versions of Condor. Follow the instructions for Condor World at
http://www.cs.wisc.edu/condor/mail-lists/. Second, our users can be extremely knowledgeable, and
they help each other solve problems using the Condor Users mailing list. Again, follow the instruc-
tions for Condor Users at http://www.cs.wisc.edu/condor/mail-lists/.

My question isn’t in the FAQ!

If you have any questions that are not listed in this FAQ, try looking through the rest of the manual.
Try joining the Condor Users mailing list, where our users support each other in finding answers
to problems. Follow the instructions at http://www.cs.wisc.edu/condor/mail-lists/. If you still can’t
find an answer, feel free to contact us at condor-admin@cs.wisc.edu.

Note that Condor’s free e-mail support is provided on a best-effort basis, and at times we may
not be able to provide a timely response. If guaranteed support is important to you, please inquire
about our paid support services.

Condor Version 7.7.6 Manual

http://www.cs.wisc.edu/condor/mail-lists/
http://www.cs.wisc.edu/condor/mail-lists/
http://www.cs.wisc.edu/condor/mail-lists/
mailto:condor-admin@cs.wisc.edu

CHAPTER

EIGHT

Contrib and Source Modules

8.1 Introduction

Contrib modules are stand alone, separate pieces of code that work together with
Condor to accomplish some task. These modules are availablefor download at
http://research.cs.wisc.edu/condor/downloads-v2. Documentation for these modules is either here
and identified as a contrib module, or may be within the moduleitself.

Other features of Condor are available within the source code, but are not compiled in to the
binaries distributed. To utilize these features, acquire the source code and build it. Enable the
feature as described in this documentation.

This chapter documents the CondorView Client contrib module, Quill (available with the source
code), and using Condor with the Hadoop File System (available with the source code).

8.2 Using Condor with the Hadoop File System

The Hadoop project is an Apache project, headquartered at http://hadoop.apache.org, which imple-
ments an open-source, distributed file system across a largeset of machines. The file system proper
is called the Hadoop File System, or HDFS, and there are several Hadoop-provided tools which use
the file system, most notably databases and tools which use the map-reduce distributed programming
style.

Distributed with the Condor source code, Condor provides a way to manage the daemons which
implement an HDFS, but no direct support for the high-level tools which run atop this file system.
There are two types of daemons, which together create an instance of a Hadoop File System. The

607

http://research.cs.wisc.edu/condor/downloads-v2
http://hadoop.apache.org

8.2. Using Condor with the Hadoop File System 608

first is called the Name node, which is like the central manager for a Hadoop cluster. There is
only one active Name node per HDFS. If the Name node is not running, no files can be accessed.
The HDFS does not support fail over of the Name node, but it does support a hot-spare for the
Name node, called the Backup node. Condor can configure one node to be running as a Backup
node. The second kind of daemon is the Data node, and there is one Data node per machine in the
distributed file system. As these are both implemented in Java, Condor cannot directly manage these
daemons. Rather, Condor provides a small DaemonCore daemon, calledcondor_hdfs, which reads
the Condor configuration file, responds to Condor commands like condor_onandcondor_off, and
runs the Hadoop Java code. It translates entries in the Condor configuration file to an XML format
native to HDFS. These configuration items are listed with thecondor_hdfsdaemon in section 8.2.1.
So, to configure HDFS in Condor, the Condor configuration file should specify one machine in the
pool to be the HDFS Name node, and others to be the Data nodes.

Once an HDFS is deployed, Condor jobs can directly use it in a vanilla universe job, by transfer-
ring input files directly from the HDFS by specifying a URL within the job’s submit description file
commandtransfer_input_files. See section 3.12.2 for the administrative details to set uptransfers
specified by a URL. It requires that a plug-in is accessible and defined to handlehdfs protocol
transfers.

8.2.1 condor_hdfs Configuration File Entries

These macros affect thecondor_hdfsdaemon. Many of these variables determine how thecon-
dor_hdfsdaemon sets the HDFS XML configuration.

HDFS_HOME The directory path for the Hadoop file system installation directory. Defaults to
$(RELEASE_DIR)/libexec . This directory is required to contain

• directory lib , containing all necessary jar files for the execution of a Name node and
Data nodes.

• directoryconf , containing default Hadoop file system configuration files with names
that conform to*-site.xml .

• directorywebapps , containing JavaServer pages (jsp) files for the Hadoop file system’s
embedded server.

HDFS_NAMENODE The host and port number for the HDFS Name node. There is no default value
for this required variable. Defines the value offs.default.name in the HDFS XML
configuration.

HDFS_NAMENODE_WEB The IP address and port number for the HDFS embedded web server
within the Name node with the syntax ofa.b.c.d:portnumber . There is no default
value for this required variable. Defines the value ofdfs.http.address in the HDFS
XML configuration.

HDFS_DATANODE_WEB The IP address and port number for the HDFS embedded web server
within the Data node with the syntax ofa.b.c.d:portnumber . The default value for this

Condor Version 7.7.6 Manual

8.2. Using Condor with the Hadoop File System 609

optional variable is 0.0.0.0:0, which means bind to the default interface on a dynamic port.
Defines the value ofdfs.datanode.http.address in the HDFS XML configuration.

HDFS_NAMENODE_DIR The path to the directory on a local file system where the Name node will
store its meta-data for file blocks. There is no default valuefor this variable; it is required to
be defined for the Name node machine. Defines the value ofdfs.name.dir in the HDFS
XML configuration.

HDFS_DATANODE_DIR The path to the directory on a local file system where the Data node will
store file blocks. There is no default value for this variable; it is required to be defined for a
Data node machine. Defines the value ofdfs.data.dir in the HDFS XML configuration.

HDFS_DATANODE_ADDRESS The IP address and port number of this machine’s Data node.
There is no default value for this variable; it is required tobe defined for a Data node machine,
and may be given the value0.0.0.0:0 as a Data node need not be running on a known port.
Defines the value ofdfs.datanode.address in the HDFS XML configuration.

HDFS_NODETYPE This parameter specifies the type of HDFS service provided bythis ma-
chine. Possible values areHDFS_NAMENODEandHDFS_DATANODE. The default value is
HDFS_DATANODE.

HDFS_BACKUPNODE The host address and port number for the HDFS Backup node. There is
no default value. It defines the value of the HDFS dfs.namenode.backup.address field in the
HDFS XML configuration file.

HDFS_BACKUPNODE_WEB The address and port number for the HDFS embedded web server
within the Backup node, with the syntax of hdfs://<host_address>:<portnumber>. There is
no default value for this required variable. It defines the value of dfs.namenode.backup.http-
address in the HDFS XML configuration.

HDFS_NAMENODE_ROLE If this machine is selected to be the Name node, then the role must be
defined. Possible values areACTIVE, BACKUP, CHECKPOINT, andSTANDBY. The default
value isACTIVE. TheSTANDBYvalue exists for future expansion. IfHDFS_NODETYPEis
selected to be Data node (HDFS_DATANODE), then this variable is ignored.

HDFS_LOG4J Used to set the configuration for the HDFS debugging level. Currently one of
OFF, FATAL, ERROR, WARN, INFODEBUG, ALL or INFO. Debugging output is written to
$(LOG)/hdfs.log . The default value isINFO.

HDFS_ALLOW A comma separated list of hosts that are authorized with readand write access
to the invoked HDFS. Note that this configuration variable name is likely to change to
HOSTALLOW_HDFS.

HDFS_DENY A comma separated list of hosts that are denied access to the invoked HDFS. Note
that this configuration variable name is likely to change toHOSTDENY_HDFS.

HDFS_NAMENODE_CLASS An optional value that specifies the class to invoke. The default value
is org.apache.hadoop.hdfs.server.namenode.NameNode .

HDFS_DATANODE_CLASS An optional value that specifies the class to invoke. The default value
is org.apache.hadoop.hdfs.server.datanode.DataNode .

Condor Version 7.7.6 Manual

8.3. Quill 610

HDFS_SITE_FILE The optional value that specifies the HDFS XML configuration file to gener-
ate. The default value ishdfs-site.xml .

HDFS_REPLICATION An integer value that facilitates setting the replication factor of an HDFS,
defining the value ofdfs.replication in the HDFS XML configuration. This configu-
ration variable is optional, as the HDFS has its own default value of 3 when not set through
configuration.

8.3 Quill

Quill is an optional component of Condor that maintains a mirror of Condor operational data in
a relational database. Thecondor_quilldaemon updates the data in the relation database, and the
condor_dbmsddaemon maintains the database itself.

As of Condor version 7.5.5, Quill is distributed only with the source code. It is not included in
the builds of Condor provided by UW, but it is available as a feature that can be enabled by those
who compile Condor from the source code. Find the code withinthecondor_contrib directory,
in the directoriescondor_tt andcondor_dbmsd .

8.3.1 Installation and Configuration

Quill uses thePostgreSQLdatabase management system. Quill uses thePostgreSQLserver as its
back end and client library,libpq to talk to the server. Westrongly recommendthe use of version
8.2 or later due to its integrated facilities of certain key database maintenance tasks, and stronger
security features.

ObtainPostgreSQLfrom

http://www.postgresql.org/ftp/source/

Installation instructions are detailed in: http://www.postgresql.org/docs/8.2/static/installation.html

ConfigurePostgreSQLafter installation:

1. Initialize the database with thePostgreSQLcommandinitdb .

2. Configure to accept TCP/IP connections. ForPostgreSQL version 8, use the
listen_addresses variable in postgresql.conf file as a guide. For example,
listen_addresses = ’*’ means listen on any IP interface.

3. Configure automatic vacuuming. Ensure that these variables with these defaults are com-
mented in and/or set properly in thepostgresql.conf configuration file:

Turn on/off automatic vacuuming
autovacuum = on

Condor Version 7.7.6 Manual

http://www.postgresql.org/ftp/source/
http://www.postgresql.org/docs/8.2/static/installation.html

8.3. Quill 611

time between autovacuum runs, in secs
autovacuum_naptime = 60

min # of tuple updates before vacuum
autovacuum_vacuum_threshold = 1000

min # of tuple updates before analyze
autovacuum_analyze_threshold = 500

fraction of rel size before vacuum
autovacuum_vacuum_scale_factor = 0.4

fraction of rel size before analyze
autovacuum_analyze_scale_factor = 0.2

default vacuum cost delay for
autovac, -1 means use
vacuum_cost_delay

autovacuum_vacuum_cost_delay = -1

default vacuum cost limit for
autovac, -1 means use
vacuum_cost_limit

autovacuum_vacuum_cost_limit = -1

4. ConfigurePostgreSQLto accept TCP/IP connections from specific hosts. Modify the
pg_hba.conf file (which usually resides in thePostgreSQLserver’s data directory). Ac-
cess is required by thecondor_quilldaemon, as well as the database users “quillreader ”
and “quillwriter ”. For example, to give database users “quillreader ” and “quillwriter ”
password-enabled access to all databases on current machine from any machine in the
128.105.0.0/16 subnet, add the following:

host all quillreader 128.105.0.0 255.255.0.0 md5
host all quillwriter 128.105.0.0 255.255.0.0 md5

Note that in addition to the database specified by the configuration variable
QUILL_DB_NAME, the condor_quill daemon also needs access to the database "tem-
plate1". In order to create the database in the first place, the condor_quilldaemon needs to
connect to the database.

5. Start thePostgreSQLserver service. See the installation instructions for the appropriate
method to start the service at http://www.postgresql.org/docs/8.2/static/installation.html

6. Thecondor_quilland condor_dbmsddaemons and client tools connect to the database as
users “quillreader ” and “quillwriter ”. These are database users, not operating system users.
The two types of users are quite different from each other. Ifthese database users do not
exist, add them using thecreateusercommand supplied with the installation. Assign them
with appropriate passwords; these passwords will be used bythe Quill tools to connect to the

Condor Version 7.7.6 Manual

http://www.postgresql.org/docs/8.2/static/installation.html

8.3. Quill 612

database in a secure way. User “quillreader ” should not be allowed to create more databases
nor create more users. User “quillwriter ” should not be allowed to create more users, however
it should be allowed to create more databases. The followingcommands create the two users
with the appropriate permissions, and be ready to enter the corresponding passwords when
prompted.

/path/to/postgreSQL/bin/directory/createuser quillre ader \
--no-createdb --no-createrole --pwprompt

/path/to/postgreSQL/bin/directory/createuser quillwr iter \
--createdb --no-createrole --pwprompt

Answer “no” to the question about the ability for role creation.

7. Create a database for Quill to store data in with thecreatedb command. Create this
database with the “quillwriter ” user as the owner. A sample command to do this is

createdb -O quillwriter quill

quill is the database name to use with theQUILL_DB_NAMEconfiguration variable.

8. Thecondor_quillandcondor_dbmsddaemons need read and write access to the database.
They connect as user “quillwriter ”, which has owner privileges to the database. Since this
gives all access to the “quillwriter ” user, its password cannot be stored in a public place
(such as in a ClassAd). For this reason, the “quillwriter ” password is stored in a file named
.pgpass in the Condor spool directory. Appropriate protections on this file guarantee secure
access to the database. This file must be created and protected by the site administrator; if this
file does not exist as and where expected, thecondor_quillandcondor_dbmsddaemons log
an error and exit. The.pgpass file contains a single line that has fields separated by colons
and is properly terminated by an operating system specific newline character (Unix) or CRLF
(Windows). The first field may be either the machine name and fully qualified domain, or
it may be a dotted quad IP address. This is followed by four fields containing: the TCP
port number, the name of the database, the "quillwriter" user name, and the password. The
form used in the first field must exactly match the value set forthe configuration variable
QUILL_DB_IP_ADDR . Condor uses a string comparison between the two, and it doesnot
resolve the host names to compare IP addresses. Example:

machinename.cs.wisc.edu:5432:quill:quillwriter:pass word

After thePostgreSQLdatabase is initialized and running, the Quill schema must be loaded into
it. First, load the plsql programming language into the server:

createlang plpgsql [databasename]

Then, load the Quill schema from the sql files in thesql subdirectory of the Condor release
directory:

psql [databasename] [username] < common_createddl.sql
psql [databasename] [username] < pgsql_createddl.sql

Condor Version 7.7.6 Manual

8.3. Quill 613

where[username] will be quillwriter .

After PostgreSQLis configured and running, Condor must also be configured to use Quill, since
by default Quill is configured to be off.

Add the file.pgpass to theVALID_SPOOL_FILES variable, sincecondor_preenmust be told
not to delete this file. This step may not be necessary, depending on which version of Condor
you are upgrading from.

Set up configuration variables that are specific to the installation, and check that theHISTORY
variable is set.

HISTORY = $(SPOOL)/history
QUILL_ENABLED = TRUE
QUILL_USE_SQL_LOG = FALSE
QUILL_NAME = some-unique-quill-name.cs.wisc.edu
QUILL_DB_USER = quillwriter
QUILL_DB_NAME = database-for-some-unique-quill-name
QUILL_DB_IP_ADDR = databaseIPaddress:port
the following parameter's units is in seconds
QUILL_POLLING_PERIOD = 10
QUILL_HISTORY_DURATION = 30
QUILL_MANAGE_VACUUM = FALSE
QUILL_IS_REMOTELY_QUERYABLE = TRUE
QUILL_DB_QUERY_PASSWORD = password-for-database-user- quillreader
QUILL_ADDRESS_FILE = $(LOG)/.quill_address
QUILL_DB_TYPE = PGSQL
The Purge and Reindex intervals are in seconds
DATABASE_PURGE_INTERVAL = 86400
DATABASE_REINDEX_INTERVAL = 86400
The History durations are all in days
QUILL_RESOURCE_HISTORY_DURATION = 7
QUILL_RUN_HISTORY_DURATION = 7
QUILL_JOB_HISTORY_DURATION = 3650
#The DB Size limit is in gigabytes
QUILL_DBSIZE_LIMIT = 20
QUILL_MAINTAIN_DB_CONN = TRUE
SCHEDD_SQLLOG = $(LOG)/schedd_sql.log
SCHEDD_DAEMON_AD_FILE = $(LOG)/.schedd_classad

The default Condor configuration file should already containdefinitions for QUILL and
QUILL_LOG. When upgrading from a previous version that did not have Quill to a new one that
does, define these two configuration variables.

Only one machine should run thecondor_dbmsddaemon. On this machine, add it to the
DAEMON_LISTconfiguration variable. All Quill-enabled machines shouldalso run thecon-
dor_quill daemon. The machine running thecondor_dbmsddaemon can also run acondor_quill
daemon. An exampleDAEMON_LISTfor a machine running both daemons, and acting as both a
submit machine and a central manager might look like the following:

DAEMON_LIST = MASTER, SCHEDD, COLLECTOR, NEGOTIATOR, DBMSD, QUILL

Condor Version 7.7.6 Manual

8.3. Quill 614

Thecondor_dbmsddaemon will need configuration file entries common to all daemons. If not
already in the configuration file, add the following entries:

DBMSD = $(SBIN)/condor_dbmsd
DBMSD_ARGS = -f
DBMSD_LOG = $(LOG)/DbmsdLog
MAX_DBMSD_LOG = 10000000

Configuration Variables

These macros affect the Quill database management and interface to its representation of the job
queue.

QUILL The full path name to thecondor_quilldaemon.

QUILL_ARGS Arguments to be passed to thecondor_quilldaemon upon its invocation.

QUILL_LOG Path to the Quill daemon’s log file.

QUILL_ENABLED A boolean variable that defaults toFalse . WhenTrue , Quill functionality is
enabled. WhenFalse , the Quill daemon writes a message to its log and exits. Thecondor_q
andcondor_historytools then do not use Quill.

QUILL_NAME A string that uniquely identifies an instance of thecondor_quilldaemon, as there
may be more thancondor_quilldaemon per pool. The string must not be the same as for any
condor_schedddaemon.

See the description ofMASTER_NAMEin section 3.3.9 on page 200 for defaults and compo-
sition of valid Condor daemon names.

QUILL_USE_SQL_LOG In order for Quill to store historical job information or resource informa-
tion, the Condor daemons must write information to the SQL logfile. By default, this is set to
False , and the only information Quill stores in the database is thecurrent job queue. This
can be set on a per daemon basis. For example, to store information about historical jobs,
but not store execute resource information, setQUILL_USE_SQL_LOGto False and set
SCHEDD._QUILL_USE_SQL_LOGto True .

QUILL_DB_NAME A string that identifies a database within a database server.

QUILL_DB_USER A string that identifies thePostgreSQLuser that Quill will connect as to the
database. We recommend “quillwriter ” for this setting. There is no default setting for
QUILL_DB_USER, so it must be specified in the configuration file.

QUILL_DB_TYPE A string that distinguishes between database system types.Defaults to the only
database system currently defined,"PGSQL".

Condor Version 7.7.6 Manual

8.3. Quill 615

QUILL_DB_IP_ADDR The host address of the database server. It can be either an IPaddress
or an IP address. It must match exactly what is used in the.pgpass file. More than one
Quill server can talk to the same database server. This can beaccomplished by letting all the
QUILL_DB_IP_ADDRvalues point to the same database server.

QUILL_POLLING_PERIOD The frequency, in number of seconds, at which the Quill daemon
polls the filejob_queue.log for updates. New information in the log file is sent to the
database. The default value is 10. Since Quill works by periodically sniffing the log file
for updates and then sending those updates to the database, this variable controls the trade
off between the currency of query results and Quill’s load onthe system, which is usually
negligible.

QUILL_NOT_RESPONDING_TIMEOUTThe length of time, in seconds, before thecon-
dor_mastermay decide that thecondor_quilldaemon is hung due to a lack of communication,
potentially causing thecondor_masterto kill and restart thecondor_quilldaemon. When the
condor_quilldaemon is processing a very long log file, it may not be able to communicate
with the master. The default is 3600 seconds, or one hour. It may be advisable to increase this
to several hours.

QUILL_MAINTAIN_DB_CONN A boolean variable that defaults toTrue . WhenTrue , thecon-
dor_quill daemon maintains an open connection the database server, which speeds up updates
to the database. As each open connection consumes resourcesat the database server, we
recommend a setting ofFalse for large pools.

DATABASE_PURGE_INTERVAL The interval, in seconds, between scans of the database to iden-
tify and delete records that are beyond their history durations. The default value is 86400, or
one day.

QUILL_JOB_HISTORY_DURATIONThe number of days after entry into the database that a job
will remain in the database. AfterQUILL_JOB_HISTORY_DURATIONdays, the job is
deleted. The job history is the final ClassAd, and contains all information necessary forcon-
dor_historyto succeed. The default is 3650, or about 10 years.

QUILL_RUN_HISTORY_DURATIONThe number of days after entry into the database
that extra information about the job will remain in the database. After
QUILL_RUN_HISTORY_DURATIONdays, the records are deleted. This data includes
matches made for the job, file transfers the job performed, and user log events. The default is
7 days, or one week.

QUILL_RESOURCE_HISTORY_DURATIONThe number of days after entry into
the database that a resource record will remain in the database. After
QUILL_RESOURCE_HISTORY_DURATIONdays, the record is deleted. The resource
history data includes the ClassAd of a compute slot, submitter ClassAds, and daemon
ClassAds. The default is 7 days, or one week.

QUILL_DBSIZE_LIMIT At intervals of time set byDATABASE_PURGE_INTERVAL, thecon-
dor_quill daemon estimates the size of the database. If the size of the database exceeds the
limit set by this variable, thecondor_quilldaemon will e-mail the administrator a warning.
This size is given in Gbytes, and defaults to 20.

Condor Version 7.7.6 Manual

8.3. Quill 616

QUILL_MANAGE_VACUUM A boolean value that defaults toFalse . When True , the con-
dor_quill daemon takes on the maintenance task of vacuuming the database. As ofPost-
greSQLversion 8.1, the database can perform this task automatically; therefore, having the
condor_quilldaemon vacuum is not necessary. A value ofTrue causes warnings to be written
to the log file.

QUILL_SHOULD_REINDEX A boolean value that defaults toTrue . When True , the con-
dor_quill daemon will re-index the database tables when the history file is purged of old
data. So, if Quill is configured to never delete history data,the tables are never re-indexed.

DATABASE_REINDEX_INTERVALBecausePostgreSQLdoes not aggressively maintain the in-
dex structures for deleted tuples, it can lead to bloated index structures. This variable is the
interval, in seconds, between re-index commands on the database. The default value is 86400,
or one day. This is only used when theQUILL_DB_TYPEis set to"PGSQL".

QUILL_IS_REMOTELY_QUERYABLEA boolean value that defaults toTrue . Thanks toPost-
greSQL, one can now remotely query both the job queue and the historytables. This variable
controls whether this remote querying feature should be enabled. Note that even ifFalse ,
one can still query the job queue at the remotecondor_schedddaemon.

QUILL_DB_QUERY_PASSWORD Defines the password string needed bycondor_qto gain read
access for remotely querying the Quill database. In order for the query tools to connect
to a database, they need to provide the password that is assigned to the database user
“quillreader ”. This variable is then advertised by thecondor_quill daemon to thecon-
dor_collector. This facility enables remote querying: remotecondor_qquery tools first ask
the condor_collectorfor the password associated with a particular Quill database, and then
query that database. Users who do not have access to thecondor_collectorcannot view the
password, and as such cannot query the database.

QUILL_ADDRESS_FILE When defined, it specifies the path and file name of a local file that
contains the IP address and port number of the Quill daemon. By using the file, tools executed
on the local machine do not need to query the central manager in order to find thecondor_quill
daemon.

DBMSD The full path name to thecondor_dbmsddaemon. The default location is
$(SBIN)/condor_dbmsd .

DBMSD_ARGS Arguments to be passed to thecondor_dbmsddaemon upon its invocation. The
default arguments are-f .

DBMSD_LOG Path to thecondor_dbmsddaemon’s log file. The default log location is
$(LOG)/DbmsdLog .

DBMSD_NOT_RESPONDING_TIMEOUTThe length of time, in seconds, before thecon-
dor_mastermay decide that thecondor_dbmsdis hung due to a lack of communication, po-
tentially causing thecondor_masterto kill and restart thecondor_dbmsddaemon. When the
condor_dbmsdis purging or re-indexing a very large database, it may not beable to com-
municate with the master. The default is 3600 seconds, or onehour. It may be advisable to
increase this to several hours.

Condor Version 7.7.6 Manual

8.3. Quill 617

8.3.2 Four Usage Examples

1. Query a remote Quill daemon onregular.cs.wisc.edu for all the jobs in the queue

condor_q -name quill@regular.cs.wisc.edu
condor_q -name schedd@regular.cs.wisc.edu

There are two ways to get to a Quill daemon: directly using itsname as specified in the
QUILL_NAMEconfiguration variable, or indirectly by querying thecondor_schedddaemon
using its name. In the latter case,condor_qwill detect if thatcondor_schedddaemon is being
serviced by a database, and if so, directly query it. In both cases, the IP address and port of
the database server hosting the data of this particular remote Quill daemon can be figured out
by theQUILL_DB_IP_ADDRandQUILL_DB_NAMEvariables specified in theQUILL_AD
sent by the quill daemon to the collector and in theSCHEDD_ADsent by thecondor_schedd
daemon.

2. Query a remote Quill daemon onregular.cs.wisc.edu for all historical jobs belonging
to owner einstein.

condor_history -name quill@regular.cs.wisc.edu einstei n

3. Query the local Quill daemon for the average time spent in the queue for all non-completed
jobs.

condor_q -avgqueuetime

The average queue time is defined as the average of(currenttime -
jobsubmissiontime) over all jobs which are neither completed(JobStatus
== 4) or removed(JobStatus == 3) .

4. Query the local Quill daemon for all historical jobs completed since Apr 1, 2005 at 13h 00m.

condor_history -completedsince '04/01/2005 13:00'

It fetches all jobs which got into the ’Completed’ state on orafter the specified time stamp.
It use thePostgreSQLdate/time syntax rules, as it encompasses most format options. See
http://www.postgresql.org/docs/8.2/static/datatype-datetime.html for the various time stamp
formats.

8.3.3 Quill and Security

There are several layers of security in Quill, some providedby Condor and others provided by the
database. First, all accesses to the database are password-protected.

Condor Version 7.7.6 Manual

http://www.postgresql.org/docs/8.2/static/datatype-datetime.html

8.3. Quill 618

1. The query tools,condor_qandcondor_historyconnect to the database as user “quillreader ”.
The password for this user can vary from one database to another and as such, each Quill
daemon advertises this password to the collector. The querytools then obtain this password
from the collector and connect successfully to the database. Access to the database by the
“quillreader ” user is read-only, as this is sufficient for the query tools.The condor_quill
daemon ensures this protected access using the sql GRANT command when it first creates the
tables in the database. Note that access to the “quillreader ” password itself can be blocked
by blocking access to the collector, a feature already supported in Condor.

2. Thecondor_quillandcondor_dbmsddaemons, on the other hand, need read and write access
to the database. As such, they connect as user “quillwriter ”, who has owner privileges to the
database. Since this gives all access to the “quillwriter ” user, this password cannot be stored
in a public place (such as the collector). For this reason, the “quillwriter ” password is stored
in a file called.pgpass in the Condor spool directory. Appropriate protections on this file
guarantee secure access to the database. This file must be created and protected by the site
administrator; if this file does not exist as and where expected, thecondor_quilldaemon logs
an error and exits.

3. TheIsRemotelyQueryable attribute in the Quill ClassAd advertised by the Quill dae-
mon to the collector can be used by site administrators to disallow the database from being
read by all remote Condor query tools.

8.3.4 Quill and Its RDBMS Schema

Notes:

• The type “timestamp(precision) with timezone” is abbreviated “ts(precision) w tz.”

• The column O. Type is an abbreviation for Oracle Type.

• The column P. Type is an abbreviation for PostgreSQL Type.

Although the current version of Condor does not support Oracle, we anticipate supporting it in the
future, so Oracle support in this schema document is for future reference.

Administrative Tables

Attributes of currencies Table
Name O. Type P. Type Description
datasource varchar(4000) varchar(4000) Identifier of the data source.
lastupdate ts(3) w tz ts(3) w tz Time of the last update sent to the database from the data

source.

Condor Version 7.7.6 Manual

8.3. Quill 619

Attributes of error_sqllogs Table
Name O. Type P. Type Description
logname varchar(100) varchar(100) Name of the SQL log file causing a SQL error.
host varchar(50) varchar(50) The host where the SQL log resides.
lastmodified ts(3) w tz ts(3) w tz The last modified time of the SQL log.
errorsql varchar(4000) text The SQL statement causing an error.
logbody clob text The body of the SQL log.
errormessage varchar(4000) varchar(4000) The description of the error.
INDEX: Index named error_sqllog_idx on (logname, host, lastmodified)

Attributes of maintenance_log Table
Name O. Type P. Type Description
eventts ts(3) w tz ts(3) w tz Time the event occurred.
eventmsg varchar(4000) varchar(4000) Message describing the event.

Attributes of quilldbmonitor Table
Name O. Type P. Type Description
dbsize integer integer Size of the database in megabytes.

Attributes of quill_schema_version Table
Name O. Type P. Type Description
major int int Major version number.
minor int int Minor version number.
back_to_major int int The major number of the old version this version is compatible

to.
back_to_minor int int The minor number of the old version this version is compatible

to.

Attributes of throwns Table
Name O. Type P. Type Description
filename varchar(4000) varchar(4000) The name of the log that was truncated.
machine_id varchar(4000) varchar(4000) The machine where the truncated log resides.
log_size numeric(38) numeric(38) The size of the truncated log.
throwtime ts(3) w tz ts(3) w tz The time when the truncation occurred.

Condor Version 7.7.6 Manual

8.3. Quill 620

Daemon Tables

Attributes of daemons_horizontal Table
Name O. Type P. Type Description
mytype varchar(100) varchar(100) The type of daemon ClassAd, e.g. “Mas-

ter”
name varchar(500) varchar(500) The name identifier of the daemon

ClassAd.
lastreportedtime ts(3) w tz ts(3) w tz Time when the daemon last reported to

Quill.
monitorselftime ts(3) w tz ts(3) w tz The time when the daemon last collected

information about itself.
monitorselfcpuusage numeric(38) numeric(38) The amount of CPU this daemon has

used.
monitorselfimagesize numeric(38) numeric(38) The amount of virtual memory this dae-

mon has used.
monitorselfresidentsetsizenumeric(38) numeric(38) The amount of physical memory this dae-

mon has used.
monitorselfage integer integer How long the daemon has been running.
updatesequencenumber integer integer The sequence number associated with the

update.
updatestotal integer integer The number of updates received from the

daemon.
updatessequenced integer integer The number of updates that were in order.
updateslost integer integer The number of updates that were lost.
updateshistory varchar(4000) varchar(4000) Bitmask of the last 32 updates.
lastreportedtime_epoch integer integer The equivalent epoch time of last heard

from.
PRIMARY KEY: (mytype, name)
NOT NULL: mytype and name cannot be null

Condor Version 7.7.6 Manual

8.3. Quill 621

Attributes of daemons_horizontal_history Table
Name O. Type P. Type Description
mytype varchar(100) varchar(100) The type of daemon ClassAd, e.g. “Mas-

ter”
name varchar(500) varchar(500) The name identifier of the daemon

ClassAd.
lastreportedtime ts(3) w tz ts(3) w tz Time when the daemon last reported to

Quill.
monitorselftime ts(3) w tz ts(3) w tz The time when the daemon last collected

information about itself.
monitorselfcpuusage numeric(38) numeric(38) The amount of CPU this daemon has

used.
monitorselfimagesize numeric(38) numeric(38) The amount of virtual memory this dae-

mon has used.
monitorselfresidentsetsizenumeric(38) numeric(38) The amount of physical memory this dae-

mon has used.
monitorselfage integer integer How long the daemon has been running.
updatesequencenumber integer integer The sequence number associated with the

update.
updatestotal integer integer The number of updates received from the

daemon.
updatessequenced integer integer The number of updates that were in order.
updateslost integer integer The number of updates that were lost.
updateshistory varchar(4000) varchar(4000) Bitmask of the last 32 updates.
endtime ts(3) w tz ts(3) w tz End of when the ClassAd is valid.

Attributes of daemons_vertical Table
Name O. Type P. Type Description
mytype varchar(100) varchar(100) The type of daemon ClassAd, e.g. “Master”
name varchar(500) varchar(500) The name identifier of the daemon ClassAd.
attr varchar(4000) varchar(4000) Attribute name.
val clob text Attribute value.
lastreportedtime ts(3) w tz ts(3) w tz Time when the daemon last reported to Quill.
PRIMARY KEY: (mytype, name, attr)
NOT NULL: mytype, name, and attr cannot be null

Condor Version 7.7.6 Manual

8.3. Quill 622

Attributes of daemons_vertical_history Table
Name O. Type P. Type Description
mytype varchar(100) varchar(100) The type of daemon ClassAd, e.g. “Master”
name varchar(500) varchar(500) The name identifier of the daemon ClassAd.
lastreportedtime ts(3) w tz ts(3) w tz Time when the daemon last reported to Quill.
attr varchar(4000) varchar(4000) Attribute name.
val clob text Attribute value.
endtime ts(3) w tz ts(3) w tz End of when the ClassAd is valid.

Attributes of submitters_horizontal table
Name O. Type P. Type Description
name varchar(500) varchar(500) Name of the submitter ClassAd.
scheddname varchar(4000) varchar(4000) Name of the schedd where the submitter ad is from.
lastreportedtime ts(3) w tz ts(3) w tz Last time a submitter ClassAd was sent to Quill.
idlejobs integer integer Number of idle jobs of the submitter.
runningjobs integer integer Number of running jobs of the submitter.
heldjobs integer integer Number of held jobs of the submitter.
flockedjobs integer integer Number of flocked jobs of the submitter.

Attributes of submitters_horizontal_history table
Name O. Type P. Type Description
name varchar(500) varchar(500) Name of the submitter ClassAd.
scheddname varchar(4000) varchar(4000) Name of the schedd where the submitter ad is from.
lastreportedtime ts(3) w tz ts(3) w tz Last time a submitter ClassAd was sent to Quill.
idlejobs integer integer Number of idle jobs of the submitter.
runningjobs integer integer Number of running jobs of the submitter.
heldjobs integer integer Number of held jobs of the submitter.
flockedjobs integer integer Number of flocked jobs of the submitter.
endtime ts(3) w tz ts(3) w tz End of when the ClassAd is valid.

Condor Version 7.7.6 Manual

8.3. Quill 623

Files Tables

Attributes of files Table
Name O. Type P. Type Description
file_id int int Unique numeric identifier of the file.
name varchar(4000) varchar(4000) File name.
host varchar(4000) varchar(4000) Name of machine where the file is located.
path varchar(4000) varchar(4000) Directory path to the file.
acl_id integer integer Not yet used, null.
lastmodified ts(3) w tz ts(3) w tz Timestamp of the file.
filesize numeric(38) numeric(38) Size of the file in bytes.
checksum varchar(32) varchar(32) MD5 checksum of the file.
PRIMARY KEY: file_id
NOT NULL: file_id cannot be null

Attributes of fileusages Table
Name O. Type P. Type Description
globaljobid varchar(4000) varchar(4000) Global identifier of the job that used the file.
file_id int int Numeric identifier of the file.
usagetype varchar(4000) varchar(4000) Type of use of the file by the job, e.g., input, output, com-

mand.
REFERENCE: file_id references files(file_id)

Condor Version 7.7.6 Manual

8.3. Quill 624

Attributes of transfers Table
Name O. Type P. Type Description
globaljobid varchar(4000) varchar(4000) Unique global identifier for the job.
src_name varchar(4000) varchar(4000) Name of the file on the source machine.
src_host varchar(4000) varchar(4000) Name of the source machine.
src_port integer integer Source port number used for the transfer.
src_path varchar(4000) varchar(4000) Path to the file on the source machine.
src_daemon varchar(30) varchar(30) Condor demon performing the transfer on

the source machine.
src_protocol varchar(30) varchar(30) The protocol used on the source machine.
src_credential_id integer integer Not yet used, null.
src_acl_id integer integer Not yet used, null.
dst_name varchar(4000) varchar(4000) Name of the file on the destination machine.
dst_host varchar(4000) varchar(4000) Name of the destination machine.
dst_port integer integer Destination port number used for the trans-

fer.
dst_path varchar(4000) varchar(4000) Path to the file on the destination machine.
dst_daemon varchar(30) varchar(30) Condor daemon receiving the transfer on

the destination machine.
dst_protocol varchar(30) varchar(30) The protocol used on the destination ma-

chine.
dst_credential_id integer integer Not yet used, null.
dst_acl_id integer integer Not yet used, null.
transfer_intermediary_id integer integer Not yet used, null; will use someday if a

proxy is used.
transfer_size_bytes numeric(38) numeric (38) Size of the data transfered in bytes.
elapsed numeric(38) numeric(38) Number of seconds that elapsed during the

transfer.
checksum varchar(256) varchar(256) Checksum of the file.
transfer_time ts(3) w tz ts(3) w tz Time when the transfer took place.
last_modified ts(3) w tz ts(3) w tz Last modified time for the file that was

transfered.
is_encrypted varchar(5) varchar(5) (boolean) True if the file is encrypted.
delegation_method_id integer integer Not yet used, null.
completion_code integer integer Indicates whether the transfer failed or suc-

ceeded.

Condor Version 7.7.6 Manual

8.3. Quill 625

Interface Tables

Attributes of cdb_users Table
Name O. Type P. Type Description
userid varchar(30) varchar(30) Unique identifier of the user
password character(32) character(32) Encrypted password
admin varchar(5) varchar(5) (boolean) True if the user has administrator privileges

Attributes of l_eventtype Table
Name O. Type P. Type Description
eventtype integer integer Numeric type code of the event.
description varchar(4000) varchar(4000) Description of the type of event associated with the event-

type code.

Attributes of l_jobstatus Table
Name O. Type P. Type Description
jobstatus integer integer Numeric code for job status.
abbrev char(1) char(1) Single letter code for job status.
description varchar(4000) varchar(4000) Description of job status.
PRIMARY KEY: jobstatus
NOT NULL: jobstatus cannot be null

Condor Version 7.7.6 Manual

8.3. Quill 626

Jobs Tables

Attributes of clusterads_horizontal Table
Name O. Type P. Type Description
scheddname varchar(4000) varchar(4000) Name of the schedd the job is submitted to.
cluster_id integer integer Cluster identifier for the job.
owner varchar(30) varchar(30) User who submitted the job.
jobstatus integer integer Current status of the job.
jobprio integer integer Priority for this job.
imagesize numeric(38) numeric(38) Estimate of memory image size of the job in

kilobytes.
qdate ts(3) w tz ts(3) w tz Time the job was submitted to the job queue.
remoteusercpu numeric(38) numeric(38) Total number of seconds of user CPU time the

job used on remote machines.
remotewallclocktime numeric(38) numeric(38) Committed cumulative number of seconds the

job has been allocated to a machine.
cmd clob text Path to and filename of the job to be executed.
args clob text Arguments passed to the job.
jobuniverse integer integer The Condor universe used by the job.
PRIMARY KEY: (scheddname, cluster_id)
NOT NULL: scheddname and cluster_id cannot be null

Attributes of clusterads_vertical Table
Name O. Type P. Type Description
scheddname varchar(4000) varchar(4000) Name of the schedd that the job is submitted to.
cluster_id integer integer Cluster identifier for the job.
attr varchar(2000) varchar(2000) Attribute name.
val clob text Attribute value.
PRIMARY KEY: (scheddname, cluster_id, attr)

Condor Version 7.7.6 Manual

8.3. Quill 627

Attributes of jobs_horizontal_history Table – Part 1 of 3
Name O. Type P. Type Description
scheddname varchar(4000) varchar(4000) Name of the schedd that submitted the job.
scheddbirthdate integer integer The birth date of the schedd where the job

is submitted.
cluster_id integer integer Cluster identifier for the job.
proc_id integer integer Process identifier for the job.
qdate ts(3) w tz ts(3) w tz Time the job was submitted to the job

queue.
owner varchar(30) varchar(30) User who submitted the job.
globaljobid varchar(4000) varchar(4000) Unique global identifier for the job.
numckpts integer integer Number of checkpoints written by the job

during its lifetime.
numrestarts integer integer Number of restarts from a checkpoint at-

tempted by the job in its lifetime.
numsystemholds integer integer Number of times Condor-G placed the job

on hold.
condorversion varchar(4000) varchar(4000) Version of Condor that ran the job.
condorplatform varchar(4000) varchar(4000) Platform of the computer where the schedd

runs.
rootdir varchar(4000) varchar(4000) Root directory on the system where the job

is submitted from.
iwd varchar(4000) varchar(4000) Initial working directory of the job.
jobuniverse integer integer The Condor universe used by the job.
cmd clob text Path to and filename of the job to be exe-

cuted.
minhosts integer integer Minimum number of hosts that must be in

the claimed state for this job, before the job
may enter the running state.

maxhosts integer integer Maximum number of hosts this job would
like to claim.

jobprio integer integer Priority for this job.
negotiation_user_namevarchar(4000) varchar(4000) User name in which the job is negotiated.
env clob text Environment under which the job ran.
userlog varchar(4000) varchar(4000) User log where the job events are written to.
coresize numeric(38) numeric(38) Maximum allowed size of the core file.

Table Continues on Next Page

Condor Version 7.7.6 Manual

8.3. Quill 628

Attributes of jobs_horizontal_history Table – Part 2 of 3
Name O. Type P. Type Description
killsig varchar(4000) varchar(4000) Signal to be sent if the job is put on hold.
stdin varchar(4000) varchar(4000) The file used as stdin.
transferin varchar(5) varchar(5) (boolean) For globus universe jobs. True if

input should be transferred to the remote ma-
chine.

stdout varchar(4000) varchar(4000) The file used as stdout.
transferout varchar(5) varchar(5) (boolean) For globus universe jobs. True if out-

put should be transferred back to the submit
machine.

stderr varchar(4000) varchar(4000) The file used as stderr.
transfererr varchar(5) varchar(5) (boolean) For globus universe jobs. True if

error output should be transferred back to the
submit machine.

shouldtransferfiles varchar (4000) varchar(4000) Whether Condor should transfer files to and
from the machine where the job runs.

transferfiles varchar(4000) varchar(4000) Depreciated. Similar to shouldtransferfiles.
executablesize numeric(38) numeric(38) Size of the executable in kilobytes.
diskusage integer integer Size of the executable and input files to be

transferred.
filesystemdomain varchar(4000) varchar(4000) Name of the networked file system used by the

job.
args clob text Arguments passed to the job.
lastmatchtime ts(3) w tz ts(3) w tz Time when the job was last successfully

matched with a resource.
numjobmatches integer integer Number of times the negotiator matches the job

with a resource.
jobstartdate ts(3) w tz ts(3) w tz Time when the job first began running.
jobcurrentstartdate ts(3) w tz ts(3) w tz Time when the job’s current run started.
jobruncount integer integer Number of times a shadow has been started for

the job.
filereadcount numeric(38) numeric(38) Number of read(2) calls the job made (only

standard universe).
filereadbytes numeric(38) numeric(38) Number of bytes read by the job (only standard

universe).
filewritecount numeric(38) numeric(38) Number of write calls the job made (only stan-

dard universe).
filewritebytes numeric(38) numeric(38) Number of bytes written by the job (only stan-

dard universe).
Table Continues on Next Page

Condor Version 7.7.6 Manual

8.3. Quill 629

Attributes of jobs_horizontal_history Table – Part 3 of 3
Name O. Type P. Type Description
fileseekcount numeric(38) numeric(38) Number of seek calls that this job made (only

standard universe).
totalsuspensions integer integer Number of times the job has been suspended

during its lifetime
imagesize numeric(38) numeric(38) Estimate of memory image size of the job in

kilobytes.
exitstatus integer integer No longer used by Condor.
localusercpu numeric(38) numeric(38) Number of seconds of user CPU time the job

used on the submit machine.
localsyscpu numeric(38) numeric(38) Number of seconds of system CPU time the job

used on the submit machine.
remoteusercpu numeric(38) numeric(38) Number of seconds of user CPU time the job

used on remote machines.
remotesyscpu numeric(38) numeric(38) Number of seconds of system CPU time the job

used on remote machines.
bytessent numeric(38) numeric(38) Number of bytes sent to the job.
bytesrecvd numeric(38) numeric(38) Number of bytes received by the job.
rscbytessent numeric(38) numeric(38) Number of remote system call bytes sent to the

job.
rscbytesrecvd numeric(38) numeric(38) Number of remote system call bytes received

by the job.
exitcode integer integer Exit return code of the user job. Used when a

job exits by means other than a signal.
jobstatus integer integer Current status of the job.
enteredcurrentstatus ts(3) w tz ts(3) w tz Time the job entered into its current status.
remotewallclocktime numeric(38) numeric(38) Cumulative number of seconds the job has been

allocated to a machine.
lastremotehost varchar(4000) varchar(4000) The remote host for the last run of the job.
completiondate ts(3) w tz ts(3) w tz Time when the job completed; 0 if job has not

yet completed.
enteredhistorytable ts(3) w tz ts(3) w tz Time when the job entered the history table.
PRIMARY KEY: (scheddname, scheddbirthdate, cluster_id, proc_id)
NOT NULL: scheddname, scheddbirthdate, cluster_id, and proc_id cannot be null
INDEX: Index named hist_h_i_owner on owner

Condor Version 7.7.6 Manual

8.3. Quill 630

Attributes of jobs_vertical_history Table
Name O. Type P. Type Description
scheddname varchar(4000) varchar(4000) Name of the schedd that submitted the job.
scheddbirthdate integer integer The birth date of the schedd where the job is submit-

ted.
cluster_id integer integer Cluster identifier for the job.
proc_id integer integer Process identifier for the job.
attr varchar(2000) varchar(2000) Attribute name.
val clob text Attribute value.
PRIMARY KEY: (scheddname, scheddbirthdate, cluster_id, proc_id, attr)
NOT NULL: scheddname, scheddbirthdate, cluster_id, proc_id, and attr cannot be null

Attributes of procads_horizontal Table
Name O. Type P. Type Description
scheddname varchar(4000) varchar(4000) Name of the schedd that submitted the job.
cluster_id integer integer Cluster identifier for the job.
proc_id integer integer Process identifier for the job.
jobstatus integer integer Current status of the job.
imagesize numeric(38) numeric(38) Estimate of memory image size of the job in

kilobytes.
remoteusercpu numeric(38) numeric(38) Total number of seconds of user CPU time the

job used on remote machines.
remotewallclocktime numeric(38) numeric(38) Cumulative number of seconds the job has been

allocated to a machine.
remotehost varchar(4000) varchar(4000) Name of the machine running the job.
globaljobid varchar(4000) varchar(4000) Unique global identifier for the job.
jobprio integer integer Priority of the job.
args clob text Arguments passed to the job.
shadowbday ts(3) w tz ts(3) w tz The time when the shadow was started.
enteredcurrentstatus ts(3) w tz ts(3) w tz Time the job entered its current status.
numrestarts integer integer Number of times the job has restarted.
PRIMARY KEY: (scheddname, cluster_id, proc_id)
NOT NULL: scheddname, cluster_id, and proc_id cannot be null

Condor Version 7.7.6 Manual

8.3. Quill 631

Attributes of procads_vertical Table
Name O. Type P. Type Description
scheddname varchar(4000) varchar(4000) Name of the schedd that submitted the job.
cluster_id integer integer Cluster identifier for the job.
proc_id integer integer Process identifier for the job.
attr varchar(2000) varchar(2000) Attribute name.
val clob text Attribute value.

Condor Version 7.7.6 Manual

8.3. Quill 632

Machines Tables

Attributes of machines_horizontal Table – Part 1 of 2
Name O. Type P. Type Description
machine_id varchar(4000) varchar(4000) Unique identifier of the machine.
opsys varchar(4000) varchar(4000) Operating system running on the machine.
arch varchar(4000) varchar(4000) Architecture of the machine.
state varchar(4000) varchar(4000) Condor state of the machine.
activity varchar(4000) varchar(4000) Condor job activity on the machine.
keyboardidle integer integer Number of seconds since activity has been

detected on any keyboard or mouse associ-
ated with the machine.

consoleidle integer integer Number of seconds since activity has been
detected on the console keyboard or mouse.

loadavg real real Current load average of the machine.
condorloadavg real real Portion of load average generated by Con-

dor
totalloadavg real real
virtualmemory integer integer Amount of currently available virtual mem-

ory in kilobytes.
memory integer integer Amount of RAM in megabytes.
totalvirtualmemory integer integer
cpubusytime integer integer Time in seconds since cpuisbusy became

true.
cpuisbusy varchar(5) varchar(5) (boolean) True when the CPU is busy.
currentrank real real The machine owner’s affinity for running

the Condor job which it is currently host-
ing.

clockmin integer integer Number of minutes passed since midnight.
clockday integer integer The day of the week.
lastreportedtime ts(3) w tz ts(3) w tz Time when the Condor central manager last

received a status update from this machine.
enteredcurrentactivity ts(3) w tz ts(3) w tz Time when the machine entered the current

activity.
enteredcurrentstate ts(3) w tz ts(3) w tz Time when the machine entered the current

state.
updatesequencenumberinteger integer Each update includes a sequence number.

Table Continues on Next Page

Condor Version 7.7.6 Manual

8.3. Quill 633

Attributes of machines_horizontal Table – Part 2 of 2
updatestotal integer integer The number of updates received from the

daemon.
updatessequenced integer integer The number of updates that were in order.
updateslost integer integer The number of updates that were lost.
globaljobid varchar(4000) varchar(4000) Unique global identifier for the job.
lastreportedtime_epochinteger integer The equivalent epoch time of lastreported-

time.
PRIMARY KEY: machine_id

Condor Version 7.7.6 Manual

8.3. Quill 634

Attributes of machines_horizontal_history Table – Part 1 of 2
Name O. Type P. Type Description
machine_id varchar(4000) varchar(4000) Unique identifier of the machine.
opsys varchar(4000) varchar(4000) Operating system running on the machine.
arch varchar(4000) varchar(4000) Architecture of the machine.
state varchar(4000) varchar(4000) Condor state of the machine.
activity varchar(4000) varchar(4000) Condor job activity on the machine.
keyboardidle integer integer Number of seconds since activity has been

detected on any keyboard or mouse associ-
ated with the machine.

consoleidle integer integer Number of seconds since activity has been
detected on the console keyboard or mouse.

loadavg real real Current load average of the machine.
condorloadavg real real Portion of load average generated by Con-

dor
totalloadavg real real
virtualmemory integer integer Amount of currently available virtual mem-

ory in kilobytes.
memory integer integer Amount of RAM in megabytes.
totalvirtualmemory integer integer
cpubusytime integer integer Time in seconds since cpuisbusy became

true.
cpuisbusy varchar(5) varchar(5) (boolean) True when the CPU is busy.
currentrank real real The machine owner’s affinity for running

the Condor job which it is currently host-
ing.

clockmin integer integer Number of minutes passed since midnight.
clockday integer integer The day of the week.
lastreportedtime ts(3) w tz ts(3) w tz Time when the Condor central manager last

received a status update from this machine.
enteredcurrentactivity ts(3) w tz ts(3) w tz Time when the machine entered the current

activity.
enteredcurrentstate ts(3) w tz ts(3) w tz Time when the machine entered the current

state.
updatesequencenumberinteger integer Each update includes a sequence number.

Table Continues on Next Page

Condor Version 7.7.6 Manual

8.3. Quill 635

Attributes of machines_horizontal_history Table – Part 2 of 2
Name O. Type P. Type Description
updatestotal integer integer The number of updates received from the dae-

mon.
updatessequencedinteger integer The number of updates that were in order.
updateslost integer integer The number of updates that were lost.
globaljobid varchar(4000) varchar(4000) Unique global identifier for the job.
end_time ts(3) w tz ts(3) w tz The end of when the ClassAd is valid.

Attributes of machines_vertical Table
Name O. Type P. Type Description
machine_id varchar(4000) varchar(4000) Unique identifier of the machine.
attr varchar(2000) varchar(2000) Attribute name.
val clob text Attribute value.
start_time ts(3) w tz ts(3) w tz Time when this attribute–value pair became valid.
PRIMARY KEY: (machine_id, attr)
NOT NULL: machine_id and attr cannot be null

Attributes of machines_vertical_history Table
Name O. Type P. Type Description
machine_id varchar(4000) varchar(4000) Unique identifier of the machine.
attr varchar(4000) varchar(4000) Attribute name.
val clob text Attribute value.
start_time ts(3) w tz ts(3) w tz Time when this attribute–value pair became valid.
end_time ts(3) w tz ts(3) w tz Time when this attribute–value pair became invalid.

Condor Version 7.7.6 Manual

8.3. Quill 636

Matchmaking Tables

Attributes of matches Table
Name O. Type P. Type Description
match_time ts(3) w tz ts(3) w tz Time the match was made.
username varchar(4000) varchar(4000) User who submitted the job.
scheddname varchar(4000) varchar(4000) Name of the schedd that the job is submitted to.
cluster_id integer integer Cluster identifier for the job.
proc_id integer integer Process identifier for the job.
globaljobid varchar(4000) varchar(4000) Unique global identifier for the job.
machine_id varchar(4000) varchar(4000) Identifier of the machine the job matched with.
remote_user varchar(4000) varchar(4000) User that was preempted.
remote_priority real real The preempted user’s priority.

Attributes of rejects Table
Name O. Type P. Type Description
reject_time ts(3) w tz ts(3) w tz Time when the job was rejected.
username varchar(4000) varchar(4000) User who submitted the job.
scheddname varchar(4000) varchar(4000) Name of the schedd that submitted the job.
cluster_id integer integer Cluster identifier for the job.
proc_id integer integer Process identifier for the job.
globaljobid varchar(4000) varchar(4000) Unique global identifier for the job.

Runtime Tables

Attributes of events Table
Name O. Type P. Type Description
scheddname varchar(4000) varchar(4000) Name of the schedd that submitted the job.
cluster_id integer integer Cluster identifier for the job.
proc_id integer integer Process identifier for the job.
globaljobid varchar(4000) varchar(4000) Global identifier of the job that generated the event.
run_id numeric(12,0) numeric(12,0) Identifier of the run that the event is associated with.
eventtype integer integer Numeric type code of the event.
eventtime ts(3) w tz ts(3) w tz Time the event occurred.
description varchar(4000) varchar(4000) Description of the event.

Condor Version 7.7.6 Manual

8.3. Quill 637

Attributes of generic_messages Table
Name O. Type P. Type Description
eventtype varchar(4000) varchar(4000) The type of event.
eventkey varchar(4000) varchar(4000) The key of the event.
eventtime ts(3) w tz ts(3) w tz The time of the event.
eventloc varchar(4000) varchar(4000) The location of the event.
attname varchar(4000) varchar(4000) The attribute name.
attval clob text The attribute value.
attrtype varchar(4000) varchar(4000) The attribute type.

Attributes of runs Table
Name O. Type P. Type Description
run_id numeric(12) numeric(12) Unique identifier of the run.
machine_id varchar(4000) varchar(4000) Identifier of the machine where the job ran.
scheddname varchar(4000) varchar(4000) Name of the schedd that submitted the job.
cluster_id integer integer Cluster identifier for the job.
proc_id integer integer Process identifier for the job.
spid integer integer Subprocess identifier for the job.
globaljobid varchar(4000) varchar(4000) Identifier of the job that was run.
startts ts(3) w tz ts(3) w tz Time when the job started.
endts ts(3) w tz ts(3) w tz Time when the job ended.
endtype smallint smallint The type of ending event.
endmessage varchar(4000) varchar(4000) The ending message.
wascheckpointed varchar(7) varchar(7) Whether the run was checkpointed.
imagesize numeric(38) numeric(38) The image size of the executable.
runlocalusageuser integer integer The time the job spent in usermode on exe-

cute machines (only standard universe).
runlocalusagesystem integer integer The time the job was in system calls.
runremoteusageuser integer integer The time the shadow spent working for the

job.
runremoteusagesysteminteger integer The time the shadow spent in system calls for

the job.
runbytessent numeric(38) numeric(38) Number of bytes sent to the run.
runbytesreceived numeric(38) numeric(38) Number of bytes received from the run.
PRIMARY KEY: run_id
NOT NULL: run_id cannot be null

Condor Version 7.7.6 Manual

8.4. The CondorView Client Contrib Module 638

System Tables

Attributes of dummy_single_row_table Table
Name O. Type P. Type Description
a varchar(1) varchar(1) A dummy column.

Attributes of history_jobs_to_purge Table
scheddname varchar(4000) varchar(4000) Name of the schedd that submitted the job.
cluster_id integer integer Cluster identifier for the job.
proc_id integer integer Process identifier for the job.
globaljobid varchar(4000) varchar(4000) Unique global identifier for the job.

Attributes of jobqueuepollinginfo Table
Name O. Type P. Type Description
scheddname varchar(4000) varchar(4000) Name of the schedd that submitted the job.
last_file_mtime integer integer The last modification time of the file.
last_file_size numeric(38) numeric(38) The last size of the file in bytes.
last_next_cmd_offset integer integer The last offset for the next command.
last_cmd_offset integer integer The last offset of the current command.
last_cmd_type smallint smallint The last type of command.
last_cmd_key varchar(4000) varchar(4000) The last key of the command.
last_cmd_mytype varchar(4000) varchar(4000) The last my ClassAd type of the command.
last_cmd_targettype varchar(4000) varchar(4000) The last target ClassAd type.
last_cmd_name varchar(4000) varchar(4000) The attribute name of the command.
last_cmd_value varchar(4000) varchar(4000) The attribute value of the command.

8.4 The CondorView Client Contrib Module

The CondorView Client contrib module is used to automatically generate World Wide Web pages
to display usage statistics of a Condor pool. Included in themodule is a shell script which in-
vokes thecondor_statscommand to retrieve pool usage statistics from the CondorView server,
and generate HTML pages from the results. Also included is a Java applet, which graphically
visualizes Condor usage information. Users can interact with the applet to customize the visu-
alization and to zoom in to a specific time frame. Figure 8.1 onpage 639 is a screen shot of a
web page created by CondorView. To get a further feel for whatpages generated by CondorView
look like, view the statistics for the University of Wisconsin-Madison pool by visiting the URL
http://condor-view.cs.wisc.edu/condor-view-applet.

After unpacking and installing the CondorView Client, a script namedmake_statscan be invoked

Condor Version 7.7.6 Manual

http://condor-view.cs.wisc.edu/condor-view-applet

8.4. The CondorView Client Contrib Module 639

Figure 8.1: Screen shot of CondorView Client

to create HTML pages displaying Condor usage for the past hour, day, week, or month. By using
the Unixcron facility to periodically executemake_stats, Condor pool usage statistics can be kept
up to date automatically. This simple model allows the CondorView Client to be easily installed; no
Web server CGI interface is needed.

8.4.1 Step-by-Step Installation of the CondorView Client

1. Make certain that the CondorView Server is configured. Section 3.12.6 describes configura-
tion of the server. The server logs information on disk in order to provide a persistent, his-
torical database of pool statistics. The CondorView Clientmakes queries over the network to

Condor Version 7.7.6 Manual

8.4. The CondorView Client Contrib Module 640

this database. Thecondor_collectorincludes this database support. To activate the persistent
database logging, add the following entries to the configuration file for thecondor_collector
chosen to act as the ViewServer.

POOL_HISTORY_DIR = /full/path/to/directory/to/store/h istorical/data
KEEP_POOL_HISTORY = True

2. Create a directory where CondorView is to place the HTML files. This directory should be one
published by a web server, so that HTML files which exist in this directory can be accessed
using a web browser. This directory is referred to as theVIEWDIR directory.

3. Download theview_clientcontrib module. Follow links for contrib modules on the downloads
page at http://www.cs.wisc.edu/condor/downloads-v2/download.pl.

4. Unpack or untar this contrib module into the directoryVIEWDIR. This creates several files
and subdirectories. Further unpack the jar file within theVIEWDIR directory with:

jar -xf condorview.jar

5. Edit themake_statsscript. At the beginning of the file are six parameters to customize. The
parameters are

ORGNAME A brief name that identifies an organization. An example is “Univ of Wisconsin”.
Do not use any slashes in the name or other special regular-expression characters. Avoid
the characters\ˆ and $.

CONDORADMIN The e-mail address of the Condor administrator at your site.This e-mail
address will appear at the bottom of the web pages.

VIEWDIR The full path name (not a relative path) to theVIEWDIR directory set by installa-
tion step 2. It is the directory that contains themake_statsscript.

STATSDIR The full path name of the directory which contains thecondor_statsbinary. The
condor_statsprogram is included in the<release_dir >/bin directory. The value
for STATSDIR is added to thePATHparameter by default.

PATH A list of subdirectories, separated by colons, where themake_statsscript can find the
awk, bc, sed, date, andcondor_statsprograms. Ifperl is installed, the path should
also include the directory whereperl is installed. The following default works on most
systems:

PATH=/bin:/usr/bin:$STATSDIR:/usr/local/bin

6. To create all of the initial HTML files, run

./make_stats setup

Open the fileindex.html to verify that things look good.

Condor Version 7.7.6 Manual

http://www.cs.wisc.edu/condor/downloads-v2/download.pl

8.4. The CondorView Client Contrib Module 641

7. Add themake_statsprogram tocron. Runningmake_statsin step 6 created acronentries
file. This cronentries file is ready to be processed by the Unixcrontabcommand. The
crontab manual page contains details about thecrontab command and thecron daemon.
Look at thecronentries file; by default, it will runmake_stats hourevery 15 minutes,
make_stats dayonce an hour,make_stats weektwice per day, andmake_stats monthonce per
day. These are reasonable defaults. Add these commands to cron on any system that can ac-
cess theVIEWDIR andSTATSDIRdirectories, even on a system that does not have Condor
installed. The commands do not need to run as root user; in fact, they should probably not
run as root. These commands can run as any user that has read/write access to theVIEWDIR
directory. The command

crontab cronentries

can set the crontab file; note that this command overwrites the current, existing crontab file
with the entries from the filecronentries .

8. Point the web browser at theVIEWDIR directory to complete the installation.

Condor Version 7.7.6 Manual

CHAPTER

NINE

Version History and Release Notes

9.1 Introduction to Condor Versions

This chapter provides descriptions of what features have been added or bugs fixed for each version
of Condor. The first section describes the Condor version numbering scheme, what the numbers
mean, and what the differentrelease seriesare. The rest of the sections each describe a specific
release series, and all the Condor versions found in that series.

9.1.1 Condor Version Number Scheme

Starting with version 6.0.1, Condor adopted a new, hopefully easy to understand version numbering
scheme. It reflects the fact that Condor is both a production system and a research project. The
numbering scheme was primarily taken from the Linux kernel’s version numbering, so if you are
familiar with that, it should seem quite natural.

There will usually be two Condor versions available at any given time, thestableversion, and
thedevelopmentversion. Gone are the days of “patch level 3”, “beta2”, or anyother random words
in the version string. All versions of Condor now have exactly three numbers, separated by “.”

• The first number represents the major version number, and will change very infrequently.

• The thing that determines whether a version of Condor isstableor developmentis the second
digit. Even numbers represent stable versions, while odd numbers represent development
versions.

• The final digit represents the minor version number, which defines a particular version in a
given release series.

642

9.2. Upgrading from the 7.4 series to the 7.6 series of Condor 643

9.1.2 The Stable Release Series

People expecting the stable, production Condor system should download the stable version, denoted
with an even number in the second digit of the version string.Most people are encouraged to use this
version. We will only offer our paid support for versions of Condor from the stable release series.

On the stable series, new minor version releases will only bemade for bug fixes and to support
new platforms.No new features will be added to the stable series. People areencouraged to install
new stable versions of Condor when they appear, since they probably fix bugs you care about.
Hopefully, there will not be many minor version releases forany given stable series.

9.1.3 The Development Release Series

Only people who are interested in the latest research, new features that haven’t been fully tested, etc,
should download the development version, denoted with an odd number in the second digit of the
version string. We will make a best effort to ensure that the development series will work, but we
make no guarantees.

On the development series, new minor version releases will probably happen frequently. People
should not feel compelled to install new minor versions unless they know they want features or bug
fixes from the newer development version.

Most sites will probably never want to install a developmentversion of Condor for any reason.
Only if you know what you are doing (and like pain), or were explicitly instructed to do so by
someone on the Condor Team, should you install a developmentversion at your site.

After the feature set of the development series is satisfactory to the Condor Team, we will put a
code freeze in place, and from that point forward, only bug fixes will be made to that development
series. When we have fully tested this version, we will release a new stable series, resetting the
minor version number, and start work on a new development release from there.

9.2 Upgrading from the 7.4 series to the 7.6 series of Condor

While upgrading from the 7.4 series of Condor to the 7.6 series will bring many new features and
improvements introduced in the 7.5 series of Condor, it willalso introduce changes that administra-
tors of sites running from an older Condor version should be aware of when planning an upgrade.
Here is a list of items that administrators should be aware of.

• Previously, Condor’s RPM packaging installed into/opt . Now, the RPM install paths adhere
to the Linux Standard Base File System Hierarchy Standard (LSB-FHS), meaning Condor
will be installed by default into appropriate subdirectories within/usr . See section 3.2.6 for
updated RPM information.

Condor Version 7.7.6 Manual

9.3. Development Release Series 7.7 644

• The feature set once known as the Startd Cron or as Hawkeye isnow calledDaemon ClassAd
Hooks. Besides the new name, the mechanisms have been updated, andthe configuration has
changed. Sites using this functionality are strongly encouraged to update their configuration
file to adhere to the new syntax. Configuration file syntax introduced in Condor version 7.2 is
still compatible with Condor version 7.6, but the syntax of Condor version 7.0 is unlikely to
work as expected. See section 4.4.3 for documentation.

• For those who compile Condor from the source code, rather than using packages of pre-built
executables, Condor is now built usingcmakeon all platforms. This means the process for
building Condor from source code has changed. For instructions, see the Condor Wiki at
http://wiki.condorproject.org, and follow the Wiki link to the section on Building and Testing
Condor.

• Quill and Stork are no longer included in the binary packages released from the Condor
Project. Instead, both are available asContribution Modules. Contribution Modules are op-
tional packages that add functionality to Condor, but are provided and maintained outside of
the core code base, often by third parties. To add Quill and/or Stork to Condor, see the Con-
dor Wiki at http://wiki.condorproject.org, follow the Wiki link, and see the section titled User
FAQs.

• The layout in theSPOOLdirectory has changed. As a result, be certain to upgrade allCondor
binaries on a given host at the same time. That is, do not try torun Condor version 7.6con-
dor_schedddaemons and Condor version 7.4condor_shadowdaemons on the same machine.
Also, should you need to revert back to an older version of Condor after running Condor ver-
sion 7.6 (hopefully not the case!), be aware of release notesfor Condor version 7.5.5 regarding
theSPOOLdirectory in section 9.5.

• Issues regarding the detection of keyboard activity on Linux and especially on Windows
Vista/7 have been addressed. Bottom line: if you want Condorto detect keyboard/mouse
activity on either of these platforms, ensure that the subsystem KBDD is listed in the
DAEMON_LISTconfiguration variable definition on start up.

• On Windows platforms, the MSI installer has been rewritten(using WiX) to better support
Windows 7. While the installation process is essentially the same, a handful of arguments
that control anunattendedMSI installation have changed, such as the arguments controlling
HDFS installation. See section 3.2.5 for the updated list ofunattended installation arguments.

• The submit description file commands for grid jobs using agrid_resourcetype of amazon has
changed. Users will need to edit their submit description files for jobs destined for Amazon
to include an EC2 URL. See section 5.3.8.

9.3 Development Release Series 7.7

This is the development release series of Condor. The details of each version are described below.

Condor Version 7.7.6 Manual

http://wiki.condorproject.org
http://wiki.condorproject.org

9.3. Development Release Series 7.7 645

Version 7.7.6

Release Notes:

• Condor version 7.7.6 released on April 24, 2012. This release contains all bug fixes from
Condor version 7.6.7, as listed in this manual’s version history.

• In the Condor directory defined by$(SBIN) , condor_vm_vmware.pl was renamed to
condor_vm_vmware andgrid_monitor.sh was renamed togrid_monitor . This
makes Condor more compliant with Linux native packaging rules. Symbolic links to the old
locations are included to ease upgrading. (Ticket #2940).

New Features:

• The values ofrequest_memory, request_diskandrequest_cpussubmit description file com-
mands will now be automatically included in the jobRequirements expression bycon-
dor_submit. This is part of several changes in code and policy intended to make partitionable
slots easier to deploy and use. The requested values for memory, disk and cpus, as well as the
amount of these resources that a job actually uses are now printed in the user log when the job
exits. (Ticket #2843).

• The newkeep_claim_idlesubmit description file command requests that thecondor_schedd
keep a claim for a defined number of seconds after the job exits. The job ClassAd attribute
KeepClaimIdle was introduced in Condor version 7.7.1 to implement this functionality.
See the definition of this command at section 10. (Ticket #2094).

• Changed the default forcondor_historyto print out items in reverse chronological order. The
new-forwards option enables the previous behavior of printing historical jobs in chronologi-
cal order. (Ticket #2808).

• Enhanced thecondor_negotiatorto provide the name of concurrency limits that cause nego-
tiation to fail, so thatcondor_q-analyze can provide more informative failure information.
(Ticket #2878).

• Concurrency limit defaults may now be declared for named groups using
CONCURRENCY_LIMIT_DEFAULT_<group> so that any concurrency limit
with a name of the form <group>.<name> will get its default limit from
CONCURRENCY_LIMIT_DEFAULT_<group>. (Ticket #2863).

• Condor binaries will now look for the Condor configuration file in
$(HOME)/.condor/condor_config , in addition to the locations where they al-
ready look. Within the ordered search,$(HOME)/.condor/condor_config is checked
immediately after theCONDOR_CONFIGenvironment variable. (Ticket #2657).

• Thecondor_hdfsdaemon is now available with the source code, and is no longerdistributed
as part of the Condor binaries. See documentation in section8.2. (Ticket #2797).

Condor Version 7.7.6 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2940
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2843
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2094
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2808
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2878
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2863
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2657
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2797

9.3. Development Release Series 7.7 646

• Several of the Condor programs used to be given by a single executable hard linked to mul-
tiple file names. Now, symbolic links are used; this fixes problems with Debian installations.
(Ticket #2140).

• New ClassAd functions pow() , quantize() , splitUserName() , and
splitSlotName() are available. See section 4.1.2 for definitions of these functions.
(Ticket #2856). (Ticket #2891).

• New format tags %v and %V have been added for use by thecondor_status-format option.
These tags request that the value of the expression or attribute be printed using a format
appropriate to its type. When using the %V format tag, stringvalues appear as they would in
the output of condor_q -long or condor_submit -long. (Ticket #2857).

• condor_ssh_to_jobnow provides support for X11 forwarding via the new-X option.

Configuration Variable and ClassAd Attribute Additions andChanges:

• The new machine ClassAd attributesRemoteGroup , RemoteNegotiatingGroup ,
and RemoteAutoregroup , and the new job ClassAd attributesSubmitterGroup ,
SubmitterNegotiatingGroup , andSubmitterAutoregroup enhance support for
preemption policies with accounting group awareness. (Ticket #2885).

• The new configuration variableNEGOTIATOR_READ_CONFIG_BEFORE_CYCLEis a
boolean which causes thecondor_negotiatorto re-read the configuration prior to each ne-
gotiation cycle when set toTrue . (Ticket #2851).

• The new configuration variableMASTER_NEW_BINARY_RESTARTspecifies how the
condor_masterwill restart, when it notices that thecondor_masterbinary has changed.
Valid values areGRACEFUL, PEACEFULand NEVER. The default value isGRACEFUL.
(Ticket #2779).

• The configuration variableWANT_HOLDnow takes effect whether or notWANT_VACATEis
True . Previously, it only took effect ifWANT_VACATEwasTrue . (Ticket #2855).

• The new configuration variables MEMORY_USAGE_METRIC and
MEMORY_USAGE_METRIC_VMspecify the value that thecondor_starterwill set into
theMemoryUsage attribute for a job. It is expected that this will be a ClassAdexpression
that defines the job memory usage in terms of other job attributes. (Ticket #2843).

• The configuration variableDAGMAN_SUBMIT_DELAYcan now be any non negative integer.
It was formerly limited to values between 0 and 60, inclusive. (Ticket #2864).

• New configuration variables have been added, such that thecondor_scheddmay
define statistics that count subsets of jobs. These variables have the form
SCHEDD_COLLECT_STATS_FOR_<name>and are defined by a boolean ClassAd expres-
sion. <name> will be prefixed to the names of attributes in thecondor_scheddClassAd, such
as physicsJobsStarted whereSCHEDD_COLLECT_STATS_FOR_physicsevalu-
ates toTrue , and this attribute would be the count of jobs that have started. (Ticket #2862).

Condor Version 7.7.6 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2140
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2856
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2891
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2857
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2885
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2851
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2779
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2855
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2843
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2864
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2862

9.3. Development Release Series 7.7 647

• Several OpSys related attributes were added or updated to assist with selection of execute
resources.

OpSysAndVer: A string containing the value of theOpSysName attribute with the
OpSysMajorVersion attribute appended.

OpSysLegacy: A string that holds the long-standing values for theOpSys attribute.

OpSysLongName: A string containing a full description of the operating system.

OpSysMajorVersion: An integer value representing the major version of the operating
system.

OpSysName: A string containing a terse description of the operating system.

OpSysShortName: A string containing a short description of the operating system.

OpSysVer: An integer value representing the operating system versionnumber.

(Ticket #2366).

Bugs Fixed:

• Fixed a bug incondor_vm-gahpthat caused 64-bit guest OSes that need network access to fail
on start-up when run under VMware. (Ticket #2922).

• Submit commandremote_initialdir now works for pbs and lsf grid universe jobs.
(Ticket #2913).

• Fixed the path tosftp_serveron Mac OS X and Debian platforms. (Ticket #2789).

• Fixed a rare problem that caused a 20 second timeout to occurin thecondor_collectorwhen
authenticating. (Ticket #2817).

• Fixed a rare bug in which thecondor_scheddwould sometimes not reuse an existing claim to
run a new job when an existing job exited. This would result inthecondor_schedddaemon
waiting for a new negotiation cycle to make a new match, and thus producing a small perfor-
mance penalty due to the wasted time during the interval between negotiation cycles. This
bug was actually fixed in Condor version 7.7.5. (Ticket #2802).

• Fixed a bug incondor_q, such that it no longer emits a parse error when it times out attempting
to talk to thecondor_schedddaemon. (Ticket #2854).

• The shared librarylibcondor_utils now includes the Condor version in its name. This
will reduce the chance of a Condor binary using the wrong version of the library, which can
result in a crash or other bad behavior. (Ticket #2613).

• There was a bug on GRACEFUL and PEACEFUL shutdown, as the daemons were stopped in
a random order. This resulted in the checkpoint server sometimes being shut down before the
condor_startd. Thecondor_startdis now always shut down first on GRACEFUL or PEACE-
FUL shutdown, with other daemons being shut down only after thecondor_startdhas exited.
(Ticket #2779).

Condor Version 7.7.6 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2366
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2922
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2913
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2789
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2817
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2802
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2854
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2613
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2779

9.3. Development Release Series 7.7 648

• Under some circumstances, a job in the removed ("X") state may have ignored the-forcex
option tocondor_rm. Thecondor_scheddis now more aggressive about removing such jobs
from the queue. (Ticket #2809).

• Fixed the copying of scaling factors on ClassAd literal values. (Ticket #2839).

• When a job is killed and put on hold because ofWANT_HOLD, the maximum vacate time is
now enforced. If it takes longer than the maximum vacate timefor the job to be gracefully
killed, the job is hard-killed. Previously, no upper limit was enforced. (Ticket #2855).

• When selecting an IPv4 network interface to use Condor would erroneously prefer private
networks over public networks in some cases. This has been fixed, Condor again prefers
public networks over private networks. (Ticket #2853).

• The condor_gridmanager is much better at sending commit signals to the GRAM job-manager
in a timely manner. As a result, the occurrence of GRAM errors111 and 130 should be greatly
reduced. (Ticket #2859).

• Fixed a bug that caused condor_submit to warn aboutdag_status andfailed_count
not being used in the submit files of most DAG node jobs (DAGMannow automatically de-
fines these macros for all node jobs). This bug was introducedin 7.7.5. (Ticket #2814).

Known Bugs:

• None.

Additions and Changes to the Manual:

• The condor_submitman page contains descriptions ofcondor_starter prescripts and
postscripts. See 10 and 10 for the descriptions. (Ticket #2379).

Version 7.7.5

Release Notes:

• Condor version 7.7.5 released on February 28, 2012. This release contains all features and
bug fixes from Condor version 7.6.6.

• Support for the gt4 grid type (that is, Web Services GRAM) inthe grid universe has been
removed. (Ticket #2782).

New Features:

Condor Version 7.7.6 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2809
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2839
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2855
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2853
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2859
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2814
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2379
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2782

9.3. Development Release Series 7.7 649

• Condor now has experimental support for IPv6. This functionality is disabled by default. This
support has a variety of limitations, including a lack of support for security, DNS, and mixed
IPv4/IPv6 networks. For information on enabling IPv6 support in the 7.7 series of Condor,
see https://condor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToEnableIpvSix. (Ticket #9).

• Default values for the submit commands should_transfer_files and
when_to_transfer_output were introduced in Condor version 7.7.3, but the manual
did not reflect this change. Across platforms, default values are now

should_transfer_files = IF_NEEDED
when_to_transfer_output = ON_EXIT

See section 2.5.4 for details. (Ticket #2281). (Ticket #2273).

• The performance for claiming a partitionable slot in acondor_startdis greatly improved.
This feature is implemented in both thecondor_scheddandcondor_startd, so both sides must
be updated to at least Condor version 7.7.5 to see the benefit.To disable this feature, set
configuration variableCLAIM_PARTITIONABLE_LEFTOVERS to False on either the
submit or execute machines. The default value for this variable isTrue . (Ticket #2790).

• On Linux platforms, thecondor_startercan now optionally measure the PSS (Proportional
Set Size) of each Condor job, if the configuration variableUSE_PSS is True . Previously,
this measurement was unconditionally on, which can cause performance problems in thecon-
dor_procdwhen running many short lived jobs. (Ticket #2710).

• On Linux systems, thecondor_starternow has an ability to run a job under a chroot di-
rectory. If the configuration variableNAMED_CHROOTis set to a list of directories on
an execute machine, the job has attributeRequestedChroot defined, and the value of
RequestedChroot matches an entry in the list defined byNAMED_CHROOT, then the
condor_startercalls chroot() with that directory as an argument. Note that it is up to
the administrator to provide a full environment for the job to run in. (Ticket #2698).

• On Linux platforms which support a bind type of file system mount (which are gener-
ally RHEL 5 systems and more recent platforms), the administrator can configure thecon-
dor_startdto provide per-job file system mounts. One use might be to provide each job its
own view of /tmp and/var/tmp , which are private to that Condor job, and cleared when
the job exits. This is implemented with the newMOUNT_UNDER_SCRATCHconfiguration
variable, which describes which directories to bind mount.(Ticket #2015).

• Added the new-expandoption tocondor_config_val. If both -dump and-expandoptions are
specified, all configuration variables are expanded before they are printed out. (Ticket #2687).

• The-sort option forcondor_statushas been generalized to accept expressions instead of just
simple named attributes. (Ticket #2661).

• A new commandcondor_drainmay be used to control the draining of an execute machine.
While a machine is draining, no new jobs may start. Once draining is complete, it enters the
Drained/Idle state. For more details, see page 776. (Ticket#2330).

Condor Version 7.7.6 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToEnableIpvSix
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=9
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2281
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2273
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2790
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2710
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2698
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2015
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2687
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2661
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2330

9.3. Development Release Series 7.7 650

• A new daemoncondor_defraghas been added to automate a simple policy for draining ma-
chines. For more details, see page 283. (Ticket #2330).

• condor_q -run now displays the value of the job ClassAd attribute
EC2RemoteVirtualMachineName instead of [????????????????] , under
the HOST(S) column for grid type ec2 jobs. (Ticket #2599).

• Condor can now submit jobs to Grid Engine via the new sge gridtype. See section 5.3.7 for
details. (Ticket #1984).

• Improved logging in more cases when Condor daemons run out of memory. (Ticket #2559).

• Improved verbose logging whenD_MACHINEis enabled inNEGOTIATOR_DEBUG. Previ-
ously, it logged whether each candidate machine matched or did not match with each job.
Now, it additionally logs whether the match was subsequently rejected for other reasons, such
as insufficient priority, rank, or fair share allocation.

• Condor will now send email, if the submit commandnotification = Error is set and
the job is placed on hold because of a failure, and not by user request. Previously, email would
be sent only if the job was terminated via signal. (Ticket #1976).

• A new feature in DAGMan implements a second way to suspend a running DAG. See section
2.10.6 for details. (Ticket #2213).

• The default settings forcondor_dagmanhave changed. Now, if a node has children, then
condor_dagmanuses theKeepClaimIdle attribute, introduced in Condor version 7.7.1,
to hold onto a claim. This is a slight optimization, as it avoids waiting for a negotiation
cycle. The amount of time is controlled by theDAGMAN_HOLD_CLAIM_TIMEconfiguration
variable. (Ticket #2673).

• Improved the output ofcondor_q-dag, to show the DAG structure as a tree, with children
indented below their parents. (Ticket #1281).

• The new FINAL node feature in DAGMan allows the specification of a special DAG node,
which is always run at the end of the workflow, whether the DAG ended successfully or not.
See section 2.10.7 for details. (Ticket #1482).

• Improved the output ofcondor_userprioto better support hierarchical groups. The first col-
umn of the output no longer truncates long user or group names. User names are shown
indented under group names, when hierarchical groups are inuse. New columns were added
to show group quota information. A new-most option was added to show the most useful
fields, since-all now produces a very wide display. (Ticket #2680).

Configuration Variable and ClassAd Attribute Additions andChanges:

• The new configuration variableJOB_QUEUE_LOGspecifies an alternative path and file name
for the job_queue.log file. The default value is$(SPOOL)/job_queue.log . This
alternative location can be useful if there is a solid state drive which is big enough to hold the
frequently written tojob_queue.log , but not big enough to hold the whole contents of the
spool directory. (Ticket #2598).

Condor Version 7.7.6 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2330
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2599
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=1984
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2559
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=1976
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2213
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2673
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=1281
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=1482
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2680
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2598

9.3. Development Release Series 7.7 651

• The new configuration variableDAGMAN_HOLD_CLAIM_TIMEspecifies the amount of
time in seconds that thecondor_scheddwill hold a claim idle for a DAGMan job, using
theKeepClaimIdle attribute in the job ClassAd. (Ticket #2673).

• The job ClassAd attributesResidentSetSize andProportionalSetSizeKb now
report the maximum observed memory usage. Previously, theyreported the most recently
observed memory usage. This change makes these attributes similar to ImageSize , which
also reports the maximum observed value. Previously,ResidentSetSize was usually
reported as 0 in the job history for completed jobs, because when the job was finished, the
final observation of memory usage was 0. (Ticket #2725).

• The job ClassAd attributeResidentSetSize is now rounded by default, using the
new default configuration settingSCHEDD_ROUND_ATTR_ResidentSetSize = 25%.
(Ticket #2729).

• The configuration variablePROCD_LOGnow defaults to$(LOG)/ProcLog . Previously,
there was no default value, so thecondor_procddid not log by default. (Ticket #2775).

• The meaning of theVirtualMemory attribute of thecondor_startdhas been changed for
Linux platforms. Previously, it was the amount of paging space configured for the system.
So, if a machine with a lot of memory had no paging space, theVirtualMemory attribute
would report zero. Now, theVirtualMemory attribute on Linux platforms is the sum of
paging space and physical memory, which more accurately represents the virtual memory size
of the machine. (Ticket #2763).

• The submit commandglobus_xmlis no longer recognized. Therefore, the following configu-
ration variables are no longer recognized:

– GRIDFTP_SERVER

– GRIDFTP_SERVER_WRAPPER

– GRIDFTP_URL_BASE

– GT4_GAHP

– GT4_LOCATION

– GT42_GAHP

– GT42_LOCATION

– GRIDMANAGER_MAX_WS_DESTROYS_PER_RESOURCE

(Ticket #2782).

• The new configuration variableGRIDMANAGER_PROXY_REFRESH_TIMEcontrols when
thecondor_gridmanagerforwards a refreshed proxy to the remote GRAM server. The life-
time remaining on the proxy on the remote server (in seconds)must fall below this value
before thecondor_gridmanagerwill forward a refreshed proxy. The default value is 21600
seconds (6 hours). Previously, this value was not configurable. (Ticket #2792).

Bugs Fixed:

Condor Version 7.7.6 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2673
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2725
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2729
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2775
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2763
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2782
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2792

9.3. Development Release Series 7.7 652

• Fixed a bug in whichcondor_submitallowed the specification ofec2_secret_access_keyand
ec2_access_key_idto be directories instead of files.condor_submitnow generates an error
in these cases. (Ticket #2619).

• Communication errors were not always correctly handled when fetching results of a query
when using the-streamoption tocondor_q. This problem was introduced in Condor version
7.7.0. (Ticket #2601).

• Fixed Condor’s CronTab (Crondor, section 2.12.2) scheduling of jobs, as they did not correctly
take into account shifts in time caused by daylight savings time transitions. (Ticket #2620).

• Previously,condor_ssh_to_jobsessions inherited thecondor_starterenvironment. Now, this
only happens whenJOB_INHERITS_STARTER_ENVIRONMENTis True . (Ticket #2621).

• On Linux platforms, the memory usage was ignored for job sub-processes that were cre-
ated via fork() without calling exec() . This problem affectedImageSize and
ResidentSetSize , but notProportionalSetSize .

• Fixed a rare condition that could cause a job to remain in therunning state indefinitely when
the job was removed or put on hold and there was a communication failure between thecon-
dor_shadowand thecondor_starter. This problem was introduced in Condor version 7.7.2.
(Ticket #2591).

• Fixed a bug in thecondor_gridmanagerthat could cause crashes and prevent the at-
tributex509UserProxyEmail from being set properly for jobs forwarded via Condor-C.
(Ticket #2655).

• Fixed the output ofcondor_q-dag, such that children of a non-existent DAG node would
not be mistakenly shown as belonging to another instance ofcondor_dagman. This can hap-
pen, for example, when acondor_dagmanprocess dies while its children are still running.
(Ticket #2463).

• Fixed a bug incondor_dagmanthat caused a DAG to fail if node job user log files were
actually symbolic links. This problem was introduced in theCondor 7.7 development series.
(Ticket #2704).

• Fixed a bug in the collection of Statistics attributes, introduced in Condor version 7.7.2. Con-
dor did not count completed scheduler universe jobs in reported statistics. (Ticket #2731).

• Fixed a rare bug in which thecondor_c-gahpprocess could get into an infinite loop on start
up, if more than onecondor_c-gahpwas running under different users, and the names of the
users only differed in their last character. (Ticket #2749).

Known Bugs:

• None.

Additions and Changes to the Manual:

Condor Version 7.7.6 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2619
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2601
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2620
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2621
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2591
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2655
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2463
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2704
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2731
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2749

9.3. Development Release Series 7.7 653

• Condor’s ability to use cgroup-based process tracking, available since Condor version 7.7.0,
has now been documented in section 3.12.12. (Ticket #1831).(Ticket #2120).

• Submitter ClassAd attributes are now documented in the unnumbered appendix on page 992.

Version 7.7.4

Release Notes:

• Condor version 7.7.4 released on December 21, 2011. This release contains all features and
bug fixes from Condor version 7.6.5 as are currently documented (section 9.4) in this manual.

New Features:

• Condor version 7.7.4 has all of the features and fixes of 7.7.3, it includes work to-
ward running on a pure IPv6 network. This is disabled by default. There is an se-
vere bug where enabling IPv6 in a multi-computer pool may cause thecondor_starterto
crash. For more information on enabling IPv6 support in the 7.7 series of Condor, see
https://condor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToEnableIpvSix. (Ticket #9).

Configuration Variable and ClassAd Attribute Additions andChanges:

• None.

Bugs Fixed:

• None.

Known Bugs:

• When IPv6 is enabled and you have multiple computers in yourpool, thecondor_startermay
crash.

Additions and Changes to the Manual:

• None.

Condor Version 7.7.6 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=1831
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2120
https://condor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToEnableIpvSix
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=9

9.3. Development Release Series 7.7 654

Version 7.7.3

Release Notes:

• Condor version 7.7.3 not yet released.

• On Linux and Mac OS X, the Condor binaries now dynamically link with
libcondor_utils , a shared library that contains all Condor code that is used by mul-
tiple binaries. This library is not meant to be linked with user applications. (Ticket #2132).

• Condor now dynamically links with the ClassAds, Globus and VOMS libraries on Mac OS X.
A copy of these libraries is included with Condor. (Ticket #2482).

New Features:

• In Condor version 7.7.2, multiple Condor installations led to the possibility for some installa-
tions to use the wrong version of the ClassAds library. This should no longer be an issue, as
the binaries now useRUNPATHinstead ofRPATH, allowing use of theLD_LIBRARY_PATH
environment variable to set where to look for the shared libraries. (Ticket #2539).

• The Amazon SOAP interface is no longer present or supportedin Condor. The EC2 REST
interface is favored and supported in Condor using agrid_resourceof ec2. (Ticket #2523).

• The newcondor_gather_infotool introduced in Condor version 7.5.6 has been updated and
enhanced. It collects data about a Condor installation, and, if desired, about a specific job.
This information is useful to Condor developers to help debug problems in a pool or with a
job. (Ticket #1664). (Ticket #2372).

• The condor_userpriotool supports two new command line options. The-grouporder flag
displays submitter entries for accounting groups at top of the list, in breadth-first order by
group hierarchy. The-grouprollup flag reports accounting statistics for groups as summed at
a level within the group hierarchy. (Ticket #1926).

• The condor_collectornow avoids the performance problems caused previously when
clients initiated communication with thecondor_collector, but then delayed sending input.
(Ticket #2506).

• When using versions ofglexecthat create a copy of the proxy for use by the job, Condor now
ensures that this copy of the proxy is cleaned up when the job is done. (Ticket #2501).

• Thecondor_startdnow logs a clear message, if it rejects a job because no validcondor_starter
daemons were detected. (Ticket #2470).

• The new submit commandwant_graceful_removalmay be used to specify that a job being
removed or put on hold should be shut down gracefully, ratherthan being immediately hard-
killed. This allows the job to perform some final actions suchas cleaning up or saving state.
The usual policies governing the Preempting/Vacating state apply in this case.

Condor Version 7.7.6 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2132
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2482
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2539
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2523
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=1664
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2372
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=1926
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2506
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2501
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2470

9.3. Development Release Series 7.7 655

This new submit command replaces a different mechanism thatwas added in Condor version
7.5.2 to achieve some of the same effects. The version 7.5.2 mechanism applied to vanilla
jobs under Linux; if the job setremove_kill_sigor kill_sig, the hard-kill signal that Condor
would normally send to end the job was replaced with the signal specified by the user.

With the new submit command, the version 7.5.2 mechanism is no longer used. The soft-kill
signal may still be customized usingkill_sig, so a similar effect can be achieved by setting
want_graceful_removal=True and settingkill_sig to an alternative signal, if desired.
The new mechanism works on all platforms and works for all universes in which the job is
managed by thecondor_startd; as such the new mechanism is not supported in the grid, local,
or scheduler universes.

In addition, the new submit commandjob_max_vacate_timereplaces thekill_sig_timeout
command. job_max_vacate_timeadjusts the time given to an evicted job for gracefully
shutting down. (Ticket #2536).

• Thecondor_masternow logs a more informative error message when it fails to start a daemon.
(Ticket #2580).

• Thecondor_schedddaemon now logs a more informative error message when it rejects job
ClassAd updates from thecondor_shadowdue to authorization problems. (Ticket #2581).

Configuration Variable and ClassAd Attribute Additions andChanges:

• The new configuration variableMachineMaxVacateTime is now used to express the
maximum time in seconds that the machine is willing to wait for a job to gracefully shut
down. The default is 600 seconds (10 minutes). The booleanKILL expression was previ-
ously used to terminate the graceful shutdown of jobs. It should normally be set toFalse
now. If desired, it may be used to abort the graceful shutdownof the job earlier than
MachineMaxVacateTime . (Ticket #2536).

• The new configuration variableNEGOTIATOR_SLOT_CONSTRAINTdefines an expres-
sion which constrains which ClassAds are fetched by thecondor_negotiatorfrom thecon-
dor_collectorfor the negotiation cycle. (Ticket #2277).

• The new configuration variableNEGOTIATOR_SLOT_POOLSIZE_CONSTRAINTreplaces
GROUP_DYNAMIC_MACH_CONSTRAINT. GROUP_DYNAMIC_MACH_CONSTRAINT
may still be used, but a warning is written to the log, identifying that the configuration needs
to be updated to use the new name. The pool size resulting fromapplying this constraint is
used to determine quotas for both dynamic quotas in hierarchical groups, and when there are
no groups. (Ticket #2277).

• The configuration variableNEGOTIATOR_STARTD_CONSTRAINT_REMOVEwas intro-
duced in Condor version 7.7.1. It has now been removed, as itsfunctionality was made obso-
lete byNEGOTIATOR_SLOT_CONSTRAINT. (Ticket #2277).

• The configuration variables IGNORE_NFS_LOCK_ERRORS and
BIND_ALL_INTERFACES no longer support the undocumented use of ’Y’ or ’y’ to
meanTrue .

Condor Version 7.7.6 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2536
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2580
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2581
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2536
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2277
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2277
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2277

9.3. Development Release Series 7.7 656

Bugs Fixed:

• Fixed a bug from Condor version 7.7.1 that caused submit description file commands using
a substitution macro, $$(), to not work correctly when acondor_shadowdaemon is recycled,
as it is when the configuration variableSHADOW_WORKLIFEis set to a non-zero value.
(Ticket #2552).

• When thecondor_procd’s named command pipe is removed, or when the inode of the pipe
has been changed while the daemon is running, thecondor_procdwill now exit. Its previous
behavior had thecondor_procdcontinue to execute in a useless mode of operation, unable to
receive any communication. (Ticket #2500).

• For Mac OS X platforms, improper detection of a non existentprocess led to lines such as

ProcAPI sanity failure on pid 1317, age = -1901476270

appearing in thecondor_masterdaemon log. This should no longer be the case.
(Ticket #2594).

• Fixed a bug introduced with hierarchical group quotas thatfailed to correctly initialize ta-
ble entries. The fix adds logic to the accounting mechanism inthe condor_negotiatordae-
mon, such that initialization occurs correctly when starting up and upon reconfiguration.
(Ticket #2509).

• When condor_advertiseis used with the-tcp option, this used to cause the following log
message to appear in thecondor_collectorlog:

DaemonCore: Can't receive command request from IP (perhaps a timeout?)

(Ticket #2483).

• Fixed a bug introduced in Condor version 7.7.0, in which thesetting of
NETWORK_INTERFACEdid not have any effect. (Ticket #2513).

• glexecnow also works when Condor is running as root. (Ticket #2503).

• Thecondor_masterdaemon now successfully advertises itself in a Personal Condor installa-
tion, when thecondor_collectoris configured to use port 0 and to operate through a shared
port. (Ticket #2555).

• Since Condor version 7.7.1, the configuration variableWANT_HOLDdid not work, unless
WANT_HOLD_SUBCODEwas set to a non-zero value. (Ticket #2565).

• Since Condor version 7.7.2, there was a rare condition thatcould cause a job to be removed
from the queue, if the job was put on hold while it was running.In such cases, there was also
a spurious unsuspend event logged in the job’s user log. (Ticket #2577).

• Fixed a bug introduced in Condor version 7.7.2 by the changeof OpSys to "WINDOWS".
Submit description files that used old syntax for theenvironment command were using Unix
syntax rather than Windows syntax. (Ticket #2607).

Condor Version 7.7.6 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2552
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2500
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2594
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2509
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2483
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2513
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2503
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2555
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2565
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2577
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2607

9.3. Development Release Series 7.7 657

• Fixed the linking of Kerberos libraries on RHEL 3. The bug could cause the Condor binaries
to fail on some systems with the error:

relocation error: /usr/kerberos/lib/libgssapi_krb5.so .2:
undefined symbol: krb5int_enc_arcfour

(Ticket #2627).

Known Bugs:

• None.

Additions and Changes to the Manual:

• None.

Version 7.7.2

Release Notes:

• Condor version 7.7.2 released on October 11, 2011. This release contains all features and bug
fixes from Condor version 7.6.4 as are currently documented (section 9.4) in this manual.

• Condor now dynamically links with the ClassAds, Globus and VOMS libraries on linux.A
copy of these libraries is included with Condor, underlib/condor/ in the tarball releases
and under/usr/lib/condor/ or /usr/lib64/condor/ in the native package re-
leases. (Ticket #2389). (Ticket #2390).

New Features:

• Condor’s standard universe now supports reading from and writing to files that are larger than
2 GBytes, when the standard universe application and thecondor_shadowdaemon are both
64-bit executables. (Ticket #2337).

• There is command line support to both suspend and continue jobs. The new toolscon-
dor_suspendandcondor_continuewill suspend and continue running jobs. (Ticket #2368).

• The EC2 GAHP now supports X.509 for connecting to and authenticating with EC2 services.
See section 5.3.8 for details on using the X.509 protocol. (Ticket #2084).

• Previously, the dedicated scheduler attempted to change the Scheduler attribute on all
parallel job processes in a durable fashion, resulting in anfsync() for each process. This
has been changed to be not durable, thereby improving the scalability by reducing the number
of fsync() calls without impacting correctness. (Ticket #2367).

Condor Version 7.7.6 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2627
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2389
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2390
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2337
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2368
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2084
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2367

9.3. Development Release Series 7.7 658

• In PrivSep mode, when an error is encountered when trying toswitch to the user account
chosen for running the job, the error message has been improved to make debugging easier.
Now, the error message distinguishes between safety check failures for the UID, tracking
group ID, primary group ID, and supplementary group IDs. (Ticket #2364).

• The name of the user used to execute the job is now logged in the condor_starterlog, except
when usingglexec. (Ticket #2268).

• condor_dagmannow defaults to writing a partial DAG file for a Rescue DAG, as opposed to
a full DAG file. The Rescue DAG file is parsed in combination with the original DAG file,
meaning that any changes to the original DAG input file take effect when running a Rescue
DAG. (Ticket #2165).

• The behavior of DAGMan is changed, such that, by default, POST scripts will be run re-
gardless of the return value from the PRE script of the same node as described in sec-
tion 2.10.2. The previous behavior of not running the POST script can be restored by ei-
ther adding the-AlwaysRunPostoption to thecondor_submit_dagcommand line, or by set-
ting the new configuration variableDAGMAN_ALWAYS_RUN_POSTto False , as defined
at 3.3.25. (Ticket #2057).

• DAGMan will now copy PRIORITY values from the DAG input file to theJobPrio attribute
in the job ClassAd. Furthermore, the PRIORITY values are propagated to child nodes and
SUBDAGs, so that child nodes always have priority at least that of the maximum of the prior-
ities of its parents. This has been a cause of confusion for DAGMan users. (Ticket #2167).

• A matchmaking optimization has significantly improved thespeed of matching, when there
are machines with many slots. (Ticket #2403).

• When thecondor_scheddis starting up and it encounters corruption in its job transaction
log, the error message in the log file now reports the offset within the file at which the error
occurred. (Ticket #2450).

Configuration Variable and ClassAd Attribute Additions andChanges:

• The new job ClassAd attributePreserveRelativeExecutable , whenTrue prevents
the condor_starterfrom prependingIwd to the command executableCmd, whenCmdis a
relative path name andTransferExecutable is False . (Ticket #2460).

• Attributes have been added to all daemons to publish statistics about the the number of timers,
signals, socket, and pipe messages that have been handled, as well as the amount of time
spent handling them. Statistics attributes for DaemonCorehave names that begin withDCor
RecentDC . (Ticket #2354).

• The default value ofOpSys on Windows machines has been changed to"WINDOWS",
and a new attributeOpSysVer has been added that contains the version number of
the operating system. This behavior is controlled by a new configuration variable
ENABLE_VERSIONED_OPSYSwhich defaults toFalse on Windows and toTrue on
other platforms. The new machine ClassAd attributeOpSys_And_Ver will always contain

Condor Version 7.7.6 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2364
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2268
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2165
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2057
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2167
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2403
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2450
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2460
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2354

9.3. Development Release Series 7.7 659

the versioned operating system. Note that this change couldcause problems with mixed pools,
because Condor version 7.7.2condor_submitmay addOpSys="WINDOWS", but machines
running Condor versions prior to 7.7.2 will be publishing a versionedOpSys value, unless
there is an override in the configuration. (Ticket #2366).

• Configuration variableCOLLECTOR_ADDRESS_FILEis now set in the example configu-
ration, similar toMASTER_ADDRESS_FILE. This configuration variable is required when
COLLECTOR_HOSThas the port set to 0, which means to select any available port. In other
environments, it should have no visible impact. (Ticket #2375).

• Attributes have been added to thecondor_scheddto publish aggregate statistics about jobs
that are running and have completed, as well as counts of various failures. (Ticket #2197).

• The new configuration variableDAGMAN_WRITE_PARTIAL_RESCUEenables the new fea-
ture of writing a partial DAG file, instead of a full DAG input file, as a Rescue DAG. See
section 3.3.25 for a definition. Also, the configuration variable DAGMAN_OLD_RESCUE
no longer exists, as it is incompatible with the implementation of partial Rescue DAGs.

(Ticket #2165).

Bugs Fixed:

• Fixed a bug introduced in Condor version 7.7.1, in the standard universe, where the
getdirentries() call failed during remote I/O situations. (Ticket #2467).

• Fixed a bug in thecondor_startdthat was preventing dynamic slots from being properly in-
stantiated from partitionable slots. (Ticket #2507).

• Fixed a bug introduced in Condor version 7.7.0, in which thecondor_startdmay erroneously
reportCan’t find hostname of client machine. In cases where Condor was
unable to identify the host name, theClientMachine attribute in the machine ClassAd
would have gone unset. (Ticket #2382).

• Fixed a bug existing since April 2001, in which on start up ofthecondor_schedd, with parallel
universe jobs, the job queue sanity checking code would change theScheduler attribute on
jobs, only to have the attribute changed later by the dedicated scheduler. (Ticket #2367).

• Machine ClassAds with theOffline attribute set toTrue , and with neitherMyType nor
TargetType attributes defined caused thecondor_collectorto fail to start when it was next
restarted. (Ticket #2417).

• Fixed a file descriptor leak in the EC2 GAHP, which would cause grid-type ec2 jobs to be-
come held. TheHoldReason for most such jobs would beUnable to read from
accesskey file. (Ticket #2447).

• Fixed a bug that could cause a job’s standard output and error to be written to the wrong
location whenshould_transfer_fileswas set toIF_NEEDED, and the job runs on the machine
where file transfer is not needed. If the standard output or error file names contained any path
information, the output would be written to_condor_stdout or _condor_stderr in
the job’s initial working directory. (Ticket #1811).

Condor Version 7.7.6 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2366
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2375
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2197
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2165
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2467
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2507
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2382
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2367
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2417
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2447
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=1811

9.3. Development Release Series 7.7 660

• Fixed a bug introduced in Condor version 7.7.1 that could cause thecondor_schedddaemon
to crash after failing to expand a$$ macro in the job ClassAd. (Ticket #2491).

Known Bugs:

• In Condor version 7.7.2, the Condor daemons on Linux platforms rely on shared libraries.
A bug in Condor version 7.7.1 and all previous versions of Condor prevents a 7.7.1con-
dor_masterfrom starting 7.7.2 or later daemons. This also means that a 7.7.1condor_master
cannot upgrade itself to version 7.7.2. If a 7.7.1condor_masterbinary is replaced with a 7.7.2
condor_masterbinary, Condor will shut off, and need to be restarted by hand.

Additions and Changes to the Manual:

• None.

Version 7.7.1

Release Notes:

• Condor version 7.7.1 released on September 12, 2011. This developer release contains all bug
fixes from Condor version 7.6.3.

New Features:

• Condor now dynamically links with the OpenSSL and Kerberos security libraries, and Condor
will use the operating system’s version of these libraries,when they are available.The tarball
release of Condor on Linux platforms includes a copy of theselibraries. If the operating
system’s version is incompatible with Condor, Condor will use its own copy instead. Condor’s
copy of these libraries is located underlib/condor/ . To prevent Condor from considering
using them, delete these libraries. (Ticket #1874).

• The ClassAd language now has anunparse() function. It converts an expression into a
string, which is handy with the neweval() function. (Ticket #1613).

• The new job ClassAd attributeKeepClaimIdle is defined with an integer number of sec-
onds in the job submit description file, as the example:

+KeepClaimIdle = 300

If set, then when the job exits, if there are no other jobs immediately ready to run for this user,
thecondor_schedddaemon, instead of relinquishing the claim back to thecondor_negotiator,
will keep the claim for the specified number of seconds. This is useful if another job will

Condor Version 7.7.6 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2491
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=1874
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=1613

9.3. Development Release Series 7.7 661

be arriving soon, which can happen with linear DAGs. Thecondor_startdslot will go to the
Claimed Idle state for at least that many seconds until either a new job arrives or the timeout
occurs. See page 956, the unnumbered Appendix A for a complete definition of this job
ClassAd attribute. (Ticket #2094).

• The newPRE_SKIPkey word in DAGMan changes the behavior of DAG node executionsuch
that the node’s job and POST script may be skipped based on theexit value of the PRE script.
See section 2.10.2 for details. (Ticket #2122).

Configuration Variable and ClassAd Attribute Additions andChanges:

• The new configuration variableNEGOTIATOR_STARTD_CONSTRAINT_REMOVEde-
faults to False . When True , any ClassAds not satisfying the expression in
GROUP_DYNAMIC_MACH_CONSTRAINTare removed from the list ofcondor_startdClass-
Ads considered for negotiation. (Ticket #2232).

• The new configuration variableNEGOTIATOR_UPDATE_AFTER_CYCLEdefaults to
False . When True , it forces thecondor_negotiatordaemon to update the negotiator
ClassAd in thecondor_collectordaemon at the end of every negotiation cycle. This is handy
for monitoring and debugging activities. (Ticket #2373).

Bugs Fixed:

• Expressions for periodic policies such asPERIODIC_HOLDand PERIODIC_RELEASE
could inadvertently cause a claim to be released, if thecondor_shadowexited before wait-
ing for final update from thecondor_starter. (Ticket #2329).

• condor_submitpreviously could incorrectly detect references in the requirements expression
to special attributes such asMemory when the name of the attribute happened to appear in
a string literal or as part of the name of some other attribute. The detection of references to
various special attributes influences the automatic requirements which are appended to the job
requirements. (Ticket #2350).

• In rare cases, CCB requests could cause the server to hang for 20 seconds while waiting for
all of the request to arrive. (Ticket #2360).

Known Bugs:

• None.

Additions and Changes to the Manual:

• None.

Condor Version 7.7.6 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2094
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2122
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2232
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2373
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2329
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2350
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2360

9.3. Development Release Series 7.7 662

Version 7.7.0

Release Notes:

• Condor version 7.7.0 released on July 29, 2011. This developer release contains all bug fixes
from Condor version 7.6.2.

New Features:

• A full port of Condor is available for RedHat Enterprise Linux 6 on the x86_64 processor. A
full port includes support for the standard universe.

• The matchmaking attributes SubmitterUserResourcesInUse and
RemoteUserResourcesInUse are now biased by slot weights.

• condor_submitnow accepts the new command line option-addr, naming the IP address of
thecondor_scheddto submit to.

• The condor_vm_gahpnow is dynamically linked to libvirt. We believe this makes it more
portable.

• Programscondor_reconfig_scheddandcondor_master_offare no longer part of the distribu-
tion. These programs were replaced many years ago by the moregeneralcondor_reconfigand
condor_offcommands.

• On Windows platforms, improved the ability of thecondor_starterandcondor_shadowdae-
mons to clean up the execute directory, if jobs have changed the ACLs or permissions on files
they have created.

• condor_submitnow sets a default value for job ClassAd attributeRequestMemory .

• The submission performance of cream grid jobs has been substantially improved by batching
submit requests.

• condor_q-better now has cleaner output, and informs the user when negotiation has not yet
occurred.

• Implemented many improvements to the Condorinit scripts.

• Deltacloud support has been updated to deltacloud version0.8.

• As of Condor version 7.6.0, vm universe submit descriptionfiles no longer support automatic
creation of cdrom images from text input file. Users must now explicitly create ISO images
and transfer them with the job.

• condor_qnow supports the new option-stream-results. When this option is specified,con-
dor_q displays results as they are fetched from the job queue, rather than buffering up the
query results before displaying anything.

Condor Version 7.7.6 Manual

9.3. Development Release Series 7.7 663

• The new submit description file commandstack_sizeapplies to Linux jobs that are not run-
ning in the standard universe. It sets the allocation of stack space to be other than the default
value, which is unlimited. It also advertises the job ClassAd attributeStackSize .

• The new ClassAd functionstringListsIntersect evaluates toTrue if two strings of
delimited elements have any matching elements, and it evaluates toFalse otherwise.

• The grid universe now supports theec2resource type, which uses the EC2 Query (REST) API
to start virtual machines on cloud resources.

• The behavior of DAGMan has changed, such that if multiple definitions of a VARS macron-
ame for a specific node within a DAG input exist, a warning is written to the log, of the format

Warning: VAR <macroname> is already defined in job <JobName >
Discovered at file "<DAG input file name>", line <line numbe r>

See section 2.10.7 for details.

• The version number for ClassAds now matches the Condor version number.

• Whenglexecfails to execute a job, diagnostic error messages produced by glexecused to be
discarded. These error messages are now displayed in the logof thecondor_starterand in the
job’s hold reason.

• New submit description file commandsperiodic_hold_reason, periodic_hold_subcode,
on_exit_hold_reason, andon_exit_hold_subcodepermit the job to set a hold reason string
and subcode number. Similarly, the system job policy can specify the reason and subcode us-
ing SYSTEM_PERIODIC_HOLD_REASONandSYSTEM_PERIODIC_HOLD_SUBCODE.
In addition, thecondor_holdcommand now accepts a-subcodeoption, which is used to set
the job attributeHoldReasonSubCode .

• If the condor_shadowcannot write to the user log, the job is now put on hold.

Configuration Variable and ClassAd Attribute Additions andChanges:

• The new configuration variableNEGOTIATOR_UPDATE_AFTER_CYCLEdefaults to
False . If set to True , it will force the condor_negotiatordaemon to publish an update
ClassAd to thecondor_collectorat the end of every negotiation cycle. This is useful if moni-
toring cycle-based statistics.

• The configuration variables for securityDENY_CLIENT andHOSTDENY_CLIENTnow
also look for the prefixesTOOLandSUBMIT.

• CONDOR_VIEW_HOSTis now a comma and/or white space separated list of hosts, in order
to support more than one CondorView host.

• For a job with an X.509 proxy credential, the new job ClassAdattribute
X509UserProxyEmail is the email address extracted from the proxy.

Condor Version 7.7.6 Manual

9.3. Development Release Series 7.7 664

• On Linux execute machines with kernel version more recent than 2.6.27, the proportional
set size (PSS) in Kbytes summed across all processes in the job is now reported in the at-
tributeProportionalSetSizeKb . If the execute machine does not support monitoring
of PSS or PSS has not yet been measured, this attribute will beundefined. PSS differs from
ImageSize in how memory shared between processes is accounted. The PSSfor one pro-
cess is the sum of that process’ memory pages divided by the number of processes sharing
each of the pages.ImageSize is the same, except there is no division by the number of
processes sharing the pages.

• The new configuration variableDAGMAN_USE_STRICTturns warnings into errors, as de-
fined in section 3.3.25.

• Thecondor_scheddnow publishes performance-related statistics. Page 981 inAppendix A
contains definitions for these new attributes:

– DetectedMemory

– DetectedCpus

– UpdateInterval

– WindowedStatWidth

– ExitCode<N>

– ExitCodeCumulative<N>

– JobsSubmitted

– JobsSubmittedCumulative

– JobsStarted

– JobsStartedCumulative

– JobsCompleted

– JobsCompletedCumulative

– JobsExited

– JobsExitedCumulative

– ShadowExceptions

– ShadowExceptionsCumulative

– JobSubmissionRate

– JobStartRate

– JobCompletionRate

– MeanTimeToStart

– MeanTimeToStartCumulative

– MeanRunningTime

– MeanRunningTimeCumulative

– SumTimeToStartCumulative

– SumRunningTimeCumulative

Condor Version 7.7.6 Manual

9.3. Development Release Series 7.7 665

• For Windows platforms, thecondor_startd now publishes the ClassAd attribute
DotNetVersions , containing a comma separated list of installed .NET versions.

Bugs Fixed:

• Fixed a bug in which thecondor_startddaemon can get stuck in a loop trying to execute an
invalid, that is non-existent, Daemon ClassAd Hook job.

• Fixed bug that would cause thecondor_startddaemon to incorrectly report Benchmarking ac-
tivity instead of Idle activity, when there is a problem launching the benchmarking programs.

• On Windows only, fixed a rare bug that could cause a sporadic access violation when a Condor
daemon spawned another process.

• Fixed a bug introduced in Condor version 7.5.5, which caused thecondor_scheddto die man-
aging parallel jobs.

• Thecondor_startddaemon now looks up thecondor_kbdddaemon address on every update.
This fixed problems if thecondor_kbdddaemon is restarted during thecondor_startdlifespan.

• Fixed bug incondor_holdthat happened if the hold reason contained a double quote character.

• Fixed a bug introduced in Condor version 7.5.6 that caused any Daemon
ClassAd hook job with non-empty value forSTARTD_CRON_<JobName>_ARGS,
SCHEDD_CRON_<JobName>_ARGS or BENCHMARKS_<JobName>_ARGS
to fail. Also, the specification of STARTD_CRON_<JobName>_ENV,
SCHEDD_CRON_<JobName>_ENV, or BENCHMARKS_<JobName>_ENVfor these
jobs was ignored.

• Fixed bug in the RPMinit script. A status request would always report Condor as inactive,
and a shutdown request would not report failure if there was atimeout shutting down Condor.

• File transfer plug-ins now have a correctly set environment.

• Fixed a problem with detecting IBM Java Virtual Machines whose version strings have em-
bedded newline characters.

• condor_q-analyzenow works with ClassAd built-in functions.

• Fixed bug incondor_q-run , such that it displays the host name correctly for local and sched-
uler universe jobs.

• Standalone checkpointing now works with compressed checkpoints again. This had been
broken in Condor version 7.5.4.

• On Windows,net stop condorwould sometimes cause thecondor_masterdaemon to crash.
This is now fixed.

Condor Version 7.7.6 Manual

9.4. Stable Release Series 7.6 666

• JobUniverse was effectively a required attribute for jobs created via the Fetch
Work hook, due to the need to set theIS_VALID_CHECKPOINT_PLATFORM
expression, such that it would not evaluate toUndefined . Now the de-
fault IS_VALID_CHECKPOINT_PLATFORMexpression evaluates toTrue when
JobUniverse is not defined.

• When there are multiple cpus but only one slot, the slot nameno longer begins withslot1@ .

• The toolcondor_advertiseseemed to be trying too hard to resolve host names. This was fixed
to only do the minimally necessary number of look ups.

Known Bugs:

• None.

Additions and Changes to the Manual:

• None.

9.4 Stable Release Series 7.6

This is a stable release series of Condor. As usual, only bug fixes (and potentially, ports to new plat-
forms) will be provided in future 7.6.x releases. New features will be added in the 7.7.x development
series.

The details of each version are described below.

Version 7.6.7

Release Notes:

• Condor version 7.6.7 not yet released.

New Features:

• None.

Configuration Variable and ClassAd Attribute Additions andChanges:

• None.

Condor Version 7.7.6 Manual

9.4. Stable Release Series 7.6 667

Bugs Fixed:

• Fixed a potential infinite loop in thecondor_gridmanagerfor gt2 grid universe jobs. If
the GRAM jobmanager was listening on a different port than the condor_gridmanager
expected, thecondor_gridmanagerwould alternate between states GM_REGISTER and
GM_RESTART, as visible in thecondor_gridmanagerdaemon log. (Ticket #2916).

• Added logic to thecondor_negotiatorthat enables job preemption to properly respect hierar-
chical group quotas. (Ticket #2570).

• Fixed a bug introduced in Condor version 7.6.2 that affectsjobs run viaglexec. Whenglexec
was configured in log-only mode, Condor failed to execute thejob, but reported that the
job exited with exit code 1. In such cases, thestderr of the job contained the following
message:

fdpass_recv error on new_sock_fd

(Ticket #2840).

• Fixed a rare bug in which if thecondor_startdwas configured to use partitionable slots, it was
possible for thecondor_startdto get partitioned into more slots than there were resources.
That is, it was possible for a four cpucondor_startdto split into five slots. (Ticket #2816).

• Fixed a rare bug seen with parallel universe jobs, in which if a claim was removed as thecon-
dor_shadowwas starting up, all ranks of the job would never completely start. (Ticket #2786).

• Fixed a bug that caused disk capacity to be under-reported on Windows platforms for drives
with 1TB or more of free space. (Ticket #2798).

• Fixed a bug that caused communication failure in some cases, after the failure of authentica-
tion, when authentication was configured to be optional. (Ticket #2845).

• Fixed a bug in which if the configuration variableEVENT_LOGwas set but the defined file
was not writable, the user’s job log would not be written to. This bug would have been
observable with DAGMan. (Ticket #2858).

• NorduGrid ARC LDAP servers that return attributes in an unexpected order no longer cause
thecondor_gridmanagerto exit. (Ticket #2888).

• Condor failed to execute jobs when usingglexecversions 0.9.0 through 0.9.5. (Ticket #2907).

Known Bugs:

• None.

Additions and Changes to the Manual:

• None.

Condor Version 7.7.6 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2916
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2570
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2840
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2816
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2786
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2798
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2845
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2858
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2888
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2907

9.4. Stable Release Series 7.6 668

Version 7.6.6

Release Notes:

• Condor version 7.6.6 released on January 17, 2012.

New Features:

• None.

Configuration Variable and ClassAd Attribute Additions andChanges:

• None.

Bugs Fixed:

• Fixed a memory leak affecting thecondor_scheddwhen the configuration variable
EVENT_LOG_JOB_AD_INFORMATION_ATTRSand/or the submit description file com-
mandjob_ad_information_attrs were used. (Ticket #2730).

• Fixed a bug in the Windows implementation ofcondor_chirpthat caused it to always return a
status of -1073740777 forcondor_chirpcommands that succeeded. (Ticket #2739).

• Fixed a bug in the Windows implementation ofcondor_chirpthat caused theput, whoami,
getdir, andfetch condor_chirpcommands to always fail. (Ticket #2743).

• Fixed a bug in the checkpoint server that could cause it to abort and crash during a file rename
operation on RHEL6 and newer versions. (Ticket #2738).

• Fix a bug introduced in Condor version 7.6.5, that could cause thecondor_scheddto exit with
the following error:

ERROR "Send_Signal: sent unsafe pid (0)" at line 5492 in file
/home/condor/execute/dir_10444/userdir/src/condor_d aemon_core.V6/daemon_core.cpp

(Ticket #2736).

• Fixed the example Linux startup scriptcondor.boot.rpm to no longer assume that the
contents of file/var/run will persist across a reboot, or that environment variableUSERis
set. (Ticket #2133).

Known Bugs:

• None.

Additions and Changes to the Manual:

• None.

Condor Version 7.7.6 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2730
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2739
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2743
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2738
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2736
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2133

9.4. Stable Release Series 7.6 669

Version 7.6.5

Release Notes:

• Condor version 7.6.5 released on December 28, 2011.

• Restored the semantics ofGROUP_AUTOREGROUPto the behavior it exhibited be-
fore Hierarchical Group Quotas were introduced in Condor version 7.5.6. That be-
havior has submitters with no accounting group, which are listed as<none> , nego-
tiate last. And, in addition, any accounting groups withGROUP_AUTOREGROUPen-
abled negotiate both normally and then also along with the submitters with no ac-
counting group. For Condor versions 7.5.6 through 7.6.4, configuration variable
GROUP_AUTOREGROUP(or GROUP_AUTOREGROUP_<groupname>) was a synonym for
GROUP_ACCEPT_SURPLUS(or GROUP_ACCEPT_SURPLUS_<groupname>). They
now implement distinct features, and it is not legal to set both to True in the configuration
for thecondor_negotiator. (Ticket #2679).

New Features:

• Added explicit support for Linux kernels with a major version number of 3, to detect and
utilize the load average information. (Ticket #2579).

Configuration Variable and ClassAd Attribute Additions andChanges:

• None.

Bugs Fixed:

• Fixed a bug in Chirp when using absolute file paths. This bug caused most MPI jobs to fail in
the parallel universe. (Ticket #2630).

• Fixed a bug in mapping users using theCERTIFICATE_MAPFILE mechanism, where en-
tries using the NTSSPI method on Windows would not be mapped using the map file, but
would instead fall back to just the user name. (Ticket #2709).

• Fixed a hierarchical accounting groups bug in which thecondor_schedddid not properly
restore accounting group information to submitters on a restart of thecondor_schedd, and
therefore negotiated for and allocated machines incorrectly. (Ticket #2705).

• The Windows installer had a bad value set for the configuration variable
JAVA_CLASSPATH_SEPARATOR, causing java universe jobs to fail. (Ticket #2586).

• HDFSwas not listed in the defaultDC_DAEMON_LIST, so thecondor_hdfsdaemon exited
shortly after being started, and the HDFS service did not run. (Ticket #849).

Condor Version 7.7.6 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2679
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2579
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2630
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2709
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2705
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2586
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=849

9.4. Stable Release Series 7.6 670

• File System (FS) authentication now works when/tmp is on a Btrfs file system. Previously,
authentication failed. (Ticket #2583).

• Fixed a bug that caused a failure to start jobs when using PrivSep and supplemental
group process tracking. Prior to Condor version 7.6.4, thisproblem only occurred when
USE_CLONE_TO_CREATE_PROCESSESwas set toFalse . In Condor version 7.6.4, the
problem occurred regardless of the setting of this configuration variable. (Ticket #2658).

• Fixed a performance problem on Windows platforms that caused claim activations to fail when
more than about 8 jobs were already running on that machine. (Ticket #2441).

• Fixed a bug in which the submit event would not be written to the user job log, if the job was
submitted with the-remoteor -spooloption tocondor_submit. (Ticket #2569).

• Fixed a bug that causedcondor_qwith the -analyzeoption to fail, if a job or a machine
ClassAd contained a string attribute ending in a backslash.This resulted in output of the error
message

Unable to process machine ClassAds

or

Unable to process job ClassAd

(Ticket #2603).

• Fixed a bug that caused thecondor_startdto crash when being reconfigured, if the reconfigure
caused thecondor_startdto remove a running Daemon ClassAd Hook job. (Ticket #2636).

• Configuration variables of the formMAX_<SUBSYS>_<LEVEL>_LOGnow work properly
on 32-bit Linux platforms. Previously, the corresponding log file would grow without bound.
(Ticket #2638).

• Fixed a bug in which Condor would fail to properly detect that it was running as Local System
for non-English versions of Windows. The bug caused Condor to fail to run jobs on the slot
accounts. (Ticket #2642).

• Fixed a bug in the Windows version of Condor, in which the transfer of output failed due to
the use of the Everyone account, which lacks read permission. Usage of the Everyone account
occurred as a fallback, when the account name failed to existbecause it included the domain
of the local submit machine. The fix adds the same capability as exists on Linux platforms,
which uses the user name without the domain. (Ticket #2643).

• Fixed a bug in which job submission via Condor-C could fail,because it did not convert
account names to fully qualified (including domain) before comparing to see if the current
account was the same as the desired account. (Ticket #2644).

• Fixed a bug in which use of the submit commandtransfer_input_files did not work for di-
rectories on Windows platforms. (Ticket #2387).

Condor Version 7.7.6 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2583
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2658
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2441
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2569
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2603
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2636
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2638
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2642
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2643
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2644
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2387

9.4. Stable Release Series 7.6 671

• Fixed a bug that could cause a failure in cleaning up job processes when usingglexecafter a
restart of thecondor_masterdaemon. (Ticket #2614).

• Fixed a bug incondor_powerthat caused it to fail when operating on a machine with a 15-byte
subnet mask string. (Ticket #2651).

• Fixed a bug that could cause thecondor_scheddto no longer start idle jobs or send ClassAds
to thecondor_collector. (Ticket #2647).

• Fixed a bug that could cause thecondor_scheddto crash if a hold reason contained a percent
character (%), and the user log for the job was in XML format. (Ticket #2660).

• Fixed a Windows 7 and Vista bug incondor_softkill, in which it would fail to kill the target
process, when run by a Personal Condor inside a System Condorslot account. (Ticket #2677).

• A possible fix has been made for a problem in which the CCB-enabled daemon took an unex-
pectedly long time to timeout when reading from the CCB server. Additional information is
logged to help identify the problem if it still remains. (Ticket #2695).

• Fixed a bug incondor_dagmanthat occurred when dealing with nested splices.con-
dor_dagmanincorrectly issued a parse error and exited in the case wherethe parent splice
contained only splices, and no nodes jobs. (Ticket #1751).

• Fixed a bug that caused grid universe jobs submitted via SOAP to be held when trying to write
output files into the spool directory. (Ticket #2568).

• Fixed a bug that causedcondor_creddand possibly other daemons to crash when the file used
for CERTIFICATE_MAPFILE contained more than 80 entries. (Ticket #2409).

• Fixed a bug that caused hibernation to fail on certain Linuxplatforms for certain hibernation
states. To work correctly on these Linux platforms, the plug-in needs the command line
arguments defined byHIBERNATION_PLUGIN_ARGSwhen initially invoked, as well as
for other invocations. (Ticket #2561).

• Thecondor_scheddnow aborts the claim and reschedules the job, if it does not hear from the
condor_startdfor longer than the job lease duration. (Ticket #2706).

• Fixed some bugs in the renewing of CREAM job leases. Before,the condor_gridmanager
could fail to renew the leases or attempt to set lease expirations in the past. (Ticket #2351).
(Ticket #2455).

Known Bugs:

• None.

Additions and Changes to the Manual:

• None.

Condor Version 7.7.6 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2614
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2651
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2647
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2660
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2677
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2695
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=1751
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2568
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2409
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2561
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2706
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2351
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2455

9.4. Stable Release Series 7.6 672

Version 7.6.4

Release Notes:

• Condor version 7.6.4 released on October 21, 2011.

New Features:

• The new Windows-onlycondor_rmdirwas included in Condor version 7.6.0, but there was no
version history entry for this introduced tool at release. This item attempts to correct that over-
sight, as well as identify that usage ofcondor_rmdir, instead of the built-in Windowsrmdir,
is enabled by default.condor_rmdirworked correctly in Condor version 7.6.0, contained a
bug in Condor version 7.6.1, and was fixed in Condor version 7.6.2. (Ticket #1877).

Configuration Variable and ClassAd Attribute Additions andChanges:

• The new configuration variable<Keyword>_HOOK_JOB_EXIT_TIMEOUT defines the
number of seconds that thecondor_starterwill wait before continuing with a shut down,
if a hook defined by<Keyword>_HOOK_JOB_EXIT has not completed. The addition of
this configuration variable fixes the bug described below. (Ticket #2543).

• The new configuration variableSKIP_WINDOWS_LOGON_NETWORKis a boolean value
which specifies whether the WindowsLOGON_NETWORKauthentication is skipped or not.
If skipped, Condor triesLOGON_INTERACTIVEauthentication first. The addition of this
configuration variable fixes the bug described below. (Ticket #2549).

• The new configuration variableSHADOW_RUN_UNKNOWN_USER_JOBSdefaults toFalse .
WhenTrue , it allows thecondor_shadowdaemon to run jobs remotely submitted from users
not in the local password file. (Ticket #2004).

Bugs Fixed:

• Implemented proper support of values greater than or equalto 2 GBytes set for the configura-
tion variableMAX_<SUBSYS>_LOG. (Ticket #2471).

• Updated thecondor_negotiatordaemon’s assessment of pool size to properly take partition-
able slots into account. See section 3.12.8 for an explanation of partitionable slots on SMP
machines. (Ticket #2440).

• Provided an informative error message when thecondor_userpriotool cannot locate thecon-
dor_negotiatordaemon. (Ticket #2478).

• condor_userprioand thecondor_negotiatordaemon did not correctly handle the names of
submitters, when these names exceeded 63 characters in length. The fix handles submitter
names of arbitrary length. (Ticket #2445).

Condor Version 7.7.6 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=1877
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2543
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2549
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2004
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2471
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2440
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2478
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2445

9.4. Stable Release Series 7.6 673

• Removed a spurious boolean flag reset incondor_q, which resulted in an order dependency
between the command line arguments-long and-format . (Ticket #2498).

• Fixed a bug in which a graceful shutdown of acondor_startddid not correctly handle jobs
using job deferral which have landed on an execute machine but have not yet reached their
deferral time. These jobs would appear to be running, despite the lack of acondor_starter
daemon. These jobs now correctly transition to the idle state. (Ticket #2486).

• Corrected a hierarchical group quota bug in which the user accounting mechanism in thecon-
dor_negotiatordaemon allowed submitter records to be deleted, if the submitter’s priority fac-
tor was explicitly set and the value was equal to that defined by DEFAULT_PRIO_FACTOR.
(Ticket #2442).

• Fixed CPU detection on Windows, such that the correct number of CPUs is detected when
there are more than 32 CPUs. (Ticket #2381).

• Fixed a memory leak in thecondor_negotiator, caused by the failure to free memory returned
from some calls toparam_without_default() . (Ticket #2299).

• Jobs run viaglexecalways had theirPATHenvironment variable cleared. Now, ifPATHwas
specified for the job, in any of the ways that job environment may be specified, this setting is
used. (Ticket #2096).

• Fixed an infinite loop that could happen in Condor daemons shortly after the receipt of a new
connection. This problem was introduced in Condor version 7.5.6. (Ticket #2413).

• Fixed a problem incondor_hdfsthat caused it to exit shortly after starting up, if the configu-
ration variablesHDFS_DENY, HOSTDENY_WRITE, or HOSTDENY_READwere not defined.
Previously, ifHDFS_DENYwas not defined,HOSTDENY_WRITEand HOSTDENY_READ
were used to build the deny list. NowDENY_WRITEand DENY_READare also used.
(Ticket #2414).

• Removed an extra copy of the java files required to run gt4 andgt42 grid universe jobs. This
does not affect Condor’s operation. (Ticket #2435).

• Fixed a problem that caused thecondor_scheddto crash when writing to some user logs
with specific names. The specific names that caused crashes are not easy to describe.
(Ticket #2439).

• Fixed a bug in which thecondor_scheddfailed to start up when any job ClassAd attribute
value contained the ASCII character 255. (Ticket #2450).

• Fixed a bug in whichcondor_preenfailed to honor the-remove option, and would always
remove lock files. (Ticket #2497).

• condor_preenexpected an old format for local lock file paths; it now understands the proper
format. (Ticket #2496).

• condor_preenwould EXCEPT when processing multiple subdirectories for local locks.
(Ticket #2495).

Condor Version 7.7.6 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2498
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2486
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2442
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2381
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2299
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2096
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2413
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2414
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2435
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2439
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2450
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2497
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2496
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2495

9.4. Stable Release Series 7.6 674

• In 32-bit Condor binaries, theImageSize of processes larger than 4 GBytes was reported
as 4 GBytes. This limit has been raised to 4095 GBytes.

• vm universe jobs using Xen or KVM would fail to start, if the diskimage files were transferred
from the submit machine and the default value defined forLIBVIRT_XML_SCRIPT was
used. The script did not provide absolute path names for the files. (Ticket #2511).

• Fixed a bug in which a completed Xen or KVMvm universe job’s modified disk image files
would not be transferred back to the submit machine. (Ticket#2530).

• Fixed a bug in which acondor_starterconfigured to use job hooks could fail to run a job,
but not wait for the job exit hook to complete before exiting.The bug fix introduces the
new configuration variable<Keyword>_HOOK_JOB_EXIT_TIMEOUT, which defines the
number of seconds thecondor_starterwill wait before continuing with a shut down, if the job
exit hook has not completed. (Ticket #2543).

• In Condor version 7.5.4, an improvement was made to avoid reliance on the machine spec-
ified by NEGOTIATOR_HOSTmatching a reverse DNS look up of thecondor_negotiator.
However, this improvement was not made to the dedicated scheduler, so matchmaking of
parallel jobs was still subject to the problems associated with the old algorithm. Now, the
dedicated scheduler benefits from the same improved algorithm as the non-dedicated sched-
uler. (Ticket #2540).

• Occasionally there have been problems with WindowsLOGON_NETWORKauthentication,
leading to users being locked out from their account. The newconfiguration variable
SKIP_WINDOWS_LOGON_NETWORK, when set toTrue , fixes the problem by allowing this
mechanism to be skipped entirely, instead proceeding straight to theLOGON_INTERACTIVE
authentication. This bug only affected users using thecondor_credd. (Ticket #2549).

• Condor now correctly groups CREAM jobs based on how CREAM servers authorize and map
them. The servers map them based on X.509 proxy subject name and first VOMS attribute.
Previously, all VOMS attributes were considered. This could cause unexpected behavior due
to the aliasing of CREAM leases and proxy delegations. (Ticket #2271).

• Communication errors in the job lease renewal protocol were sometimes not correctly han-
dled. This resulted in the job being killed. (Ticket #2563).

Known Bugs:

• None.

Additions and Changes to the Manual:

• The manual now contains a manual page forcondor_rmdir, a Windows only replacement for
the built-in Windowsrmdir introduced in Condor version 7.6.0.

Condor Version 7.7.6 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2511
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2530
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2543
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2540
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2549
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2271
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2563

9.4. Stable Release Series 7.6 675

Version 7.6.3

Release Notes:

• Condor version 7.6.3 released on August 23, 2011.

New Features:

• None.

Configuration Variable and ClassAd Attribute Additions andChanges:

• None.

Bugs Fixed:

• Fixed a bug causing parallel universe jobs to be preempted upon renewal of the job lease,
which by default happens within 20 minutes. This meant that essentially no parallel universe
job that took longer than 20 minutes would ever finish. (Ticket #2317).

• When the specified job requirements expression contained areference toRequestMemory ,
there was inconsistent behavior: in some cases the defaultRequestMemory requirements
were suppressed, and in other cases not. Now, the defaultRequestMemory requirements
are always suppressed when there are explicit references toRequestMemory in the job
requirements.

• Fixed a bug that could cause Condor to crash when using the Local Credential Mapping Ser-
vice (LCMAPS) with GSI authentication. (Ticket #2340).

• Fixed a bug that caused thecondor_collectordaemon to crash upon receiving a CCB com-
mand, whenENABLE_CCB_SERVERwas changed fromTrue to False without restarting
the daemon. (Ticket #2357).

• The GT2 GAHP no longer consumes all of the CPU when compiled with threaded Globus
libraries. (Ticket #2345).

• Fixed a problem introduced in Condor version 7.5.6, which led to local lock files for user
log locking always being created whether or notENABLE_USERLOG_LOCKINGwas set to
False . (Ticket #2116).

• Installation as a service by the MSI installer on Windows platforms now sets the default of
Automatic Delayed. (Ticket #2318).

• In PrivSep mode, if started asroot , thecondor_masterre-executes itself as thecondor user.
Previously, supplementary groups were preserved. Now supplementary groups are cleared and
set to the list of groups to which thecondor user belongs. (Ticket #2376).

Condor Version 7.7.6 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2317
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2340
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2357
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2345
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2116
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2318
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2376

9.4. Stable Release Series 7.6 676

• Fixed a bug where settingDAGMAN_PROHIBIT_MULTI_JOBSto True caused SUBDAGs
to stop working. (Ticket #2331).

• Fixed a bug that caused scheduler universe jobs submitted via Condor-C orcondor_submit
-spoolto be held and be unable to run. The hold reason given wasFile <filename> is
missing or not executable . (Ticket #2396).

• condor_submitnow exits with an error, if the commandhold = True is in the submit
description file when using-spoolor -remoteas command-line arguments. This combination
of settings resulted in jobs being unable to run. (Ticket #2398).

Known Bugs:

• None.

Additions and Changes to the Manual:

• None.

Version 7.6.2

Release Notes:

• Condor version 7.6.2 released on July 19, 2011.

New Features:

• Improved howcondor_dagmandeals with certain parse errors: missing node name or submit
description file in JOB lines. Also,condor_dagmannow prints DAG input file lines as they
are parsed, if the debug verbosity setting is 6 or above, as set with the condor_submit_dag
command line option-debug.

Configuration Variable and ClassAd Attribute Additions andChanges:

• None.

Bugs Fixed:

• Fixed a bug in thecondor_negotiatorthat impacted the processing of machineRANKsuch
thatcondor_startdRANKpreemption only occurred if the preempting user had sufficient user
priority to claim another machine.

Condor Version 7.7.6 Manual

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2331
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2396
https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=2398

9.4. Stable Release Series 7.6 677

• condor_ssh_to_jobdid not work on systems using the dash shell for/bin/sh.

• condor_ssh_to_jobnow works with jobs that are run viaglexec. Previously, it did not.

• Whenglexecwas configured withlinger=on , thecondor_starterwould become unrespon-
sive for the duration of the job. For jobs longer than the value set by configuration variable
NOT_RESPONDING_TIMEOUT, this caused the job to be aborted. This also prevented job
resource usage monitoring from working while the job was running.

• Fixed a bug in hierarchical group quotas that caused a warning to be logged, despite correct
implementation.

• condor_preennow properly respects the convention that the-debug option causes
dprintf() logging tostderr .

• Fixed a problem introduced in Condor version 7.5.5 that could cause thecondor_scheddto
crash when a job was removed during negotiation or when an idle parallel universe job left
the queue.

• Fixed a problem that sometimes caused thecondor_procdto die. The chain of events for
this fixed bug were that thecondor_startdkilled the condor_starterdue to unresponsive-
ness, and thecondor_procdwould die. Thencondor_startdlogged the messageProcD has
failed and thecondor_startdexited.

• Fixed a problem introduced in Condor version 7.6.1 that caused thecondor_shadowto crash
without successfully putting the job on hold when the user log could not be opened for writing.

• condor_historyno longer crashes when given a constraint expression longerthan 512 charac-
ters.

• PBS and LSF grid jobs that arrive in a queue via Condor-C or remote submission again work
properly.

• Fix a bug that can cause thecondor_gridmanagerto crash when a CREAM job ClassAd is
missing theX509UserProxy attribute.

• Fix a bug that caused CREAM jobs to have incomplete input files, if thecondor_gridmanager
crashed during transfer of those input files.

• Fix a bug incondor_submitthat caused grid jobs intended for CREAM services whose names
contain extra dashes to become held.

• Fixed a bug in whichcondor_submitwould try, but fail to open the Deltacloud password file,
when the file name was dependent on an expression specified with $$() .

• If the Owner attribute was not set in the ClassAd associated with a cluster of jobs, shared
spooled executables were not correctly cleaned up.

• Fixed a bug for 64-bit versions of Windows in which the usercondor-reuse-slot<N>
showed up on the login screen.

Condor Version 7.7.6 Manual

9.4. Stable Release Series 7.6 678

• Fixed a bug introduced in Condor version 7.5.5, which changed the default value of the con-
figuration variableINVALID_LOG_FILES from the empty set to a file calledcore . This
resulted in core files being removed unexpectedly bycondor_preen, and that complicated
debugging of Condor. Previous behavior has been restored.

• Fixed a bug existing since Condor version 7.5.5 on Windows platforms. The installer installed
Java jar files in the correct$(BIN) directory, while the value for the configuration variable
JAVA_CLASSPATH_DEFAULTutilized the obsolete$(LIB) directory. The installer now
correctly setsJAVA_CLASSPATH_DEFAULTto the$(BIN) directory.

• Fixed a problem causing Condor to fail to start when privsepwas enabled and the environment
had any variables containing newlines.

Known Bugs:

• For Condor versions 7.6.2, 7.6.1, and 7.6.0, a bug causes parallel universe jobs to be pre-
empted upon renewal of the job lease, which by default will happen within 20 minutes, es-
sentially meaning that no parallel universe job that takes longer than 20 minutes can ever
finish. The work around for this bug is to place the following configuration variable in the
configuration of the submit machine:

STARTD_SENDS_ALIVES = FALSE

A condor_reconfigis required, after which the preempted parallel universe jobs will then be
able to run to completion.

Additions and Changes to the Manual:

• None.

Version 7.6.1

Release Notes:

• Condor version 7.6.1 released on June 3, 2011.

New Features:

• None.

Configuration Variable and ClassAd Attribute Additions andChanges:

Condor Version 7.7.6 Manual

9.4. Stable Release Series 7.6 679

• None.

Bugs Fixed:

• A bug introduced in Condor version 7.5.5 caused thecondor_scheddto die when its attempt
to claim a slot for a parallel universe job was rejected by thecondor_startd.

• condor_q-analyze failed to provide detailed analysis of the job’s requirements expression
when the expression contained ClassAd function calls in some cases.

• Fixed an incorrect exit code fromcondor_qwhen invoked with the-nameoption and using
Quill.

• Fixed a segmentation fault bug introduced in Condor version 7.5.5, in the checkpoint and
restart of jobs using compressed checkpoint images under the standard universe. By default,
Condor will not compress checkpoints under the standard universe. Jobs which do not com-
press their checkpoints were immune to this bug. Compressedcheckpoints are only available
in 32-bit versions of Condor. Generation of checkpoints in 64-bit versions of Condor are
unaffected.

• In Condor version 7.6.0, thecondor_scheddwould create a spool directory for every job. The
corrected and previous behavior has now been restored, which is to create a spool directory
only when needed.

• Fixed a bug introduced in Condor version 7.5.2, that causedthecondor_negotiatordaemon to
crash if any machine ClassAds contained cyclical attributereferences.

• Fixed a bug that caused usage bynice_userjobs to be charged to the user directly rather than
‘nice-user.user’. This bug was introduced in the 7.5 series.

• Fixed bugs in the RPM init script that could cause some shutdown failures to be unreported,
and they could cause status requests, such asservice condor status , to always report
Condor as inactive.

• Fixed a bug in thecondor_gridmanagerthat could cause a crash when a grid typeamazon
job was missing required attributes.

• Fixed bug in thecondor_shadow, in which it would treat the closed socket to the execute ma-
chine as an error, after both it had asked for the claim to be deactivated and thecondor_schedd
daemon was busy. As a result, a busycondor_scheddcould result in the job being re-run.

• The matchmaking attributes SubmitterUserResourcesInUse and
RemoteUserResourcesInUse no longer ignore SlotWeight , if used by the
condor_negotiator.

• On Windows, thecondor_kbdddaemon was missing changes to the port on which thecon-
dor_startdwas listening. This resulted in failure of thecondor_kbddto send updates in key-
board and mouse activity, further causing the failure of policy implementation that relied upon
knowledge of the activity.

Condor Version 7.7.6 Manual

9.4. Stable Release Series 7.6 680

• Fixed a bug present throughout ClassAds, in which expressions expecting a floating point
value returned an error, if the expression actually evaluated to a boolean. This is most common
in machineRANKexpressions.

• Fixed a bug in thecondor_negotiatordaemon, which caused a crash if thecondor_negotiator
was reconfigured during a negotiation cycle, but only if hierarchical group quotas were in use.

• Fixed a bug in which when submitting a job into thecondor_scheddremotely, or with spool-
ing, the file transfer plug-ins activated on the submit machine and pulled down all the specified
URLs in the transfer list to the spool directory. This behavior has been changed so that URLs
are only downloaded when the job is actually running with acondor_starterabove it. This is
usually on an execute node, but could also be in the local universe.

• Removed the requirement that the Condor GAHP needs DAEMON-level authorization access
to thecondor_gridmanager.

• On Windows platforms only, fixed a bug that could cause a sporadic access violation when a
Condor daemon spawned another process.

• Fixed a bug that would cause thecondor_startdto incorrectly reportBenchmarking as its
activity, instead ofIdle when there was a problem launching the benchmarking programs.

• Fixed a bug in which thecondor_startdcan get stuck in a loop, trying to execute an invalid,
non-existent Daemon ClassAd Hook job.

• Fixed a bug in which the dedicated scheduler did not correctly deactivate claims, tending to
result in jobs that appear to move back and forth between theIdle andRunning states,
with thecondor_shadowdaemon exiting each time with status 108.

Known Bugs:

• None.

Additions and Changes to the Manual:

• None.

Version 7.6.0

Release Notes:

• Condor version 7.6.0 released on April 19, 2011.

• Prior to Condor version 7.5.0, commenting outPREENin the default configuration file dis-
abledcondor_preen. Starting in Condor version 7.5.0, there was an internal default value for
PREEN, so if the configuration variable was not set in any configuration file, condor_preen
would still run. To disable this functionality,PREENcan be explicitly set to nothing.

Condor Version 7.7.6 Manual

9.4. Stable Release Series 7.6 681

New Features:

• Condor can now create and manage virtual machine instancesin a cloud service via Delta-
cloud. This is done via the newdeltacloudgrid type in the grid universe. See section 5.3.10
for details.

• Improved scalability of submission of cream grid type jobs.

Configuration Variable and ClassAd Attribute Additions andChanges:

• The new configuration variableDELTACLOUD_GAHPspecifies where thedeltacloud_gahp
binary is located. This binary is used to manage deltacloud grid type jobs in the grid universe.
In a normal Condor installation, the value should be$(SBIN)/deltacloud_gahp .

• Several new job ClassAd attributes have been added to support the delta-
cloud grid type in the grid universe. These attributes are taken from the sub-
mit description file: DeltacloudUsername , DeltacloudPasswordFile ,
DeltacloudImageId , DeltacloudRealmId , DeltacloudHardwareProfile ,
DeltacloudHardwareProfileCpu , DeltacloudHardwareProfileMemory ,
DeltacloudHardwareProfileStorage , DeltacloudKeyname , and
DeltacloudUserData . These attributes are set by Condor when the instance runs:
DeltacloudAvailableActions , DeltacloudPrivateNetworkAddresses ,
DeltacloudPublicNetworkAddresses . See section 5.3.10 for details of running
jobs under Deltacloud, and see section 11 for definitions of these job ClassAd attributes.

• The configuration variableJAVA_MAXHEAP_ARGUMENThas been removed. This
means that Java universe jobs will now run with the JVM’s default maximum heap
setting, unless specified otherwise by the administrator using the configuration of
JAVA_EXTRA_ARGUMENTS, or by the job viajava_vm_args in the submit description
file as described in section 2.8.

• The configuration variableTRUST_UID_DOMAIN was set toTrue in the default
condor_config.local in the rpm and Debian packages. This is no longer the case.
This setting will therefore use the default valueFalse .

• The configuration variableNEGOTIATOR_INTERVAL was set to 20 in the default
condor_config.local in the rpm and Debian packages. This is no longer the case.
This setting therefore will use the default value 60.

Bugs Fixed:

• Fixed a bug incondor_dagmanthat caused it to fail when in recovery mode in the face of a
specific combination of node job failures with retries.

• Fixed a bug that resulted in the spooled user log not being fetched bycondor_transfer_data.
Prior to Condor version 7.5.4, this problem affected spooled jobs submitted with an explicit
list of output files to transfer. In Condor version 7.5.4, this problem also affected spooled jobs
that auto-detected output files.

Condor Version 7.7.6 Manual

9.5. Development Release Series 7.5 682

• When a job is submitted with the-spool option tocondor_submit, thecondor_scheddnow
correctly writes the submit event to the user log in its spooldirectory. Previously, it would
try to write the event using the user log path given tocondor_submitby the user, which
condor_submitmay not have access to.

• Fixed a file descriptor leak in thecondor_vm-gahp. The leak would cause the daemon to fail
if a VMware job ran for more than 16 hours on a Linux machine.

• Fixed a bug incondor_dagmanthat caused it to treat any dollar sign in the log file name of a
node job’s submit description file as an illegalcondor_dagmanmacro. Now only the sequence
of characters$(delimits a macro.

Known Bugs:

• There are two known issues related to the automatic creation of checkpoints with the Condor
checkpointing library in Condor version 7.6.0. The first is that compression of standalone
checkpoints is disabled for 32-bit binaries. It was always disabled previously, for 64-bit bi-
naries. A standalone checkpoint is one that is run outside ofCondor’s standard universe.
The second problem has to do with compressed 32-bit checkpoint files within the standard
universe. If a user requests a compressed 32-bit checkpointin the standard universe, the re-
sulting checkpoint will not be compressed. As with standalone checkpoints, this has never
been supported in 64-bit binaries. We hope to fix both problems in Condor version 7.6.1.

Additions and Changes to the Manual:

• None.

9.5 Development Release Series 7.5

This is the development release series of Condor. The details of each version are described below.

Version 7.5.6

Release Notes:

• Condor version 7.5.6 released on March 21, 2011.

• What used to be known as thecondor_startdandcondor_scheddcron mechanisms are now
collectively calledDaemon ClassAd Hooks. The significant changes in this Condor version
7.5.6 release are given in the New Features section.

• In the release directory, the subdirectorylib/glite/ has been moved to
libexec/glite/ .

Condor Version 7.7.6 Manual

9.5. Development Release Series 7.5 683

• This development series of Condor is no longer officially released for the platforms PowerPC
AIX, PowerPC-64 SLES 9, PowerPC MacOS 10.4, Solaris 5.9 on all architectures, Solaris
5.10 on all architectures, Itanium IA64 RHEL 3, PS3 (PowerPC) YDL 5.0, and x86 Debian 4.

• Support for GCB has been removed.

• The default Unix Sys-V init script has been completely reworked. In addition to new features,
this changes the following:

– The default location of the Condor configuration file is now
/etc/condor/condor_config . This location can be changed by editing
thesysconfig file or the init script itself.

– The default location of the Condor installation is now/usr/ , with binaries in
/usr/bin and /usr/sbin . These locations can also be changed by editing the
sysconfig file or the init script itself.

New Features:

• Condor no longer relies on DNS to determine its IP address. Instead, it examines the list of
system network devices.

• condor_dagmannow gives a warning if a node category has no nodes assigned toit or no
throttle set.

• condor_dagmannow has a$MAX_RETRIESmacro for PRE and POST script arguments.
Also, condor_dagmannow prints a warning if an unrecognized macro is used for a PREor
POST script argument. See 69 for details.

• Thecondor_scheddis now more efficient in handling the exit ofcondor_shadowprocesses,
when there are large numbers ofcondor_shadowprocesses.

• Condor’s Chirp protocol has been updated with new commands. The Chirp C++ client and
condor_chirpcommand are updated to use the new commands. See section 10 for details on
the new commands.

• The Daemon ClassAd Hooks mechanism is described in section4.4.3, with configuration
variables defined in section 3.3.36. The mechanism has the following new features:

– Thecondor_startd’s benchmarks are no longer hard coded into thecondor_startd. In-
stead, the benchmarks are now implemented via the Daemon ClassAd Hooks mecha-
nism. Two new programs are shipped with Condor version 7.5.6: condor_mipsand
condor_kflops. These programs are in thelibexec directory). They implement the
original mips and kflops benchmarks for this new implementation. Additional bench-
marks can now easily be implemented; the list of benchmarks is controlled via the new
BENCHMARKS_JOBLISTconfiguration variable.

– Several fixes to the the mips and kflops benchmarks should increase the reproducibility
of their results.

Condor Version 7.7.6 Manual

9.5. Development Release Series 7.5 684

– Two new job types have been implemented in the Daemon ClassAdHooks mechanism.
They are calledOneShot andOnDemand. Currently,OnDemandis used only by the
newBENCHMARKSmechanism.

• condor_dagmannow prints out all boolean configuration variable values asTrue or False ,
instead of 1 or 0 within thedagman.out file.

• Because of the newDAGMAN_VERBOSITYconfiguration setting (see section 3.3.25), the
-debugflag is no longer propagated from a top-level DAG to a sub-DAG;furthermore,-debug
is no longer set in a.condor.sub file unless it is set on thecondor_submit_dagcommand
line.

• When job ClassAd attributes are modified viacondor_qedit, the changes are now propagated
to the condor_shadowand condor_gridmanager. This allows a user’s changes to the job
ClassAd to affect the job policy expressions while the job ismanaged by these daemons.

• Several improvements for CREAM grid jobs:

– CREAM commands are retried if the server closes the connection prematurely.

– All jobs going to a CREAM server share the same lease handle.

– Multiple CREAM status requests for single jobs are now batched into a single command
to the server.

– When there are too many commands to be issued to a CREAM serversimultaneously,
new job submissions have lower priority than commands operating on existing jobs.

• The new scriptcondor_gather_info, located inbin/ , creates reports with information from
a Condor pool about a specific job ID. It also gathers some understanding of the pool under
which it runs.

• Added support for hierarchical accounting groups and group quotas.

• condor_q-better-analyze now identifies jobs that have not yet been considered by matchmak-
ing, instead of characterizing them as not matchingfor unknown reasons.

• The default Unix Sys-V init script has been completely reworked. The new version should
now work on all Unix and Linux systems. Major features and changes in the new script:

– Supports the use of a Linux-stylesysconfig file

– Supports the use of a Linux-style PID file

– Supports the following commands:

* start

* stop

* restart

* try-restart

* reload

* force-reload

* status

Condor Version 7.7.6 Manual

9.5. Development Release Series 7.5 685

– The default location of the Condor configuration file is now
/etc/condor/condor_config . This location can be changed by editing
thesysconfig file or the init script itself.

– The default location of the Condor installation is now/usr/ , with binaries in
/usr/bin and /usr/sbin . These locations can be changed by editing the
sysconfig file or the init script itself.

Configuration Variable and ClassAd Attribute Additions andChanges:

• The default value of configuration variableGLITE_LOCATION has changed to
$(LIBEXEC)/glite . This reflects the change made in the layout of the Condor release
files.

• Values for configuration variables NETWORK_INTERFACE and
PRIVATE_NETWORK_INTERFACEmay now specify a network device name or an
IP address. The asterisk character (*) may be used as a wild card in either a name or IP
address. This makes it easier to apply the same configurationto a large number of machines,
because the IP address does not have to be customized for eachhost.

• The new configuration variableDELEGATE_JOB_GSI_CREDENTIALS_LIFETIMEspec-
ifies the maximum number of seconds for which delegated job proxies should be valid. The
default is one day. A value of 0 indicates that the delegated proxy should be valid for as long as
allowed by the credential used to create the proxy; this was the behavior in previous releases
of Condor. This configuration variable currently only applies to proxies delegated for non-grid
jobs and Condor-C jobs. It does not currently apply to globusgrid jobs. The job may over-
ride this configuration variable by using thedelegate_job_GSI_credentials_lifetimesubmit
description file command.

• The new configuration variableDELEGATE_JOB_GSI_CREDENTIALS_REFRESHspec-
ifies a floating point number between 0 and 1 that indicates when delegated credentials with
limited lifetime should be renewed, as a fraction of the delegated lifetime. The default is 0.25.

• The new configuration variableSHADOW_CHECKPROXY_INTERVALspecifies the number
of seconds between tests to see if the job proxy has been updated or should be refreshed. The
default is 600 (10 minutes). Previously, thecondor_shadowchecked for proxy updates once
per minute.

• Daemon ClassAd Hooks no longer support what was identified as theold syntax. Due to
this, variablesSTARTD_CRON_JOBSandHAWKEYE_JOBSno longer exist. In previous
versions of Condor, thecondor_startdwould issue a warning if this syntax was found, but,
starting with 7.5.6, any use of these macros will be ignored.

• New configuration variablesDAGMAN_VERBOSITY, DAGMAN_MAX_PRE_SCRIPTS,
DAGMAN_MAX_POST_SCRIPTS, andDAGMAN_ALLOW_LOG_ERRORare defined in sec-
tion 3.3.25.

• The new configuration variableSTARTD_PUBLISH_WINREGcan contain a list of Windows
registry key names, whose values will be published in thecondor_startddaemon’s ClassAd.

Condor Version 7.7.6 Manual

9.5. Development Release Series 7.5 686

• The new configuration variableCONDOR_VIEW_CLASSAD_TYPESis a string list that
specifies the types of the ClassAds that will be forwarded to the location defined by
CONDOR_VIEW_HOST. See the definition at section 3.3.16.

• Added a-local-name command line option tocondor_config_valto inspect the values of
attributes that use local names.

Bugs Fixed:

• Fixed a bug for parallel universe jobs, introduced in Condor version 7.5.5, where thecon-
dor_scheddwould crash under certain conditions when a parallel job wasremoved or exited.

• Fixed a memory leak in thecondor_quilldaemon.

• Fixed a problem in Condor version 7.5.5 release, in which binaries used for the grid universe’s
pbs and lsf grid types were not marked as executable.

• Fixed a bug introduced in Condor version 7.5.5 that caused runningvanilla, java, andvm
universe jobs to leave the queue when held.

• A bug has been fixed that caused SOAP transactions in thecondor_schedddaemon to result
in a log message of the form

Timer <X> not found

This bug is not known to have produced any other undesired behaviors.

• The job ClassAd attributeJobLeaseDuration is now set appropriately when a Condor-C
job is forwarded to a remote pool. Previously, a default value was not supplied, causing jobs
to be unnecessarily killed if the submit and execute machines temporarily lost contact with
each other.

• Fixed a bug that causedcondor_dagmanto sometimes falsely report that a cycle existed in a
DAG.

• Using thecondor_holdcommand on a Windows platform job managed bycondor_dagman
no longer removes the node job of the DAG. This behavior on Windows now matches the
behavior on other platforms.

• Using thecondor_holdcommand followed by thecondor_removecommand on a job managed
by condor_dagmannow removes node jobs of the DAG, rather than leaving them as orphans.

• A bug has been fixed in thecondor_config_valprogram, which caused it to try to contact the
condor_collectorbefore printing usage information, if the command line was syntactically
incorrect.

• A bug has been fixed that caused Condor daemons to crash in response to DNS look up failures
when receiving connections. The crash occurred during authorization of the new connection.
This problem was introduced in Condor version 7.5.4.

Condor Version 7.7.6 Manual

9.5. Development Release Series 7.5 687

• Fixed a bug that causedcondor_submitto silently ignore parts of attribute values if an equals
sign was omitted.

• Starting in Condor version 7.5.5, thecondor_schedddaemon would sometimes generate an
error message and exit abnormally when shutting down. The error message contained the
following text:

ERROR ``Assertion ERROR on (m_ref_count == 0)''

• Changes to thecondor_negotiatordaemon’s address were not published to thecon-
dor_collectoruntil the condor_negotiatordaemon was reconfigured or restarted. This was
a problem in some situations when usingcondor_shared_port.

• A bug introduced in 7.5.5 resulted in failure to advance theflocking level due to lack of activity
from one of the negotiators in the flocking list.

• Fixed a Windows-specific problem where the main daemon loopcan get into a state where it
is busy waiting.

• Fixedcondor_scheddexception on shutdown caused by bad reference count.

• Releases of Condor with versions from 7.5.0 to 7.5.5 incorrectly implemented the macro lan-
guage used for configuration with variables havingLOCAL. at the prefix. This was a regres-
sion from the Condor 7.4 series. It is now fixed and the functionality has been restored.

Known Bugs:

• If a cycle exists in the set of jobs to be removed defined by thejob ClassAd attribute
OtherJobRemoveRequirements , removing any of the jobs in the set will cause the
condor_scheddto go into an infinite loop.OtherJobRemoveRequirements is defined
on page 965.

• In a condor_dagmanworkflow, if a splice contains nothing but another splice, parsing the
DAG will fail. This can be worked around by putting any non-splice job, including a DAG-
level NOOP job, into the offending splice. This bug has apparently existed since the splice
feature was introduced incondor_dagman.

• If an individual Daemon ClassAd Hook manager is notnamed, the jobs under it will attempt
to use incorrectly named configuration variables. For example, the following correct config-
uration will not work, because the Daemon ClassAd Hook manager will fail to look up the
job’s executable variable, given the error in configurationvariable naming:

STARTD_CRON_JOBLIST = TEST
...
STARTD_CRON_TEST_MODE = periodic
STARTD_CRON_TEST_EXECUTABLE = $(LIBEXEC)/test
...

Condor Version 7.7.6 Manual

9.5. Development Release Series 7.5 688

Condor version 7.5.6 and all previous 7.x Condor versions will incorrectly name the variables
from this exampleSTARTD_TEST_MODEandSTARTD_TEST_EXECUTABLEinstead. If
instead, the Daemon ClassAd Hook Manager had been named, using the no-longer-supported
STARTD_CRON_NAME, the code works as expected. For example:

STARTD_CRON_NAME = HAWKEYE
HAWKEYE_JOBLIST = TEST
...
HAWKEYE_TEST_MODE = periodic
HAWKEYE_TEST_EXECUTABLE = $(LIBEXEC)/test
...

This old behavior is, as of Condor version 7.5.6, documented as unsupported and is going
away, primarily because it is confusing. But, for this release, it still works. It is believed that
this same behavior exists in all 7.x releases of Condor, but because the naming feature is used,
the incorrect behavior went undetected.

This affects theSTARTD_CRONandSCHEDD_CRONDaemon ClassAd Hook managers, and
will be fixed in Condor version 7.6.0.

Additions and Changes to the Manual:

• None.

Version 7.5.5

Release Notes:

• Condor version 7.5.5 released on January 26, 2011.

• This version of Condor uses a different layout in the spool directory for storing files
belonging to jobs that are in the queue. Conversion of the spool directory is auto-
matic when upgrading, but be aware thatdowngrading to a previous version of Con-
dor requires extra effort. The procedure for downgrading is either to drain all jobs
with spooled files from the queue, or to manually convert the spool back to the older
format. To manually convert back to the older format, stop Condor and back up the
spool directory in case of problems. Then move all subdirectories matching the form
$(SPOOL)/<#>/<#>/cluster<#>.proc<#>.subproc<#> into $(SPOOL) . Also
do this for any files of the form$(SPOOL)/<#>/cluster<#>.ickpt.subproc<#> .
Edit $(SPOOL)/job_queue.log with a text editor, and change all references to the old
paths to the new paths. Then, remove$(SPOOL)/spool_version . Finally, start up Con-
dor.

• For those who compile Condor from the source code rather than using packages of pre-built
executables, be aware that in this release Condor is built using cmakeinstead ofimake. See
theREADME.building file for the new instructions on how to build Condor.

Condor Version 7.7.6 Manual

9.5. Development Release Series 7.5 689

• This release note serves to remind users that as of Condor version 7.5.1, the RPMs come with
native packaging. Therefore, items are in different locations, as given by FHS locations, such
as/usr/bin , /usr/sbin , /etc , and/var/log . Please see section 3.2.6 for installation
documentation.

• Quill is now available only within the source code distribution of Condor. It is no longer
included in the builds of Condor provided by UW, but it is available as a feature that can
be enabled by those who compile Condor from the source code. Find the code within the
condor_contrib directory, in the directoriescondor_tt andcondor_dbmsd .

• The AIX 5.2 packages in this release have been found to be incompatible with AIX 5.3.

• We are planning to drop support for AIX. Please contact us ifthis is a problem for you.

• The directory structure within the Unix tar file package of Condor has changed. Previously, the
tar file contained a top level directory namedcondor-< version>. The top level directory
is now the same as the tar file name, but without the.tar.gz extension.

• On Unix platforms, the following executables used to be located in both thesbin andbin
directories, but are now only located in thebin directory: condor, condor_checkpoint, con-
dor_reschedule, andcondor_vacate.

• The size of the Condor installation has increased by as muchas 60% compared to Condor
version 7.5.4. We hope to eliminate most of this increase in Condor version 7.5.6.

• Previously, packages containing debug symbols were available for many Unix platforms. In
this release, the debug packages contain full, ‘unstripped’ executables instead of just the debug
symbols.

• The contents of the Windows zip and MSI packages of Condor have changed. Thelib and
libexec folders no longer exist, and all contents previously withinthem are now inbin .
condor_setupandcondor_set_aclshave been moved from the top level directory intobin .

• The Windows MSI installer for Condor version 7.5.5 requires that all previous MSI installa-
tions of Condor be uninstalled. Before uninstalling previous versions, make backup copies of
configuration files. Any settings that need to be preserved must be reapplied to the configura-
tion of the new installation.

• The following list itemizes changes included in this Condor version 7.5.5 release that belong
to Condor version 7.4.5. That stable series version will notyet have been released as this
development version is released.

– condor_dagmannow prints a message in thedagman.out file whenever it truncates a
node job user log file.condor_dagmannow prints additional diagnostic information in
the case of certain log file errors.

– Fixed a bug in which a network disconnect between the submit machine and execute
machine during the transfer of output files caused thecondor_starterdaemon to imme-
diately give up, rather than waiting for thecondor_shadowto reconnect. This problem
was introduced in Condor version 7.4.4.

Condor Version 7.7.6 Manual

9.5. Development Release Series 7.5 690

– Fixed a bug in which ifcondor_ssh_to_jobattempted to connect to a job while the job’s
input files were being transferred, this caused the file transfer to fail, which resulted in
the job returning to the idle state in the queue.

– In privsep mode, the transfer of output failed if a job’s execute directory contained sym-
bolic links to non-existent paths.

New Features:

• Negotiation is now handled asynchronously in thecondor_schedddaemon. This means that
thecondor_scheddremains responsive during negotiation and is less prone to falling behind
on communication withcondor_shadowprocesses.

• Improved monitoring and avoidance of alock convoyproblem observed when there were more
than 30,000condor_shadowprocesses. At this scale, locking thecondor_shadowdaemon’s
log on each write to the log file has been observed on Linux platforms to sometimes result in a
situation where the system does very little productive work, and is instead consumed by rapid
context switching between thecondor_shadowdaemons that are waiting for the lock.

• On Linux platforms, if thecondor_schedddaemon’s spool directory is on an ext3 file system,
Condor can now scale to a larger number of spooled jobs. Previously, Condor created two
subdirectories within the spool directory for each spooledjob and for each running job. The
ext3 file system only supports 31,997 subdirectories. This effectively limited the number of
spooled jobs to less than 16,000. Now, Condor creates a hierarchy of subdirectories within the
spool directory, to increase the limit on the number of spooled jobs in ext3 to 320,000,000,
which is likely to be larger than other limits on the size of the job queue, such as memory.

• Thecondor_shadowdaemon uses less memory than it has since Condor version 7.5.0. Mem-
ory usage should now be similar to the 7.4 series.

• The condor_dagmanandcondor_submit_dagcommand-line flag-DumpRescuecauses the
dump of an incomplete Rescue DAG, when the parsing of the DAG input file fails. This may
help in figuring out what went wrong. See section 2.10.8 for complete details on Rescue
DAGs.

• condor_dagmannow has the capability to create thejobstate.log file needed for the
Pegasus workflow manager. See section 2.10.12 for details.

• condor_waitcan now work on jobs with logs that are only readable by the user runningcon-
dor_wait. Previously, write access to the job’s user log was required.

• Added a new value for the job ClassAd attributeJobStatus . The
TRANSFERRING_OUTPUTstatus is used when transferring a job’s output files after
the job has finished running. Jobs with this status will have theirJobStatus attribute set to
6. The standardcondor_qdisplay will show the job’s status as>.

Configuration Variable and ClassAd Attribute Additions andChanges:

Condor Version 7.7.6 Manual

9.5. Development Release Series 7.5 691

• The new configuration variableLOCK_DEBUG_LOG_TO_APPENDcontrols whether a dae-
mon’s debug lock is used when appending to the log. When the default value ofFalse , the
debug lock is only used when rotating the log file. WhenTrue , the debug lock is used when
writing to the log as well as when rotating the log file. See section 3.3.4 for the complete
definition.

• The new configuration variableLOCAL_CONFIG_DIR_EXCLUDE_REGEXPmay be set to
a regular expression that specifies file names to ignore when looking for configuration files
within the directories specified viaLOCAL_CONFIG_DIR. See section 3.3.3 for the complete
definition.

Bugs Fixed:

• In previous versions of Condor, thecondor_startercould not write the.machine.ad and
.job.ad files to theexecute directory when PrivSep was enabled. This has now been
fixed, and these files are correctly emitted in all cases.

• Since Condor version 7.5.2, the speed ofcondor_qwas not as high as earlier 7.5 and 7.4
releases, especially when retrieving large numbers of jobs. Viewing 100K jobs took about
four times longer. This release fixes the performance, making it about the same as before
Condor version 7.5.2.

• A bug introduced in Condor version 7.5.4 prevented parallel universe jobs with multiplequeue
statements in the submit description file from working withcondor_dagman. This is now
fixed.

• Improved the way Condor daemons send heartbeat messages totheir parent process. This
resolves a problem observed on busy submit machines using thecondor_shared_portdaemon.
The condor_masterdaemon sometimes incorrectly determined that thecondor_scheddwas
hung, and would kill and restart it.

• When the configuration variableNOT_RESPONDING_WANT_COREis True , the con-
dor_masterdaemon now follows up with aSIGKILL , if the child process does not exit within
ten minutes of receivingSIGABRT. This addresses observed cases in which the child process
hangs while writing a core file.

• Host name-based authorization failed in Condor version 7.5.4 under Mac OS X 10.4, because
look ups of the host name for incoming connections failed.

• A bug introduced in Condor version 7.5.0 caused the attributesMyType andTargetType in
offline ClassAds to get set to"(unknown type)" when the offline ClassAd was matched
to a job.

• condor_dagmannow excepts in the case of certain log file errors, when continuing would be
likely to putcondor_dagmaninto an incorrect internal state.

• Fixed a bug that caused DAG node jobs to have their coredumpsize limit set according to the
CREATE_CORE_FILESconfiguration variable, rather than the user’s coredumpsize limit.

Condor Version 7.7.6 Manual

9.5. Development Release Series 7.5 692

• Fixed a case introduced in Condor version 7.5.4 on Windows platforms, in which the following
spurious log message was produced:

SharedPortEndpoint: Destructor: Problem in thread shutdo wn notification: 0

• Since Condor version 7.4.1, Condor-C jobs submitted without file transfer enabled could fail
with the following error in thecondor_starterlog:

FileTransfer: DownloadFiles called on server side

• Fixed a memory leak caused by use of the ClassAdeval() function. This problem was
introduced in Condor version 7.5.2.

• Fixed a bug that could cause thecondor_negotiator daemon to crash when
groups are configured withGROUP_QUOTA_DYNAMIC_<group_name>, or when
GROUP_QUOTA_<group_name>is not defined to be something greater than 0.

• Fixed a bug that caused random characters to appear for the value ofAuthMethods when
logging with D_FULLDEBUGandD_SECURITYenabled. This problem was introduced in
Condor version 7.5.3.

• Fixed a memory leak in thecondor_scheddintroduced in Condor version 7.5.4.

• Fixed a problem introduced in Condor version 7.5.4 that could cause thecondor_schedddae-
mon to enter an infinite loop while in the process of shutting down. For the problem to happen,
it was necessary for flocking to have been enabled.

• Configuration variableSCHEDD_QUERY_WORKERSwas effectively ignored whencondor_q
authenticated itself to thecondor_schedd. The query was always processed in the maincon-
dor_scheddprocess rather than in a sub-process. This problem has existed since before Con-
dor version 7.0.0.

• Fixed a problem affecting jobs that store their output in the condor_schedd’s spool directory.
The problem affected jobs that include an empty directory intheir list of output files to trans-
fer. This problem was introduced in Condor version 7.5.4, when support for the transfer of
directories was added.

• Fixed a problem affecting thecondor_masterdaemon since Condor version 7.5.3. Thecon-
dor_masterdaemon would crash if it was instructed to shut down a daemon that was not
currently running, but which was waiting to be restarted.

• Fixed a bug incondor_submitthat prevented the submission of multiplevm universe jobs in
a single submit file.

• Fixed a bug in thecondor_scheddthat could cause it to temporarily under count the number
of running local and scheduler universe jobs. In Condor version 7.5.4, this under counting
could cause the daemon to crash.

• Fixed a bug that could cause thecondor_gridmanagerto crash if a GAHP server did not
behave as expected on start up.

Condor Version 7.7.6 Manual

9.5. Development Release Series 7.5 693

• Improved the hold reason reported in several failure casesfor CREAM grid jobs.

• TheKFlops attribute reported by

condor_status -run -total

could erroneously be reported as negative. This has been fixed.

• Since Condor version 7.5.4, the refreshing of the proxy forthe job in the remote queue did not
work in Condor-C. Therefore, if the original job proxy expired, the job was halted and put on
hold, even if the proxy had been renewed on the submit machine.

Known Bugs:

• In Condor version 7.5.5, when a running job is put on hold, the job is removed from the job
queue.

Additions and Changes to the Manual:

• None.

Version 7.5.4

Release Notes:

• Condor version 7.5.4 released on October 20, 2010.

• All of the bug fixes and features which are in Condor version 7.4.4 are in this 7.5.4 release.

• The release now contains all header files necessary to compile code that uses the job log
reading and writing utilities contained in libcondorapi. Some headers were missing starting
in Condor 7.5.1.

New Features:

• Concurrency limits now work with parallel universe jobs scheduled by the dedicated sched-
uler.

• Transfer of directories is now supported bytransfer_input_files andtransfer_output_files
for non-grid universes and Condor-C. The auto-selection ofoutput files, however, remains the
same: new directories in the job’s output sandbox arenot automatically selected as outputs to
be transferred.

Condor Version 7.7.6 Manual

9.5. Development Release Series 7.5 694

• Paths other than simple file names with no directory information in transfer_output_files
previously did not have well defined behavior. Now, paths aresupported for non-grid uni-
verses and Condor-C. When a path to an output file or directoryis specified, this specifies the
path to the file on the execute side. On the submit side, the fileis placed in the job’s initial
working directory and it is named using the base name of the original path. For example,
path/to/output_file becomesoutput_file in the job’s initial working directory.
The name and path of the file that is written on the submit side may be modified by using
transfer_output_remaps.

• Thecondor_shared_portdaemon is now supported on Windows platforms.

• Jobs can now by submitted to multiple EC2 servers via the amazon grid type. The server’s
URL must be specified via thegrid_resourcesubmit description file command for each job.
See section 5.3.8 for details.

• The grid universe’s amazon grid type can now be used to submit virtual machine jobs to
Eucalyptus systems via the EC2 interface.

• condor_qnow uses the queue-management API’s projection feature when used with-run ,
-hold, -goodput, -cputime, -currentrun , and-io options when called with no display options
or with -format .

• Decreased the CPU utilization ofcondor_dagmanwhen it is submitting ready jobs into Con-
dor.

• condor_dagmannow logs the number of queued jobs in the DAG that are on hold, as part of
the DAG status message in thedagman.out file.

• condor_dagmannow logs a note in thedagman.out file when thecondor_submit_dagand
condor_dagmanversions differ, even if the difference is permissible.

• Added the capability forcondor_dagmanto create and periodically rewrite a file that lists the
status of all nodes within a DAG. Alternatively, the file may be continually updated as the
DAG runs. See section 2.10.11 for details.

• Thecondor_schedddaemon now uses a better algorithm for determining which flocking level
is being negotiated. No special configuration is required for the new algorithm to work. In the
past, the algorithm depended on DNS and the configuration variablesNEGOTIATOR_HOST
andFLOCK_NEGOTIATOR_HOSTS. In some networking environments, such as that of a
multi-homed central manager, it was difficult to configure things correctly. When wrongly
configured, negotiation would be aborted with the message,Unknown negotiator . The
new algorithm is only used when thecondor_negotiatoris version 7.5.4 or newer. Of course,
thecondor_schedddaemon must still be configured to authorize thecondor_negotiatordae-
mon at theNEGOTIATORauthorization level.

• condor_advertisehas a new option,-multiple , which allows multiple ClassAds to be pub-
lished. This is more efficient than publishing each ClassAd in a separate invocation ofcon-
dor_advertise.

Condor Version 7.7.6 Manual

9.5. Development Release Series 7.5 695

• The condor_job_routeris no longer restricted to routing only vanilla universe jobs. It also
now automatically avoids recursively routing jobs.

• The condor_scheddnow writes the submit event to the user job log. Previously,con-
dor_submitwrote the event.

• Thecondor_schedddaemon now scales better when there are many job auto clusters.

• Thecondor_qcommand with option-run , -hold, -goodput, -cputime, -currentrun or -io is
now much more efficient in its communication with thecondor_schedd.

Configuration Variable and ClassAd Attribute Additions andChanges:

• The new configuration variableSOAP_SSL_SKIP_HOST_CHECKcan be used to disable the
standard check that a SOAP server’s host name matches the host name in its X.509 certificate.
This is useful when submitting grid type amazon jobs to Eucalyptus servers, which often have
certificates with a host name oflocalhost .

• Added default values for<SUBSYS>_LOGconfiguration variables. If a<SUBSYS>_LOG
configuration variable is not set in filescondor_config or condor_config.local , it
will default to$(LOG)/<SUBSYS>LOG.

• The new job ClassAd attributeCommittedSuspensionTime is a running total of
the number of seconds the job has spent in suspension during time in which the
job was not evicted without a checkpoint. This complements the existing attribute
CumulativeSuspensionTime , which includes all time spent in suspension, regardless
of job eviction.

• The new job ClassAd attributesCommittedSlotTime andCumulativeSlotTime are
just like CommittedTime and RemoteWallClockTime respectively, except the new
attributes are weighted by theSlotWeight of the machine(s) that ran the job.

• The new configuration variableSYSTEM_JOB_MACHINE_ATTRSspecifies a list of ma-
chine attributes that should be recorded in the job ClassAd.The default attributes areCpus
and SlotWeight . When there are multiple run attempts, history of machine attributes
from previous run attempts may be kept. The number of run attempts to store is specified
by the new configuration variableSYSTEM_JOB_MACHINE_ATTRS_HISTORY_LENGTH
, which defaults to 1. A machine attribute namedX will be inserted into the job ClassAd
as an attribute namedMachineAttrX0 . The previous value of this attribute will be
namedMachineAttrX1 , the previous to that will be namedMachineAttrX2 , and so
on, up to the specified history length. Additional attributes to record may be specified on
a per-job basis by using the newjob_machine_attrs submit file command. The history
length may also be extended on a per-job basis by using the newsubmit file command
job_machine_attrs_history_length.

• The new configuration variableNEGOTIATION_CYCLE_STATS_LENGTHspecifies how
many recent negotiation cycles should be included in the history that is published in thecon-
dor_negotiator’s ClassAd. The default is 3. See page 239 for the definition ofthis configura-
tion variable, and see page 989 for a list of attributes that are published.

Condor Version 7.7.6 Manual

9.5. Development Release Series 7.5 696

• The configuration variableFLOCK_NEGOTIATOR_HOSTSis now optional. Previously, the
condor_schedddaemon refused to flock without this setting. When this is notset, the ad-
dresses of the flockedcondor_negotiatordaemons are found by querying the flockedcon-
dor_collectordaemons. Of course, thecondor_schedddaemon must still be configured to
authorize thecondor_negotiatordaemon at theNEGOTIATORauthorization level. There-
fore, when using host-based security,FLOCK_NEGOTIATOR_HOSTSmay still be useful as
a macro for inserting the negotiator hosts into the relevantauthorization lists.

• The configuration variableFLOCK_HOSTSis no longer used. For backward compati-
bility, this setting used to be treated as a default forFLOCK_COLLECTOR_HOSTSand
FLOCK_NEGOTIATOR_HOSTS.

• The configuration variableAMAZON_EC2_URLis now only used for previously-submitted
jobs when upgrading Condor to version 7.5.4 or beyond. New grid type amazon jobs must
specify which EC2 service to use by setting thegrid_resourcesubmit description file com-
mand.

• The new job ClassAd attributeNumPids is the total number of child processes a running job
has.

• The new configuration variableDAGMAN_MAX_JOB_HOLDSspecifies the maximum number
of times a DAG node job is allowed to go on hold. See section 3.3.25 for details.

• The configuration variableSTARTD_SENDS_ALIVESnow only needs to be set for the
condor_schedddaemon. Also, the default value has changed toTrue .

• The job ClassAd attributesamazon_user_dataandamazon_user_data_filecan now both be
used for the same job. When both are provided, the two blocks of data are concatenated, with
the value of the one specified byamazon_user_dataoccurring first.

• The new configuration variableGRAM_VERSION_DETECTIONcan be used to disable Con-
dor’s attempts to distinguish betweengt2 (GRAM2) andgt5 (GRAM5) servers. The default
value isTrue . If set toFalse , Condor trusts thegt2 or gt5 value provided in the job’s
grid_resourceattribute.

• The new job ClassAd attributeResidentSetSize is an integer measuring the amount of
physical memory in use by the job on the execute machine in kilobytes.

• The new job ClassAd attributeX509UserProxyExpiration is an integer representing
when the job’s X.509 proxy credential will expire, measuredin the number of seconds since
the epoch (00:00:00 UTC, Jan 1, 1970).

• The new configuration variableSCHEDD_CLUSTER_MAXIMUM_VALUEis an upper bound
on assigned job cluster ids. If set to valueM , the maximum job cluster id assigned to any job
will be M − 1. When the maximum id is reached, assignment of cluster ids will wrap around
back toSCHEDD_CLUSTER_INITIAL_VALUE. The default value is zero, which does not
set a maximum cluster id.

• The default value of configuration variableMAX_ACCEPTS_PER_CYCLEhas been changed
from 1 to 4.

Condor Version 7.7.6 Manual

9.5. Development Release Series 7.5 697

• The configuration variableNEW_LOCKING, introduced in Condor version 7.5.2, has been
changed toCREATE_LOCKS_ON_LOCAL_DISKand now defaults toTrue .

Bugs Fixed:

• Fixed a bug that occurred with x64 flavors of the Windows operating system. Condor was
setting the default value ofArch to INTEL when it should have beenX86_64 . This was
a consequence of the fact that the Condor runs in the WOW64 sandbox on 64-bit Windows.
This was fixed so thatArch would contain the value for the native architecture rather than the
WOW64 sandbox architecture.

• Fixed a bug in the user privilege switching code in Windows that caused thecondor_shadow
daemon to except when thecondor_schedddaemon attempted to re-use it.

• Fixed the output in thecondor_masterdaemon log file to be clearer when an authorized user
tries to usecondor_config_val-setandENABLE_PERSISTENT_CONFIGis False . The
previous output implied that the operation succeeded when,in fact, it did not.

• Since Condor version 7.5.2, the followingcondor_job_router features were effec-
tively non-functional:UseSharedX509UserProxy , JobShouldBeSandboxed , and
JobFailureTest .

• The submit description file commandcopy_to_spooldid not work properly in Condor ver-
sion 7.5.3. When sending the executable to the execute machine, it was transferred from the
original path rather than from the spooled copy of the file.

• When output files were auto-selected and spooled, Condor-Candcondor_transfer_datawould
copy back both the output files and all other contents of the job’s spool directory, which typi-
cally included the spooled input and the user log. Now, only the output files are retrieved. To
adjust which files are retrieved, the job attributeSpooledOutputFiles can be manipu-
lated, but this typically should be managed by Condor.

• The condor_masterdaemon now invalidates its ClassAd, as represented in thecon-
dor_collectordaemon, before it shuts down.

• Fixed a bug that causedvm universe jobs to not run if the VMware.vmx file contained a
space.

• Fixed a bug introduced in Condor version 7.5.1 that caused integers in ClassAd expressions
that had leading zeros to be read as octal (base eight).

• Fixed a bug introduced in Condor version 7.5.1 that did not recognize a semicolon as a sepa-
rator of function arguments in ClassAds.

• Fixed a bug that caused integers larger than±231 in a ClassAd expression to be parsed incor-
rectly. Now, when these integers are encountered, the largest 32-bit integer (with matching
sign) is used.

• Fixed a bug that caused thecondor_gridmanagerto exit when receiving badly-formatted error
messages from thenordugrid_gahp.

Condor Version 7.7.6 Manual

9.5. Development Release Series 7.5 698

• Fixed a problem affecting the use of version 7.5.3condor_startdandcondor_masterdaemons
in a pool with acondor_collectorfrom before version 7.5.2. On shutdown, thecondor_startd
and thecondor_mastercaused allcondor_startdandcondor_masterClassAds, respectively,
to be removed from thecondor_collector.

• Fixed a bug that caused delegation of an X.509 RFC proxy between two Condor processes to
fail.

• Fixed a bug incondor_submitthat would cause failures if a file name containing a space was
used with the submit description file commandsappend_files, jar_files or vmware_dir.

• Fixed a bug that could cause thecondor_gridmanagerto lock up if a GAHP server it was
using wrote a large amount of data to itsstderr .

• Fixed a bug that could cause thecondor_gridmanagerto wrongly conclude that agt2 (that
is, GRAM2) server was agt5 (that is, GRAM5) server. Such a conclusion can be disastrous,
as Condor’s mechanisms to prevent overloading agt2 server are then disabled. The new con-
figuration variableGRAM_VERSION_DETECTIONcan be used to disable Condor’s attempts
to distinguish between the two.

• Fixed a bug introduced in Condor version 7.5.3. When file transfer failed for agrid universe
job of grid type cream, Condor would write a hold event to the job log, but not actually put
the job on hold.

• Fixed a bug in thecondor_gridmanagerthat could cause it to crash while handling cream grid
type jobs destined for different resources.

• Fixed a bug that prevented thecondor_shadowfrom managing additional jobs after its first
job completed whenSEC_ENABLE_MATCH_PASSWORD_AUTHENTICATIONwas set to
True .

• The timestamps in the log defined byPROCD_LOGnow print the real time.

• Fixed how some daemons advertise themselves to thecondor_collector. Now, all daemons
set the attributeMyType to indicate what type of daemon they are.

• condor_chirpno longer crashes on a put operation, if the remote file name isomitted.

• Fixed the packaging of Hadoop File System support in Condor. This includes updating to
HDFS 0.20.2 and making the HDFS web interface work properly.

• Condor no longer tries to invokeglexecif the job’s X.509 proxy is expired.

Known Bugs:

• Using host names for host-based authentication, such as inthe definitions of configuration
variablesALLOW_*andDENY_*, does not work on Mac OS X 10.4. Later versions of the
OS are not affected. As a work around, IP addresses can be usedinstead of host names.

Condor Version 7.7.6 Manual

9.5. Development Release Series 7.5 699

Additions and Changes to the Manual:

• None.

Version 7.5.3

Release Notes:

• Condor version 7.5.3 released on June 29, 2010.

New Features:

• condor_q-analyzenow notices the-l option, and if both are given, then the analysis prints
out the list of machines in each analysis category.

• The behavior of macro expansion in the configuration file haschanged. Previously, most
macros were effectively treated as undefined unless explicitly assigned a value in the
configuration file. Only a small number of special macros had pre-defined values that
could be referred to via macro expansion. Examples includeFULL_HOSTNAMEand
DETECTED_MEMORY. Now, most configuration settings that have default values can be re-
ferred to via macro expansion. There are a small number of exceptions where the default value
is too complex to represent in the current implementation ofthe configuration table. Exam-
ples include the security authorization settings. All suchconfiguration settings will also be
reported as undefined bycondor_config_valunless they are explicitly set in the configuration
file.

• Unauthenticated connections are now identified asunauthenticated@unmapped . Pre-
viously, unauthenticated connections were not assigned a name, so some authorization poli-
cies that needed to distinguish between authenticated and unauthenticated connections were
not expressible. Connections that are authenticated but not mapped to a name by the
mapfile used to be given the nameauth-method@unmappeduser , whereauth-method
is the authentication method that was used. Such connections are now given the name
auth-method@unmapped . Connections that match*@unmapped are now forbidden
from doing operations that require a user id, regardless of configuration settings. Such op-
erations include job submission, job removal, and any otherjob management commands that
modify jobs.

• There has been a change of behavior when authentication fails. Previously, authentication fail-
ure always resulted in the command being rejected, regardless of whether the ALLOW/DENY
settings permitted unauthenticated access or not. This is still true if either the client or server
specifies that authentication is required. However, if bothsides specify that authentication
is not required (i.e. preferred or optional), then authentication failure only results in the
command being rejected if the ALLOW/DENY settings reject unauthenticated access. This
change makes it possible to have some commands accept unauthenticated users from some
network addresses while only allowing authenticated usersfrom others.

Condor Version 7.7.6 Manual

9.5. Development Release Series 7.5 700

• Improved log messages when failing to authenticate requests. At least the IP address of the
requester is identified in all cases.

• The new submit file commandjob_ad_information_attrs may be used to specify attributes
from the job ad that should be saved in the user log whenever a new event is being written.
See page 900 for details.

• Administrative commands now support the-constraint option, which accepts a ClassAd ex-
pression. This applies tocondor_checkpoint, condor_off, condor_on, condor_reconfig, con-
dor_reschedule, condor_restart, condor_set_shutdown, andcondor_vacate.

• File transfer plugins can be used for vm universe jobs. Notably, file:// URLs can be used
to allow VM image files to be pre-staged on the execute machine. The submit description file
commandvmware_dir is now optional. If it is not given, then all relevant VMware image
files must be listed intransfer_input_files, possibly as URLs.

• File transfers for CREAM grid universe jobs are now initiated by thecondor_gridmanager.
This removes the need for a GridFTP server on the client machine.

• Improved the parallelism of file transfers for nordugrid jobs.

• Removed the distinction between regular and full reconfiguration of Condor daemons. Now,
all reconfigurations are full and require the WRITE authorization level.condor_reconfigac-
cepts but ignores the-full command-line option.

• Thebatch_gahp, used for pbs and lsf grid universe jobs, has been updated from version 1.12.2
to 1.16.0.

• condor_dagmannow prints a message to thedagman.out file when it truncates a node job
user log file.

• condor_dagmannow allows node categories to include nodes from different splices. See
section 2.10.7 for details.

• condor_dagmannow allows category throttles in splices to be overridden byhigher levels in
the DAG splicing structure. See section 2.10.7 for details.

• Daemon logs can now be rotated several times instead of onlyonce into a single.old file.
In order to do so, the newly introduced configuration variable MAX_NUM_<SUBSYS>_LOG
needs to be set to a value greater than 1. The file endings will be ISO timestamps, and the

oldest rotated file will still have the ending.old .

Configuration Variable and ClassAd Attribute Additions andChanges:

• The new configuration variableJOB_ROUTER_LOCKspecifies a lock file used to en-
sure that multiple instances of thecondor_job_routernever run with the same values of
JOB_ROUTER_NAME. Multiple instances running with the same name could lead tomis-
management of routed jobs.

Condor Version 7.7.6 Manual

9.5. Development Release Series 7.5 701

• The new configuration variableROOSTER_MAX_UNHIBERNATEis an integer specifying
the maximum number of machines to wake up per cycle. The default value of 0 means no
limit.

• The new configuration variableROOSTER_UNHIBERNATE_RANKis a ClassAd expres-
sion specifying which machines should be woken up first in a given cycle. Higher ranked
machines are woken first. If the number of machines to be wokenup is limited by
ROOSTER_MAX_UNHIBERNATE, the rank may be used for determining which machines
are woken before reaching the limit.

• The new configuration variableCLASSAD_USER_LIBSis a list of libraries containing ad-
ditional ClassAd functions to be used during ClassAd evaluation.

• The new configuration variableSHADOW_WORKLIFEspecifies the number of seconds after
which thecondor_shadowwill exit, when the current job finishes, instead of fetchinga new
job to manage. Having thecondor_shadowcontinue managing jobs helps reduce overhead
and can allow thecondor_scheddto achieve higher job completion rates. The default is 3600,
one hour. The value 0 causescondor_shadowto exit after running a single job.

• The new configuration variableMAX_NUM_<SUBSYS>_LOGwill determine how often the
daemon log ofSUBSYSwill rotate. The default value is 1 which leads to the old behavior of
a single rotation into a.old file.

Bugs Fixed:

• Configuration variables with a default value of 0 that were not defined in the configuration file
were treated as though they were undefined bycondor_config_val. Now Condor treats this
case like any other: the default value is displayed.

• Starting in Condor version 7.5.1, using literals with a logical operator in a ClassAd expression
(for example,1 || 0) caused the expression to evaluate to the valueERROR. The previous
behavior has been restored: zero values are treated asFalse , and non-zero values are treated
asTrue .

• Starting in Condor version 7.5.0, thecondor_scheddno longer supported queue
management commands when security negotiation was disabled, for example, if
SEC_DEFAULT_NEGOTIATION = NEVER.

• Fixed a bug introduced in Condor version 7.5.1. ClassAd string literals containing characters
with negative ASCII values were not accepted.

• Fixed a bug introduced in Condor version 7.5.0, which caused Condor to not renew job leases
for CREAM grid jobs in most situations.

• Question marks occurring in a ClassAd string are no longer preceded by a backslash when the
ClassAd is printed.

Known Bugs:

Condor Version 7.7.6 Manual

9.5. Development Release Series 7.5 702

• None.

Additions and Changes to the Manual:

• None.

Version 7.5.2

Release Notes:

• Condor version 7.5.2 released on April 26, 2010.

• Condor no longer supports SuSE 8 Linux on the Itanium 64 architecture.

• The following submit description file commands are no longer recognized. Their functionality
is replaced by the commandgrid_resource.

grid_type

globusscheduler

jobmanager_type

remote_schedd

remote_pool

unicore_u_site

unicore_v_site

New Features:

• Thecondor_schedddaemon uses less disk bandwidth when logging updates to job ClassAds
from running jobs and also when removing jobs from the queue and handling job eviction
andcondor_shadowexceptions. This should improve performance in situationswhere disk
bandwidth is a limiting factor. Some cases of updates to the job user log have also been
optimized to be less disk intensive.

• Thecondor_schedddaemon uses less CPU when scheduling some types of job queues. Most
likely to benefit from this improvement is a large queue of short-running, non-local, and non-
scheduler universe jobs, with at least one idle local or scheduler universe job.

• The condor_scheddautomatically grants thecondor_startdauthority to renew leases on
claims and to evict claims. Previously, this required that thecondor_startdbe trusted for gen-
eral DAEMON-level command access. Now this only requiresREAD-level command access.
The specific commands that thecondor_startdsends to thecondor_scheddcan effectively
only operate on the claims associated with thatcondor_startd, so this change does not open
up these operations to access by anyone withREADaccess. It reduces the level of trust that
thecondor_scheddmust have in thecondor_startd.

Condor Version 7.7.6 Manual

9.5. Development Release Series 7.5 703

• The condor_procd’s log now rotates if logging is activated. The default maximum size is
10Mbytes. To change the default, use the configuration variableMAX_PROCD_LOG.

• For Unix systems only, user job log and global job event log lock files can now optionally be
created in a directory on a local drive by settingNEW_LOCKINGto True . See section 3.3.4
for the details of this configuration variable.

• condor_dagmanandcondor_submit_dagnow default to lazy creation of the.condor.sub
files for nested DAGs.condor_submit_dagno longer creates them, andcondor_dagmanitself
creates the files as the DAG is run. The previous "eager" behavior can be obtained with a
combination of command-line and configuration settings. There are several advantages to the
"lazy" submit file creation:

– The DAG file for a nested DAG does not have to exist until that node is ready to run, so
the DAG file can be dynamically created by earlier parts of thetop-level DAG (including
by the PRE script of the nested DAG node).

– It is now possible to have nested DAGs within splices, which is not possible with "eager"
submit file creation.

Configuration Variable and ClassAd Attribute Additions andChanges:

• The new configuration variableDAGMAN_GENERATE_SUBDAG_SUBMITScontrols
whethercondor_dagmanitself generates the.condor.sub files for nested DAGs, rather
than relying oncondor_submit_dag"eagerly" creating them. See section 3.3.25 for more
information.

• The new configuration variableNEW_LOCKINGcan specify that job user logs and the global
job event log to be written to a local drive, avoiding lockingproblems with NFS. See sec-
tion 3.3.4 for the details of this configuration variable.

Bugs Fixed:

• Thecondor_job_routerfailed to work on SLES 9 PowerPC, AIX 5.2 PowerPC, and YDL 5
PowerPC due to a problem in how it detected EOF in the job queuelog.

• When jobs are removed, thecondor_scheddsometimes did not quickly reschedule a different
job to run on the slot to which the removed job had been matched. Instead, it would take up
to SCHEDD_INTERVALseconds to do so.

• Fixed a bug introduced in Condor version 7.5.1 that caused the gahp_serverto crash when
first communicating with most gt2 or gt5 GRAM servers.

Known Bugs:

• None.

Condor Version 7.7.6 Manual

9.5. Development Release Series 7.5 704

Additions and Changes to the Manual:

• None.

Version 7.5.1

Release Notes:

• Condor version 7.5.1 released on March 2, 2010.

• Some, but not all of the bug fixes and features which are in Condor version 7.4.2, are in this
7.5.1 release.

• The Condor release is now available as a proper RPM or Debianpackage.

• Condor now internally uses the version of New ClassAds provided as a stand-alone library
(http://www.cs.wisc.edu/condor/classad/). Previously, Condor used an older version of Class-
Ads that was heavily tied to the Condor development libraries. This change should be trans-
parent in the current development series. In the next development series (7.7.x), Condor will
begin to use features of New ClassAds that were unavailable in Old ClassAds. Section 4.1.1
details the differences.

• HPUX 11.00 is no longer a supported platform.

New Features:

• A port number defined withinCONDOR_VIEW_HOSTmay now use a shared port.

• Thecondor_masterno longer pauses for 3 seconds after starting thecondor_collector. How-
ever, if the configuration variableCOLLECTOR_ADDRESS_FILEdefines a file, thecon-
dor_masterwill wait for that file to be created before starting other daemons.

• In the grid universe, Condor can now automatically distinguish between GRAM2 and
GRAM5 servers, that is grid typesgt2 and gt5. Users can submit jobs using a grid type
of gt2 or gt5 for either type of server.

• Grid universe jobs using the CREAM grid system now batch up common requests into larger
single requests. This reduces network traffic, increases the number of parallel tasks the Condor
can handle at once, and reduces the load on the remote gatekeeper.

• The new submit description file commandcream_attributes sets additional attribute/value
pairs for the CREAM job description that Condor creates whensubmitting a grid universe job
destined for the CREAM grid system.

• The condor_qcommand with option-analyze is now performs the same analysis as previ-
ously occurred with the-better-analyzeoption. Therefore, the output ofcondor_qwith the
-analyzeoption has different output than before. The-better-analyzeoption is still recog-
nized and behaves the same as before, though it may be removedfrom a future version.

Condor Version 7.7.6 Manual

http://www.cs.wisc.edu/condor/classad/

9.5. Development Release Series 7.5 705

• Security sessions that are not used for longer than an hour are now removed from the security
session cache to limit memory usage.

• The number of security sessions in the cache is now advertised in the daemon ClassAd as
MonitorSelfSecuritySessions .

• condor_dagmannow has the capability to run DAGs containing nodes that are declared to be
NOOPs – for these nodes, a job is never actually submitted. See section 2.10.2 for information.

• The submit file attributevm_macaddr can now be used to set the MAC address for vm uni-
verse jobs that use VMware. The range of valid MAC addresses is constrained by limits
imposed by VMware.

• Thecondor_qcommand with option-globusis now much more efficient in its communication
with thecondor_schedd.

Configuration Variable and ClassAd Attribute Additions andChanges:

• The new configuration variableSTRICT_CLASSAD_EVALUATIONcontrols whether new
or old ClassAd expression evaluation semantics are used. Innew ClassAd semantics, an
unscoped attribute reference is only looked up in the local ad. The default is False (use old
ClassAd semantics).

• The configuration variableDELEGATE_FULL_JOB_GSI_CREDENTIALSnow applies to
all proxy delegations done between Condor daemons and tools. The value is a boolean and
defaults toFalse , which means that when doing delegation Condor will now create a limited
proxy instead of a full proxy.

• The new configuration variableSEC_<access-level>_SESSION_LEASE specifies the
maximum number of seconds an unused security session will bekept in a daemon’s session
cache before being removed to save memory. The default is 3600. If the server and client
have different configurations, the smaller one will be used.

Bugs Fixed:

• The default value forSEC_DEFAULT_SESSION_DURATIONwas effectively 3600 in Con-
dor version 7.5.0. This produced longer than desired cachedsessions for short-lived tools such
ascondor_status. It also produced shorter than possibly desired cached sessions for long-lived
daemons such ascondor_startd. The default has been restored to what it was before Condor
version 7.5.0, with the exception ofcondor_submit, which has been changed from 1 hour to
60 seconds. For command line tools, the default is 60 seconds, and for daemons it is 1 day.

• SEC_<access-level>_SESSION_DURATION previously did not support integer ex-
pressions, but it did not detect invalid input, so the use of an expression could produce unex-
pected results. Now, like other integer configuration variables, a constant expression can be
used and input is fully validated.

Condor Version 7.7.6 Manual

9.5. Development Release Series 7.5 706

• The configuration variableLOCAL_CONFIG_DIRis no longer ignored if defined in a local
configuration file.

• Removed the incorrect issuing of the following Condor version 7.5.0 warning to thecon-
dor_starter’s log, even when the outdated, and no longer used configuration variable
EXECUTE_LOGIN_IS_DEDICATEDwas not defined.

WARNING: EXECUTE_LOGIN_IS_DEDICATED is deprecated.
Please use DEDICATED_EXECUTE_ACCOUNT_REGEXP instead.

Known Bugs:

• None.

Additions and Changes to the Manual:

• None.

Version 7.5.0

Release Notes:

• All bug fixes and features which are in 7.4.1 are in this 7.5.0release.

New Features:

• Added the new daemoncondor_shared_portfor Unix platforms (except for HPUX). It allows
Condor daemons to share a single network port. This makes opening access to Condor through
a firewall easier and safer. It also increases the scalability of a submit node by decreasing port
usage. See section 3.3.34 for more information.

• Improved CCB’s handling of rude NAT/firewalls that silently drop TCP connections.

• Simplified the publication of daemon addresses.PublicNetworkIpAddr and
PrivateNetworkIpAddr have been removed.MyAddress contains both public and
private addresses. For now,<Subsys>IpAddr contains the same information. In a future
release, the latter may be removed.

• Changes to TCP_FORWARDING_HOST, PRIVATE_NETWORK_ADDRESS, and
PRIVATE_NETWORK_NAMEcan now be made without requiring a full restart. It may
take up to onecondor_collectorupdate interval for the changes to become visible.

Condor Version 7.7.6 Manual

9.5. Development Release Series 7.5 707

• Network compatibility with Condor prior to 6.3.3 is no longer supported unless
SEC_CLIENT_NEGOTIATIONis set toNEVER. This change removes the risk of commu-
nication errors causing performance problems resulting from automatic fall-back to the old
protocol.

• For efficiency, authentication between thecondor_shadowand condor_schedddaemons is
now able to be cached and reused in more cases. Previously, authentication for updating job
information was only cached if read access was configured to require authentication.

• condor_config_valwill now report the default value for configuration variables that are not
set in the configuration files.

• Thecondor_gridmanagernow uses a single status call to obtain the status of all CREAMgrid
universe jobs from the remote server.

• Thecondor_gridmanagerwill now retry CREAM commands that time out.

• Forwarding a renewed proxy for CREAM grid universe jobs to the remote server is now much
more efficient.

Configuration Variable and ClassAd Attribute Additions andChanges:

• Removed the configuration variableCOLLECTOR_SOCKET_CACHE_SIZE. Configuration
of this parameter used to be mandatory to enable TCP updates to thecondor_collector. Now
no special configuration of thecondor_collectoris required to allow TCP updates, but it is
important to ensure that there are sufficient file descriptors for efficient operation. See sec-
tion 3.7.4 for more information.

• The new configuration variableUSE_SHARED_PORTis a boolean value that specifies
whether a Condor process should rely on thecondor_shared_portdaemon for receiving
incoming connections. Write access toDAEMON_SOCKET_DIRis required for this to
take effect. The default isFalse . If set to True , SHARED_PORTshould be added to
DAEMON_LIST. See section 3.3.34 for more information.

• Added the new configuration variableCCB_HEARTBEAT_INTERVAL. It is the maximum
number of seconds of silence on a daemon’s connection to the CCB server after which it
will ping the server to verify that the connection still works. The default value is 1200 (20
minutes). This feature serves to both speed up detection of dead connections and to generate
a guaranteed minimum frequency of activity to attempt to prevent the connection from being
dropped.

Bugs Fixed:

• Fixed problem with a ClassAd debug function, so it now properly emits debug information
for ClassAdIfThenElse clauses.

Known Bugs:

Condor Version 7.7.6 Manual

9.6. Stable Release Series 7.4 708

• None.

Additions and Changes to the Manual:

• None.

9.6 Stable Release Series 7.4

This is a stable release series of Condor. As usual, only bug fixes (and potentially, ports to new plat-
forms) will be provided in future 7.4.x releases. New features will be added in the 7.5.x development
series.

The details of each version are described below.

Version 7.4.5

Release Notes:

• Condor version 7.4.5 not yet released.

New Features:

• condor_dagmannow prints a message in thedagman.out file whenever it truncates a node
job user log file.

• condor_dagmannow prints additional diagnostic information in the case ofcertain log file
errors.

Configuration Variable and ClassAd Attribute Additions andChanges:

• None.

Bugs Fixed:

• A network disconnect between the submit machine and execute machine during the transfer
of output files caused thecondor_starterdaemon to immediately give up, rather than waiting
for thecondor_shadowto reconnect. This problem was introduced in Condor version7.4.4.

• If condor_ssh_to_jobattempted to connect to a job while the job’s input files were being
transferred, this caused the file transfer to fail, which resulted in the job returning to the idle
state in the queue.

Condor Version 7.7.6 Manual

9.6. Stable Release Series 7.4 709

• In privsep mode, the transfer of output failed if a job’s execute directory contained symbolic
links to non-existent paths.

Known Bugs:

• None.

Additions and Changes to the Manual:

• None.

Version 7.4.4

Release Notes:

• Condor version 7.4.4 released on October 18, 2010.

• Security Item: This release fixes a bug in which Amazon EC2 jobs (jobs withuniverse = grid
andgrid_resource = amazon) that use theamazon_keypair_filecommand may expose the
private SSH key to other users. The created file had insecure permissions, allowing other users
on the submit host to read the file. Any other user who could seethe file could learn about
these EC2 jobs usingcondor_q, and the other user could then connect to them with the private
SSH key.

To work around the bug without installing this release, do one or both of the following:

– Do not use the submit description file commandamazon_keypair_file.

– Ensure that the directory holding the private SSH key has suitably restrictive permis-
sions, such that other users cannot read files inside the directory.

• Condor can now be built on Mac OS X 10.6.

• The condor_master shutdown program, which is configured via the
MASTER_SHUTDOWN_<Name> configuration variable, is now run with root (Unix)
or administrator (Windows) privileges. The adminstrator must ensure that this cannot be used
in such a way as to violate system integrity.

New Features:

• load_profile is now supported by the Unix version ofcondor_submitwhen submitting jobs
to Windows. Previously, this command was only supported by the Windows version ofcon-
dor_submit.

• Added an example Mac OS X launchd configuration file for starting Condor.

Condor Version 7.7.6 Manual

9.6. Stable Release Series 7.4 710

Configuration Variable and ClassAd Attribute Additions andChanges:

• None.

Bugs Fixed:

• Fixed bad behavior incondor_quillwhere, under certain error conditions, many copies of the
schedd_sql.log file would be inserted into the database, filling up the disk volume used
by the database. As a consequence of this bug fix, theLogBody column for each row in the
Error_SqlLogs table will be empty. Please consult thecondor_quilldaemon log file for
the error instead.

• Fixed a bug with how thestandard universe remote system callgetrlimit() functioned.
Under certain conditions with 32-bit and 64-bitstandard universe binaries,getrlimit()
would erroneously report 2147483647 bytes as a limit, whenRLIM_INFINITY should have
been the correct response.

• Fixed a misleading error message issued bycondor_run, which stated

The DAGMan job was aborted by the user.

when the job submitted bycondor_runwas aborted by the user. It now states

The job was aborted by the user.

• When thecondor_startddaemon is running with an execute directory on a very large file
system, with more than 32 bits worth of free blocks on a 32-bitsystem, it would incorrectly
report 0 free bytes. This has been fixed.

• For spooled jobs, input files were sometimes transferred twice from the submit machine to the
execute machine. This happened if the input files were specified without any path information,
as with a file name with no directory specified. This problem has existed since before Condor
version 7.0.0.

• The configuration variableNETWORK_INTERFACEdid not work in some situations, because
of Condor’s attempts to automatically rewrite published addresses to match the IP address of
the network interface used to make the publication.

• Fixed a bug in which the default unit of configuration variable
STARTD_CRON_TEST_PERIODshould have been seconds, but instead wasUndefined .

• Fixed a bug in whichcondor_submitchecked for badcondor_scheddcron arguments incor-
rectly within a submit description file. Nowcondor_submitwill detect the problem and print
out an error message.

• With some versions ofssh, condor_ssh_to_jobfailed if theSHELLenvironment variable was
set to/bin/csh.

Condor Version 7.7.6 Manual

9.6. Stable Release Series 7.4 711

• Submission ofvm universe jobs via Globus was not possible, because the Globus Condor
jobmanager explicitly set the input, output, and error filesto /dev/null , andcondor_submit
refused any setting of these files forvm universe jobs. Now,/dev/null is an allowed setting
for the input, output, and error files forvm universe jobs.

• Fixed a bug that caused avm universe job’s output files to be incorrectly transferred back to
the submit machine, when the submit description file commandvm_no_output_vmwas set
to false , indicating that no files should be transferred.

• String literals within$$([]) expressions within a submit description file failed to be eval-
uated and resulted in the job going on hold. This problem has existed since before Condor
7.0.0.

• condor_preenwas not able to clean up files in theEXECUTEdirectory when in privsep mode.

• A problem was fixed that could cause a Condor daemon that connects to other daemons via
CCB to permanently run out of space for more registered sockets until restarted. This problem
appeared in the logs as the following message:

file descriptor safety level exceeded

• Fixed a problem that could cause thecondor_collectorto crash when receiving updated
matchmaking information for offline ClassAds that do not exist.

• condor_ssh_to_jobdid not work when SEC_DEFAULT_NEGOTIATIONwas set to
OPTIONAL.

• Thevm universe now works properly on machines that have Condor’s Privilege Separation
mechanism enabled.

• condor_submitno longer pads avm universe job’s disk usage estimation by 100MB.

• Fixed a bug with thevm_cdrom_files submit file command, that caused VMwarevm
universe jobs to fail if the virtual machine already had a CD-ROM image associated with it.

• Configuration variablesSOAP_SSL_CA_DIRandSOAP_SSL_CA_FILEare now properly
used when authenticating with Amazon EC2 servers.

• Fix a bug with the<subsys>_LOCK configuration variable. It could let daemons writing to
the same daemon log overwrite each other’s entries and causedaemons to exit when the log
is rotated.

• Fixed a bug that caused nordugrid jobs to fail if thegrid_resourceattribute included a port as
part of the server host name.

• Fixed a confusing error message mentioningLocalUserLog::logStarterError()
when thecondor_starterfails to communicate with thecondor_shadowbefore the job has
started.

Condor Version 7.7.6 Manual

9.6. Stable Release Series 7.4 712

• Fixed the event log and shadow log for standard universe jobs to identify the checkpoint server
on which a job might have failed to store its checkpoint or from which it might have failed to
restore its checkpoint.

• Fixed a bug in thecondor_gridmanagerthat could cause it to crash while handling grid-type
cream jobs.

• Improved thecondor_gridmanager’s handling of grid-type cream jobs that are held or re-
moved by the user. Canceling the cream job is much less likelyto fail and jobs can no longer
get stuck in the cream state of CANCELED.

• Fixed the web server feature controlled byENABLE_WEB_SERVER. Previously, all HTTP
GET requests would fail on non-linux Unix machines.

Known Bugs:

• None.

Additions and Changes to the Manual:

• The Windows platform installation instructions have beenupdated.

• Section 2.5.4 on Condor’s File Transfer Mechanism has beenrevised and updated.

• Section??, providing examples of utilizing ClassAd expressions within the -constraint op-
tion of condor_qor condor_statuscommands has been expanded to clarify both Unix and
Windows platform specifics.

Version 7.4.3

Release Notes:

• Condor version 7.4.3 released on August 16, 2010.

New Features:

• None.

Configuration Variable and ClassAd Attribute Additions andChanges:

• The new configuration variableENABLE_CHIRP defaults toTrue . An administrator may
set it toFalse , which disables Chirp remote file access from execute machines.

Condor Version 7.7.6 Manual

9.6. Stable Release Series 7.4 713

• The new configuration variableENABLE_ADDRESS_REWRITINGdefaults toTrue . It
may be set toFalse to disable Condor’s dynamic algorithm for choosing which IPaddress
to publish in multi-homed environments. The dynamic algorithm chooses the IP address
associated with the network interface used to make the publication, for example, the network
interface used to communicate with thecondor_collector.

• Configuration variableVM_BRIDGE_SCRIPThas been removed and is no longer valid.

• The new configuration variableVM_NETWORKING_BRIDGE_INTERFACEspecifies the
networking interface that Xen or KVMvm universe jobs will use. See section 3.3.28 for
documentation.

• Allowed the configuration file entries GSI_DAEMON_TRUSTED_CA_DIRand
GSI_DAEMON_DIRECTORYto be set with environment variables, as the rest of Con-
dor configuration variables can be.

Bugs Fixed:

• When using file transfer semantics, if the job exited in sucha manner so as to not produce all
output files specified intransfer_output_files, then which files were transferred was poten-
tially incorrect. Now, all existing files are transferred back, and the files which are not able to
be transferred back due to non-existence appear as zero length files. An example of when this
occurred would be the job dumping core and then being placed on hold.

• Fetch work hooks to prepare are now invoked as thecondor user, instead of as the job user.

• Improved the file extension detection on Windows platforms.

• condor_waitcould occasionally get stuck in an infinite loop, if it missedthe execution event
of the job it is waiting for. This is now fixed.

• Fixed a bug within thecondor_startdcron capabilities, that only occurred on Windows plat-
forms.condor_startdcron scripts failed to run if an initial directory was left unspecified.

• Fixed a bug in which a job would be incorrectly placed on hold, with a confusing error mes-
sage that appeared similar to

Condor failed to start your job 9090.-1 because job attribut e Args contains $$(VirtualMachineID).

This occurred if the submit commandcopy_to_spoolwastrue , the submit description file
for the job contained $$ macros, andcondor_preenran after the job was submitted and before
it started.

• Added the jobs_vertical_history table to the list of tables thatcondor_quillperiodically re-
indexes.

• Fixed bug incondor_preenin which it would deletecondor_startddaemon history files.

Condor Version 7.7.6 Manual

9.6. Stable Release Series 7.4 714

• Fixed a bug where if a user job using file transfer withtransfer_output_files and
when_to_transfer_outputis set toON_EXIT_OR_EVICTfails to produce all of the speci-
fied files and exit, as when core dumping due to a fault, then thestdout, stderr, and core file of
the job were not transferred back to the submitting machine.

• Fixed numerous, small, rare memory leaks.

• Fixed a bug in which processor affinity settings were ignored if privilege separation was en-
abled.

• Network connections for Condor file transfers were ignoring private network settings. The
connection from the execute node to the submit node always attempted to use the public
network address of the submit machine.

• The configuration variableTCP_FORWARDING_HOSTdid not work in some situations be-
cause of Condor’s attempts to automatically rewrite published addresses to match the IP ad-
dress of the network interface used to make the publication.

• A single job could match multiple offline slots in a single negotiation cycle. This prob-
lem could causecondor_roosterto wake up too many offline machines for the number of
jobs available to run on them. The fix for this problem requires updating both thecon-
dor_negotiatorand thecondor_schedd.

• Fixed a problem that caused thecondor_startddaemon to crash in some cases when
STARTD_SENDS_ALIVESwasTrue . This setting isFalse by default.

• Fixed a problem where thecondor_kbddhas a chance of entering an infinite loop on platforms
that use X-Windows. Microsoft Windows and Mac OS X platformswere not affected. This
bug is present in all earlier 7.4.x Condor releases.

• The default path tosftp-serverhas been improved, so thatcondor_ssh_to_jobcan usesftp
out-of-the-box on RedHat Enterprise Linux 5 platforms.

• A nordugrid_gahpbinary built on RedHat Enterprise Linux 3 no longer crashes when run on
a RedHat Enterprise Linux 4 or Scientific Linux 4 machine.

• Fixed a bug incondor_rmthat caused it to misinterpret user names that begin with a digit,
such as4abc . It incorrectly used them as cluster numbers.

• Fixed a bug that caused thecondor_startdto invoke the “power_state” plug-in as the condor
user. This caused hibernation to fail because power_state requires root privileges to function
properly.

• Fixed a bug that could cause thecondor_scheddto crash if there were any idle scheduler
universe jobs when files were staged into thecondor_scheddfor a new job.

• Fixed a bug in thenordugrid_gahpthat could cause it to exit when connecting to a misconfig-
ured LDAP server.

• Fixed a bug that prevented the log file defined with the configuration variable
NEGOTIATOR_MATCH_LOGfrom rotating. See section 3.3.4 for the definition of this vari-
able.

Condor Version 7.7.6 Manual

9.6. Stable Release Series 7.4 715

• Fixed a bug that causedstartd_cronjobs to fail on Windows. This bug is present in all earlier
7.4.x Condor releases.

• The submit description file commandvm_cdrom_filesnow works properly with Windows
execute machines. Previously, creation of the ISO file wouldfail, causing job execution to be
aborted.

• Fixed a bug that caused thecondor_startdto invoke thepower_stateplug-in as the condor
user. This caused hibernation to fail, becausepower_staterequires root privileges to function
properly.

Known Bugs:

• None.

Additions and Changes to the Manual:

• Searching the PDF version of the manual for items containing underscore characters, such as
many configuration variable names, now works correctly.

• The new subsection 4.1.3 provides examples of evaluation results when using the operators
==, =?=, != , and=!= .

• Section 2.11 with specifics onvm universe jobs has been updated to contain more details
about both checkpoints andvm universe jobs in general.

Version 7.4.2

Release Notes:

• Condor version 7.4.2 released on April 6, 2010.

New Features:

• None.

Configuration Variable and ClassAd Attribute Additions andChanges:

• WhenWANT_SUSPENDis defined and evaluates to anything other than the valueTrue , it
is now utilized as if it wereFalse . If WANT_SUSPENDis not explicitly defined, thecon-
dor_startdexits with an error message. Previously, ifUndefined , it was treated as an error,
which caused thecondor_startdto exit with an error message.

Condor Version 7.7.6 Manual

9.6. Stable Release Series 7.4 716

Bugs Fixed:

• Fixed a bug in which thecondor_scheddwould sometimes negotiate for and try to run more
jobs than specified byMAX_RUNNING_JOBS. Once the jobs started running, it would then
kill them off to get back below the limit. This was more likelyto happen with slow preemp-
tion caused byMaxJobRetirementTime or by a large timeout imposed byKILL . This
problem has existed since before Condor 6.5. When this problem happened, the following
message appeared in thecondor_scheddlog:

Preempting X jobs due to MAX_JOBS_RUNNING change

• Fixed a problem that causedcondor_ssh_to_jobto fail to connect to a job running on a slot
with multiple ’@’ signs in its name. This bug has existed since the introduction ofcon-
dor_ssh_to_jobin 7.3.2.

• In all previous versions of Condor,condor_statusrefused to accept-long, -xml, and-format
when followed by an argument such as-master that specified which type of daemon to look
at. The order of the arguments had to be reversed or it would produce a message such as the
following:

Error: arg 4 (-master) contradicts arg 1 (-format)

• Fixed a bug which caused thecondor_masterto crash ifVIEW_SERVERwas included in
DAEMON_LISTandCONDOR_VIEW_HOSTwas unset.

• Fixed a bug that caused configuration parameterLOCAL_CONFIG_DIRto be ignored if it
was set in a local configuration file, as opposed to the top-level configuration file.

• Fixed a bug that could cause thecondor_scheddto behave incorrectly when reading an invalid
job queue log on startup.

• Fixed a bug that could corrupt the job queue log if thecondor_schedddaemon’s attempt to
compact it fails.

• Fixed a problem that in rare cases caused thecondor_scheddto crash shortly after thecon-
dor_gridmanagerexited. This bug has existed since before Condor version 6.8.

• Fixed a problem that was resulting in messages such as the following:

ERROR: receiving new UDP message but found a long message sti ll waiting
to be closed (consumed=0). Closing it now.

• The file extension specified tocondor_fetch_logcan no longer contain a path delimiter.

• When in graceful shutdown mode, thecondor_scheddwas sometimes starting idle scheduler
universe jobs. With a large enough number of scheduler universe jobs, this could lead to a
cycle of stopping and restarting jobs until the graceful shutdown time expired.

Condor Version 7.7.6 Manual

9.6. Stable Release Series 7.4 717

• Fixed multiple bugs that prevented Condor from building onor running correctly on OpenSo-
laris X86/64 version 2009.06.

• Fixed a bug which caused thecondor_startdto incorrectly count the number of processors on
some machines with Hyper-threading enabled. This bug was introduced in Condor version
7.3.2, and exists in 7.4.0 and 7.4.1.

• Fixed a problem with GSI authentication in Condor that would cause daemons to consume
more and more memory over time. The biggest source of troublewas introduced in Condor
version 7.3.2. However, a smaller memory leak that existed in all previous versions of Condor
has also been fixed.

• Fixed a bug where ifcondor_compileis invoked in a manner such as:

condor_compile gcc -print-prog-name=ld

an error would be emitted, andcondor_compilewould exit with a bad exit code.

• The sort based oncondor_statusoutput accidentally changed in Condor version 7.3, so that
the output was based on the slot name first, then machine name.The behavior is now restored
to the original sorting: first on machine name, then slot name.

• If one machine running a parallel job crashed, and job leases are enabled (which they are by
default), the job would not exit until the job lease durationexpired. As thecondor_starterwill
not get respawned, there is no need to wait. Many sites set long job lease durations, to prevent
jobs from being killed when the machine running thecondor_schedddaemon reboots. Now,
if one node goes away, the whole computation is shut down immediately.

• Fixed the verbosity level of somecondor_dagmanmessages written to thedagman.out file.

• Fixed a bug introduced in Condor version 7.3.2 that resulted in messages such as the follow-
ing even in cases where no problem in communicating with thecondor_collectorhad been
encountered:

Collector <X> is still being avoided if an alternative succe eds.

This problem was believed to be fixed in Condor 7.4.1, but somecases of the problem re-
mained in that version.

• Fixed a bug from Condor version 6.1.14, that resulted in thecondor_scheddperforming the
operation scheduled viaWALL_CLOCK_CKPT_INTERVALat the specified frequency (de-
fault time of 1 hour), multiplied by the number of times thecondor_schedddaemon had been
reconfigured during its lifetime. This could lead to degraded performance, especially prior to
Condor version 7.4.1, when this operation was more disk-intensive.

• 32-bit Linux versions of Condor running in a 64-bit environment would sometimes not de-
tect the existence of some processes and sometimes wrongly detect that a tracked process
belonged to root when it actually belonged to some other user. This could lead to failure to
run jobs or failure to properly monitor and clean up after them. When the wrong process
ownership problem happened, the following message appeared in thecondor_masterand/or
condor_procdlogs:

Condor Version 7.7.6 Manual

9.6. Stable Release Series 7.4 718

ProcAPI: fstat failed in /proc! (errno=75)

If condor_procdfailed to detect the existence of its own parent process, it would exit with the
following message in its log:

ERROR: master has exited

• Fixed a problem in thecondor_job_routerdaemon, introduced in Condor version 7.2.2,
that could cause the daemon to crash when failing to carry outthe change of state dictated
by a job’s periodic policy expressions, for example, the failure to put a job on hold when
periodic_hold becomesTrue .

• Fixed a bug introduced in Condor 7.3.2 that caused Grid Monitor jobs to receive a full X.509
proxy. Now, it always receives a limited proxy, which was theprevious behavior.

• Fixed a bug that could cause the nordugrid_gahp to crash.

• Fixed a problem introduced in 7.4.0 that could cause twocondor_schedddaemons with a
match to the same slot to both fail to claim it, rather than letting the first one to claim it
succeed. This sort of situation can happen when thecondor_negotiatorhas a stale view of the
pool, either because the gap between negotiation cycles is configured to be shorter than usual,
or because updates from thecondor_startdto thecondor_collectorare not reliably delivered
and processed.

• Thecondor_kbddis no longer ignored by thecondor_startdwhen the configuration variable
CONSOLE_DEVICESis defined.

• When using the-d command line argument with a daemon, the values ofLOG, SPOOL, and
EXECUTEno longer change every time acondor_reconfigcommand is received.

Known Bugs:

• Thecondor_kbddhas a chance of entering an infinite loop on platforms that useX-Windows.
Microsoft Windows and Mac OS X are not affected. Removing KBDD from DAEMON_LIST
is a workaround, although this impairs Condor’s ability to detect console usage. This bug is
fixed in Condor version 7.4.3.

Additions and Changes to the Manual:

• Descriptions of all the commands that may be placed into a submit description file are now
located within thecondor_submitmanual page, instead of within Chapter 2, the Users’ Man-
ual.

• An initial, but not yet complete set of configuration variables that require a restart when
changed, is listed in section 3.3.1. Usingcondor_reconfigto change these variables’ values is
not sufficient.

Condor Version 7.7.6 Manual

9.6. Stable Release Series 7.4 719

Version 7.4.1

Release Notes:

• Security Item: A flaw was found that could allow a user who already is authorized to submit
jobs into Condor, to queue a job under the guise of a differentuser. In this way, someone who
has access to a Condor submission service and is allowed to submit jobs into Condor could
gain access to another non-root or non-administrator account on the system. This flaw was
discovered during the development process; no incidents have been reported. Details of the
problem will be made available on Feb 1st, 2010.

• The default value ofJOB_ROUTER_NAMEhas changed from an empty string tojobrouter
in order to address problems caused by the previous default.Without special handling, this
means that jobs being managed bycondor_job_routerbefore upgrading will not be adopted
by the new version ofcondor_job_routerif the defaultJOB_ROUTER_NAMEwas being used.
To correct this, follow the instructions given in the description of JOB_ROUTER_NAMEon
page 251.

New Features:

• Condor allows submit files to specify anIwdFlushNFSCacheexpression, to control whether
or not Condor tries to flush the NFS cache for a job’s initial working directory on job comple-
tion.

• The new-attributes option to condor_statusexplicitly specifies the attributes to be listed
when using the-xml or -long options.

Configuration Variable and ClassAd Attribute Additions andChanges:

• New VOMS attributes have been introduced into the job ad to keep them separate from the
X509UserProxySubjectName.

• The default forJOB_ROUTER_NAMEhas changed from an empty string tojobrouter . See
the release notes for more information about upgrading froman old version.

• The configuration variableTCP_FORWARDING_HOSThas existed in Condor since version
7.0.0, but was not documented. See section 3.3.6 for documentation.

• The new configuration variableSTARTD_PER_JOB_HISTORY_DIRallows ClassAds of
completed jobs to be stored in a directory separate from the existing one specified with
PER_JOB_HISTORY_DIR.

Bugs Fixed:

• Condor no longer creates the job sandbox in itsSPOOLdirectory if it is not needed.

Condor Version 7.7.6 Manual

9.6. Stable Release Series 7.4 720

• Fixed a problem introduced in Condor version 7.4.0 that caused GSI authentication between
Condor processes to fail with using a non-legacy format X.509 proxy.

• Fixed a problem with CCB under Windows platforms that has existed since Condor version
7.3.0. This problem caused CCB-enabled daemons to become unresponsive after the exit of a
child process.

• Improved the handling of previously-submitted gt2 grid jobs upon release from hold, when
there is no Globus job manager for the job running on the remote resource.

• Fixed a problem with job leases for jobs that use acondor_shadow. Previously, while these
jobs were running, lease renewals from the submitter would not be noticed, and the job would
be aborted when the original lease expired.

• Fixed a bug that only allowed approximately 50 splices to beincluded into a DAG input file.
There is now no limit to the number of splices one may include into a DAG input file except,
of course, for the implicit memory allocation limit of thecondor_dagmanprocess.

• Removed attempted limiting of swap space viaulimit -vusing theVirtualMemory machine
ClassAd attribute in the scriptcondor_limits_wrapper.sh .

• Fixed a bug that causedALLOW_CONFIGandHOSTALLOW_CONFIG, as well as the corre-
spondingDENYconfiguration variables to incorrectly handle a setting consisting of a single
* or the equivalent*/* . This also fixes a bug that caused incorrect merging ofALLOWand
HOSTALLOWsettings when one, but not both, consisted of a single* or the equivalent*/* .
These bugs have existed since before Condor version 6.8.

• Fixed a bug introduced in Condor version 7.3.0 that could cause Condor daemons to crash
when reading malformed network addresses.

• Removed a check for root ownership of a script specified by the configuration variable
VM_SCRIPT.

• Fixed a bug in writing the header of the file identified by the configuration variable
EVENT_LOG.

• Fixed a bug that could cause thecondor_startdto segfault on shutdown when using dynamic
slots.

• Fixed a problem introduced in Condor version 7.3.2 that changed the behavior of an undoc-
umented method for selecting attributes to be displayed incondor_q-xml. Prior to this bug,
the following command would produce XML output with the attributesA andB, plus a few
other attributes that were always shown.

condor_q -xml -format "%s" A+B

In Condor versions 7.3.2 and 7.4.0, this same command produced an empty XML ClassAd.
The workaround was to use multiple-format options, each listing just one desired attribute,
rather than a single one with an expression of all desired attributes. Although this is now
fixed, the more straightforward way to select attributes since Condor version 7.3.2 is to use
the-attributes option.

Condor Version 7.7.6 Manual

9.6. Stable Release Series 7.4 721

• Fixed a bug introduced in Condor version 7.3.2 that resulted in messages such as the follow-
ing even in cases where no problem in communicating with thecondor_collectorhad been
encountered:

Collector <X> is still being avoided if an alternative succe eds.

• Fixed a bug that has been in thecondor_startdsince before Condor version 6.8. If thecon-
dor_startdever failed to send signals to thecondor_starterprocess, it could fail to properly
clean up the machine ClassAd, leaving attributes fromSTARTD_JOB_EXPRSin the ClassAd
but not making them visible incondor_statusqueries. One possible problem resulting from
this could be matches being made by thecondor_negotiatorthat are then rejected by thecon-
dor_startd. Repeated messages such as the following would then result in thecondor_startd
log:

slot1: Request to claim resource refused.

• Fixed a problem that resulted in the following message in thecondor_startdlog:

Timer -1 not found

• Fixed a problem in which security sessions were not cached correctly when using CCB. This
resulted in re-authentication in some cases where a cached security session could have been
used.

• Fixed multiple problems with the handling of VOMS attributes in GSI proxies.

• Fixed a bug that causedcondor_dagmanto hang when running a DAG with POST scripts, if
the global event log is turned on.

• Improved how the private network address is published whenusing the configuration variables
PRIVATE_NETWORK_NAMEandPRIVATE_NETWORK_INTERFACE. In some cases, this
information was not being used, and therefore connections were made to the public address
when they could have been made to the private address.

• Fixed a bug exhibited under Windows XP, where usingUSE_VISIBLE_DESKTOPwould
cause strange behavior after a job completed.

• CCB now works withTCP_FORWARDING_HOST. Previously, the reverse connection was
made to the private address rather than to the host defined byTCP_FORWARDING_HOST.

• Removed a bad optimization that caused some information about job execution to be lost
during job completion or removal, if a history file was not configured.

• Condor now checks whether the configuration variableGRIDFTP_URL_BASEis set before
submitting cream grid jobs, as that variable is required forcream jobs to function properly. If
the variable is not set, cream jobs are put on hold with an appropriate message.

• Fixed a bug that allowed running virtual machines to be leaked if thecondor_startdcrashed.

Condor Version 7.7.6 Manual

9.6. Stable Release Series 7.4 722

• Fixed a bug incream_gahpwhich could cause crashes when there were more than 500 cream
jobs queued.

• Improved recovery when Condor crashes during the submission of a cream grid job. Before,
affected jobs would remain inREGISTEREDstate on the cream server, but never run.

• Improved the HoldReason message when cream grid jobs are held by thecon-
dor_gridmanager.

• When naming a resource for a cream grid job, Condor now prop-
erly recognizes the format used by the standard cream clientUI:
https://foo.edu:8443/cream-pbs-cream_queue .

• The configuration variableSOAP_SSL_CA_FILE is now consulted in addition to
SOAP_SSL_CA_DIR when authenticating an https proxy for Amazon EC2, when
AMAZON_HTTP_PROXYis defined.

• Previously, ifcondor_rmand friends were given both a constraint and a user name or cluster
id, they would act on all jobs matching the constraint and alljobs associated with the user or
cluster. Now, this combination of arguments results in an error.

• Failure to purge a cream grid universe job from the remote server because it was previously
purged no longer results in the job being held.

• Thecondor_gridmanagernow recognizes VOMS attributes in X.509 proxies and will handle
them appropriately. For example, it recognizes that two proxies with the same identity but
different VOMS attributes may be mapped to different accounts on a remote machine.

• Fixed a bug incondor_dagman, introduced in 7.3.2, that will causecondor_dagmanrunning
on Windows to hang on any DAG using more than one log file for thenode jobs.

• Fixed a bug incondor_dagman, introduced in 7.3.2, that could causecondor_dagmanto fail
on a DAG using node job log files on multiple devices, if log files on different devices hap-
pened to have the same inode number.

• Fixed a bug that caused thecondor_schedddaemon to segfault when spooling more than 9
files.

• Fixed a bug that caused thecondor_startddaemon to crash on Debian Stable.

• Fixed keyboard activity detection on the Windows XP platform.

• Fixed a bug in thecondor_haddaemon that caused it to not start the controlled daemon if
CCB was enabled.

Known Bugs:

• Thecondor_kbddhas a chance of entering an infinite loop on platforms that useX-Windows.
Microsoft Windows and Mac OS X are not affected. Removing KBDD from DAEMON_LIST
is a workaround, although this impairs Condor’s ability to detect console usage. This bug is
fixed in Condor version 7.4.3.

Condor Version 7.7.6 Manual

9.6. Stable Release Series 7.4 723

• condor_dagmanmay fail on Windows if the set of node job log file names includes multiple
paths that are hard links (not symbolic links) to the same file.

• condor_dagmanPRE and POST script arguments (and the names of the scripts themselves)
cannot contain spaces.

• condor_dagmanVARS values cannot contain single quotes.

Additions and Changes to the Manual:

• Added documentation about how to include spaces (and otherspecial characters) incon-
dor_dagmanVARS values.

Version 7.4.0

Release Notes:

• The default configuration file within the release now usesALLOW/DENY in place of
HOSTALLOW/HOSTDENYfor security related settings. We recommend making this same
change throughout all configuration files. That way, a policythat depends on the default pol-
icy should continue to work as it did before. The behavior of these configuration variables
remains unchanged. TheALLOW/DENYlists are added to theHOSTALLOW/HOSTDENYlists
to form the authorization policy. Both styles support the same syntax. This change permits an
anticipated phasing out of theHOSTALLOW/HOSTDENYconfiguration variables, in order to
simplify configuration.

• As of Condor version 7.3.2,condor_q-xml output no longer begins with the non-XML con-
sisting of two blank lines followed by a line of the followingform:

-- Submitter: schedd-name : <IP> : hostname

• All Storkdata placement is now supported by the Stork project at the LSU Center for Compu-
tation and Technology (http://www.cct.lsu.edu/www.cct.lsu.edu). Please see the home page
of the Stork project at http://www.cct.lsu.edu/ kosar/stork/index.php for details and software.

New Features:

• Condor is now integrated with the Hadoop Distributed File System (HDFS). See documenta-
tion in section 8.2 and section 8.2.1.

• condor_qusing the options-analyzeand -better-analyzenow provide analysis for sched-
uler and local universe jobs. Specifically, theSTART_SCHEDULER_UNIVERSEand
START_LOCAL_UNIVERSEexpressions are checked.

Condor Version 7.7.6 Manual

http://www.cct.lsu.edu/www.cct.lsu.edu
http://www.cct.lsu.edu/~kosar/stork/index.php

9.6. Stable Release Series 7.4 724

• Added the ClassAd attributesTotalLocalRunningJobs , TotalLocalIdleJobs ,
TotalSchedulerRunningJobs , andTotalSchedulerIdleJobs to the published
ClassAd for thecondor_schedd. This means thatcondor_q-analyzecan still give helpful in-
formation about why local or scheduler universe jobs are idle when the configuration variables
START_LOCAL_UNIVERSEor START_SCHEDULER_UNIVERSErefer to these attributes.
These attributes were already present internally within the condor_schedddaemon, just not
published.

• The condor_vm-gahpnow supports KVM and links with libvirt, rather than callingvirsh
command-line tools.

• Greatly improved thecondor_gridmanager’s scalability when handling many grid type gt2
grid universe jobs. Improvements include more quickly processing updated X.509 certificates,
not checking jobs for status updates if they have not been submitted to the remote site, and
eliminating unnecessary updates to thecondor_schedddaemon.

• Latency in the submission and cleaning up of Condor-C jobs has been improved by changing
the default value ofC_GAHP_CONTACT_SCHEDD_DELAYfrom 20 to 5.

• Theeval() ClassAd function added in Condor version 7.3.2 is now also understood by the
condor_job_routerandcondor_qusing the-better-analyzeoption.

• The submit commandrun_as_owneris now supported for Unix platforms. Previously, it was
only supported on Windows platforms.

• When settingAMAZON_HTTP_PROXY, a username and password can now be given as part
of the proxy URL. The value ofSOAP_SSL_CA_DIRis now consulted when authenticating
an https proxy for Amazon EC2, whenAMAZON_HTTP_PROXYis defined.

• Thecondor_collectordaemon now advertises to itself, and will appear in the output of con-
dor_status-collector.

• Optimizations in core Condor systems should provide minorspeed improvements.

• Updated the maximum log size to the maximum operating system’s file size.

Configuration Variable and ClassAd Attribute Additions andChanges:

• The undocumented configuration variableTOOLS_PROVIDE_OLD_MESSAGESis no
longer recognized by Condor.

• The new configuration variableSCHEDD_JOB_QUEUE_LOG_FLUSH_DELAYsets an upper
bound in seconds on how long it takes for changes to the job ClassAd to be visible to the
Condor Job Router and to Quill. The default value is 5 seconds. Previously, there was no upper
limit. Typically, other activity in the job queue, such as jobs being submitted or completed
would cause buffered data to be flushed to disk, such that the effective upper bound was a
function of how busy the job queue was.

• The default configuration file now usesALLOW/DENYin place ofHOSTALLOW/HOSTDENY.
See the release notes above for more information.

Condor Version 7.7.6 Manual

9.6. Stable Release Series 7.4 725

• The default value forMAX_JOBS_RUNNINGhas changed. Previously, it was 200. Now it
is defined by an expression that depends on the total amount ofmemory and the operating
system. The default expression requires 1MByte of RAM per running job, on the submit
machine. In some environments and configurations, this is overly generous and can be cut by
as much as 50%. Under Windows, the number of running jobs is still capped at 200. A 64-
bit version of Windows is recommended in order to raise the value above the default. Under
Unix, the maximum default is now 10,000. To scale higher, we recommend that the system
ephemeral port range is extended such that there are at least2.1 ports per running job.

• The default value ofRESERVED_SWAPhas changed to the value 0, which disables thecon-
dor_schedddaemon’s check for sufficient swap space before starting more jobs. The new ex-
pression defined withMAX_JOBS_RUNNINGhas a more appropriate memory check, so the
configuration variableRESERVED_SWAPwill no longer be used in the near future. For cases
whereRESERVED_SWAPis not set to 0, the default value ofSHADOW_SIZE_ESTIMATE
has changed to 800 Kbytes. Previously, it was 200 if not set, but it was set to 1800 in the
example configuration file.

• The default values ofSTART_LOCAL_UNIVERSEandSTART_SCHEDULER_UNIVERSE
have changed. Previously, these were set toTrue . Now, they are set using an expression that
allows up to 200 local universe and 200 scheduler universe jobs to run.

• The default value ofGRIDMANAGER_MAX_SUBMITTED_JOBS_PER_RESOURCEhas
changed from 100 to 1000.

• The default value ofNEGOTIATOR_INTERVALhas changed from 300 to 60.

• The default value ofENABLE_GRID_MONITORhas been changed fromFalse to True .
This variable was assigned toTrue in the example configuration file, so the change in default
value now matches the value set in the example configuration.

• The configuration variableVM_VERSIONhas been removed, as has the machine ClassAd
attribute of the same name. When the virtual machine versioninformation is needed in the
machine ClassAd, the configuration variableSTARTD_ATTRScan be used to add it.

• The default configuration now usesVM_BRIDGE_SCRIPTand VM_SCRIPTin place of
XEN_BRIDGE_SCRIPTandXEN_SCRIPTdue to the support of KVM. Submit descrip-
tion file commands have also been added, and they include:kvm_disk, kvm_transfer_files,
andkvm_cd_rom_device.

• The configuration variablesXEN_DEFAULT_KERNELandXEN_DEFAULT_INITRDhave
been removed. Corresponding to this, the submit description file commandxen_kernel =
any is no longer valid.

Bugs Fixed:

• Fixed a bug that prevented parallel universe jobs from running on condor_startddaemons
with dynamic slots enabled.

Condor Version 7.7.6 Manual

9.6. Stable Release Series 7.4 726

• Fixed a race condition bug in thecondor_startdwhich allowed it to send Unix signals, in-
tended forcondor_starterprocesses, as root to non-Condor related processes.

• A Windows platform bug has been fixed. The bug caused a 20-second interval in which the
condor_shadow, condor_startd, andcondor_starterdaemons appeared as deadlocked. The
bug was visible if a job ClassAd update from thecondor_startercaused the job’s periodic
hold or remove policy to becomeTrue .

• Fixed a bug that could causecondor_dagmanto generate an illegal rescue DAG, if it read
events incorrectly in recovery mode.condor_dagmannow checks for events that violate DAG
semantics when reading events in recovery mode, and it exitswithout creating a rescue DAG
if it reads such an event.

• Fixed a bug that could causecondor_dagmanto abort if it saw the combination of a terminated
event and an aborted event on a node with retries.

• Changed some logged warnings incondor_dagmanto not be printed at the default verbosity
setting.

• The version compatibility checking between a.condor.sub file and thecondor_dagman
binary which is done at DAG startup is now much more permissive. Currently,
.condor.sub files with Condor versions of 7.1.2 and later accepted bycondor_dagman.

• Fixed a bug introduced with the newcondor_dagmanlazy log file evaluation code in Condor
version 7.3.2. The bug sometimes caused failure when running rescue DAGs.

• Fixed a bug originating in Condor version 7.1.4. When a usersubmitted a job with an exe-
cutable that did not have execute permission enabled, Condor was running as root, and file
transfer was specified in the job, Condor failed to automatically turn on execute permission
after transferring the file.

• Fixed a bug that appeared in Condor version 7.3.2. The configuration variable
COUNT_HYPERTHREAD_CPUSwas ignored and was effectively treated asFalse in all
cases.

• Fixed a bug in which the Condor Job Router was not able to see matchmaking diagnostic
attributes such asLastRejMatchTime . Therefore, when evaluating policy expressions
that referred to these attributes, they were effectively treated as thoughUndefined . Quill
was also not able to see these attributes.

• Fixed a bug introduced in Condor version 7.3.2 that could cause thecondor_gridmanager
to crash repeatedly on startup, if the job queue contained grid type gt2 jobs that had been
previously submitted.

• Fixed two bugs introduced in Condor version 7.3.2, and related to VOMS. The first bug pre-
vented jobs with X.509 proxies from being submitted on platforms on which Condor does not
support VOMS. The second bug prevented submission of jobs with VOMS proxies, if the au-
thenticity of the VOMS extensions could not be verified. At the same time, improved memory
usage when VOMS extensions are not used.

Condor Version 7.7.6 Manual

9.6. Stable Release Series 7.4 727

• Fixed a bad default in the filebatch_gahp.config , that prevented Condor from observing
job state changes for grid universe jobs with a grid type of pbs or lsf.

• Fixed a bug that caused Condor-C jobs to fail if the submit description file commandtrans-
fer_executablewas set toFalse .

• Fixed a bug that caused Condor-C jobs to fail if the executable or one of thestdin , stdout ,
or stderr file names contained a comma.

• File transfer for grid type gt4 jobs requires an empty directory within /tmp , which thecon-
dor_gridmanagercreates. If this directory is deleted, thecondor_gridmanagerwill now recre-
ate it.

• Fixed a bug that could cause the user job log to become corrupted on Windows platforms.
This bug would manifest itself only if the same log file was specified with different paths. For
example, the following submit file could have triggered thisbug:

...
initialdir = /data/job1
log = ../JobLog
queue

initialdir = /data/job2
log = ../JobLog
queue

• Fixed a memory leak introduced into Condor version 7.3.2. The leak was in thecon-
dor_collectordaemon.

• Fixed a bug introduced in Condor version 7.3.2 that resulted in thecondor_negotiatordaemon
refusing to run, if the configuration variableGROUP_QUOTAfor any group was set to 0.

• Fixed a bug that caused thectime in the event log header to always be zero.

• Fixed the output ofcondor_statuswhen used with the command-line options-java or -vm.

• Fixed a problem in thecondor_schedddaemon introduced in 7.3.2. Forcondor_schedddae-
mons with lots of jobs having periodic release expressions,this bug could result in thecon-
dor_scheddtaking a long time while evaluating periodic expressions, causing it to become
unresponsive to queries and other tasks. With a job queue of 30,000 jobs, a period of unre-
sponsiveness of an hour was observed, whereas the evaluation of periodic expressions in this
same environment normally takes less than 5 seconds.

• Potential bugs and memory leaks were identified and fixed throughout Condor. The Condor
Team is not aware of anyone having encountered these bugs.

• Thecondor_startercleans up working directories in more situations. Previously during some
error conditions, the working directory within$(EXECUTE) might be left behind.

• If the user log cannot be accessed when a local universe job starts, the job would fail and
immediately be retried. Now the job is placed on hold.

Condor Version 7.7.6 Manual

9.6. Stable Release Series 7.4 728

• Fixed a bug in thecondor_startdin which vacating jobs would not respect the value of
JobLeaseDuration .

• Updated the detection ofHasVMwithin the condor_startdto publish an update to thecon-
dor_collector, when the configuration variableVM_RECHECK_INTERVALis specified.

• Fixed a bug in which thecondor_gridmanagercould, in rare cases, waste a small amount of
memory and processor time checking for proxy files no longer being used by any active jobs.

• The settingCREAM_GAHPwas added to the default configuration file with a value of
$(SBIN)/cream_gahp . Existing installations desiring to submit jobs to CREAM should
add this setting.

• Fixed a bug wherecondor_restartwould fail on acondor_collectordaemon configured for
high availability with multiplecondor_collectordaemons.

• Fixed a bug in which multiple entries of output from the commandcondor_status-negotiator
would be on a single line. They are now listed one per line.

• Fixed a bug in which the commandcondor_submit-dump would crash if multiple jobs were
queued from within a single submit file.

• Fixed a bug in which a slot whose associated job disappearedcould remain in the Claimed/Idle
state until the claim lease expired. The slot should now promptly return to the Unclaimed/Idle
state.

• Fixed a bug in which acondor_startdusing dynamic slots could crash on shutdown or recon-
figuration.

Known Bugs:

• Thecondor_kbddhas a chance of entering an infinite loop on platforms that useX-Windows.
Microsoft Windows and Mac OS X are not affected. Removing KBDD from DAEMON_LIST
is a workaround, although this impairs Condor’s ability to detect console usage. This bug is
fixed in Condor version 7.4.3.

• There are multiple bugs related to using VOMS attributes. In Condor version 7.4.0, VOMS
support should be disabled by setting the configuration variableUSE_VOMS_ATTRIBUTES
= FALSE.

• A configuration variable ofUSE_VISIBLE_DESKTOP set toTrue will corrupt the visible
desktop. This bug is present back through Condor version 7.2.4. This configuration variable
did not work at all in 7.2 releases prior to 7.2.4. This bug will be fixed in Condor version
7.4.1.

• If the global event log (see section 3.3.4) is turned on,condor_dagmanwill hang when running
any DAG that has POST scripts.

• condor_dagmanwill hang on Windows when running any DAG that uses more than one log
file for the node jobs.

Condor Version 7.7.6 Manual

9.6. Stable Release Series 7.4 729

Additions and Changes to the Manual:

• See section 8.2 and section 8.2.1 for preliminary documentation of Condor’s integration with
the Hadoop Distributed File System (HDFS).

Condor Version 7.7.6 Manual

CHAPTER

TEN

Command Reference Manual (man pages)

730

cleanup_release(1) 731

cleanup_release

uninstall a previously installed software release installed byinstall_release

Synopsis

cleanup_release[-help]

cleanup_releaseinstall-log-name

Description

cleanup_releaseuninstalls a previously installed software release installed by install_release. The
program works through the install log in reverse order, removing files as it goes. Each delete is
logged in the install log to allow recovery from a crash. The install log name is provided as the
install-log-nameargument to this program.

Options

-help Display brief usage information and exit.

Exit Status

cleanup_releasewill exit with a status of 0 (zero) upon success, and non-zerootherwise.

See Also

install_release(on page 946).

Author

Condor Team, University of Wisconsin–Madison

Condor Version 7.7.6, Command Reference

cleanup_release(1) 732

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_advertise(1) 733

condor_advertise

Send a ClassAd to thecondor_collectordaemon

Synopsis

condor_advertise[-help | -version]

condor_advertise [-pool centralmanagerhostname[:portname]] [-debug] [-tcp] [-multiple]
update-command[classad-filename]

Description

condor_advertisesends one or more ClassAds to thecondor_collectordaemon on the central man-
ager machine. The required argumentupdate-commandsays what daemon type’s ClassAd is to be
updated. The optional argumentclassad-filenameis the file from which the ClassAd(s) should be
read. Ifclassad-filenameis omitted or is the dash character (’-’), then the ClassAd(s) are read from
standard input.

When-multiple is specified, multiple ClassAds may be published. Publishing many ClassAds in
a single invocation ofcondor_advertiseis more efficient than invokingcondor_advertiseonce per
ClassAd. The ClassAds are expected to be separated by one or more blank lines. When-multiple
is not specified, blank lines are ignored (for backward compatibility). It is best not to rely on blank
lines being ignored, as this may change in the future.

Theupdate-commandmay be one of the following strings:

UPDATE_STARTD_AD

UPDATE_SCHEDD_AD

UPDATE_MASTER_AD

UPDATE_GATEWAY_AD

UPDATE_CKPT_SRVR_AD

UPDATE_NEGOTIATOR_AD

UPDATE_HAD_AD

UPDATE_AD_GENERIC

UPDATE_SUBMITTOR_AD

UPDATE_COLLECTOR_AD

Condor Version 7.7.6, Command Reference

condor_advertise(1) 734

UPDATE_LICENSE_AD

UPDATE_STORAGE_AD

condor_advertisecan also be used to invalidate and delete ClassAds currentlyheld by thecon-
dor_collectordaemon. In this case theupdate-commandwill be one of the following strings:

INVALIDATE_STARTD_ADS

INVALIDATE_SCHEDD_ADS

INVALIDATE_MASTER_ADS

INVALIDATE_GATEWAY_ADS

INVALIDATE_CKPT_SRVR_ADS

INVALIDATE_NEGOTIATOR_ADS

INVALIDATE_HAD_ADS

INVALIDATE_ADS_GENERIC

INVALIDATE_SUBMITTOR_ADS

INVALIDATE_COLLECTOR_ADS

INVALIDATE_LICENSE_ADS

INVALIDATE_STORAGE_ADS

For any of these INVALIDATE commands, the ClassAd in the required file consists of three entries.
The file contents will be similar to:

MyType = "Query"
TargetType = "Machine"
Requirements = Name == "condor.example.com"

The definition forMyType is alwaysQuery . TargetType is set to theMyType of the ad to
be deleted. ThisMyType is DaemonMaster for thecondor_masterClassAd,Machine for the
condor_startdClassAd,Scheduler for thecondor_scheddClassAd, andNegotiator for the
condor_negotiatorClassAd.Requirements is an expression evaluated within the context of ads
of TargetType . WhenRequirements evaluates toTrue , the matching ad is invalidated. A
full example is given below.

Condor Version 7.7.6, Command Reference

condor_advertise(1) 735

Options

-help Display usage information

-version Display version information

-debug Print debugging information as the command executes.

-multiple Send more than one ClassAd, where the boundary between ClassAds is one or more
blank lines.

-pool centralmanagerhostname[:portname]Specify a pool by giving the central manager’s host
name and an optional port number. The default is theCOLLECTOR_HOSTspecified in the
configuration file.

-tcp Use TCP for communication. Without this option, UDP is used.

General Remarks

The job and machine ClassAds are regularly updated. Therefore, the result ofcondor_advertise
is likely to be overwritten in a very short time. It is unlikely that either Condor users (those who
submit jobs) or administrators will ever have a use for this command. If it is desired to update or set
a ClassAd attribute, thecondor_config_valcommand is the proper command to use.

For each of these attributes, see section 11 for definitions.

For those administrators who do needcondor_advertise, the following attributes may be included:

DaemonStartTime

UpdateSequenceNumber

If both of the above are included, thecondor_collectorwill automatically include the following
attributes:

UpdatesTotal

UpdatesLost

UpdatesSequenced

UpdatesHistoryAlso seeCOLLECTOR_DAEMON_HISTORY_SIZEin section 3.3.16.

Condor Version 7.7.6, Command Reference

condor_advertise(1) 736

Examples

Assume that a machine called condor.example.com is turned off, yet itscondor_startdClassAd does
not expire for another 20 minutes. To avoid this machine being matched, an administrator chooses to
delete the machine’scondor_startdClassAd. Create a file (calledremove_file in this example)
with the three required attributes:

MyType = "Query"
TargetType = "Machine"
Requirements = Name == "condor.example.com"

This file is used with the command:

% condor_advertise INVALIDATE_STARTD_ADS remove_file

Exit Status

condor_advertisewill exit with a status value of 0 (zero) upon success, and it will exit with the value
1 (one) upon failure. Success means that all ClassAds were successfully sent to allcondor_collector
daemons. When there are multiple ClassAds or multiplecondor_collectordaemons, it is possible
that some but not all publications succeed; in this case, theexit status is 1, indicating failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_check_userlogs(1) 737

condor_check_userlogs

Check user log files for errors

Synopsis

condor_check_userlogsUserLogFile1[UserLogFile2. . .UserLogFileN]

Description

condor_check_userlogsis a program for checking a user log or set of users logs for errors. Output
includes an indication that no errors were found within a logfile, or a list of errors such as an execute
or terminate event without a corresponding submit event, ormultiple terminated events for the same
job.

condor_check_userlogsis especially useful for debuggingcondor_dagmanproblems. If con-
dor_dagmanreports an error it is often useful to runcondor_check_userlogson the relevant log
files.

Exit Status

condor_check_userlogswill exit with a status value of 0 (zero) upon success, and it will exit with
the value 1 (one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_checkpoint(1) 738

condor_checkpoint

send a checkpoint command to jobs running on specified hosts

Synopsis

condor_checkpoint[-help | -version]

condor_checkpoint[-debug] [-pool centralmanagerhostname[:portnumber]] [-namehostname|
hostname| -addr "<a.b.c.d:port>" | "<a.b.c.d:port>" | -constraint expression| -all]

Description

condor_checkpointsends a checkpoint command to a set of machines within a single pool. This
causes the startd daemon on each of the specified machines to take a checkpoint of any running job
that is executing under the standard universe. The job is temporarily stopped, a checkpoint is taken,
and then the job continues. If no machine is specified, then the command is sent to the machine that
issued thecondor_checkpointcommand.

The command sent is a periodic checkpoint. The job will take acheckpoint, but then the job will
immediately continue running after the checkpoint is completed.condor_vacate, on the other hand,
will result in the job exiting (vacating) after it produces acheckpoint.

If the job being checkpointed is running under the standard universe, the job produces a checkpoint
and then continues running on the same machine. If the job is running under another universe, or if
there is currently no Condor job running on that host, thencondor_checkpointhas no effect.

There is generally no need for the user or administrator to explicitly run condor_checkpoint. Taking
checkpoints of running Condor jobs is handled automatically following the policies stated in the
configuration files.

Options

-help Display usage information

-version Display version information

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOL_DEBUG

Condor Version 7.7.6, Command Reference

condor_checkpoint(1) 739

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

-namehostnameSend the command to a machine identified byhostname

hostnameSend the command to a machine identified byhostname

-addr " <a.b.c.d:port>" Send the command to a machine’s master located at"<a.b.c.d:port>"

" <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

-constraint expressionApply this command only to machines matching the given ClassAd
expression

-all Send the command to all machines in the pool

Exit Status

condor_checkpointwill exit with a status value of 0 (zero) upon success, and it will exit with the
value 1 (one) upon failure.

Examples

To send acondor_checkpointcommand to two named machines:

% condor_checkpoint robin cardinal

To send thecondor_checkpointcommand to a machine within a pool of machines other than the
local pool, use the-pool option. The argument is the name of the central manager for the pool. Note
that one or more machines within the pool must be specified as the targets for the command. This
command sends the command to a the single machine namedcae17within the pool of machines that
hascondor.cae.wisc.eduas its central manager:

% condor_checkpoint -pool condor.cae.wisc.edu -name cae1 7

Author

Condor Team, University of Wisconsin–Madison

Condor Version 7.7.6, Command Reference

condor_checkpoint(1) 740

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_chirp(1) 741

condor_chirp

Access files or job ClassAd from an executing job

Synopsis

condor_chirp<Chirp-Command>

Description

condor_chirpis not a command-line tool.condor_chirpis invoked by a Condor job, while the job
is executing. It accesses files or job ClassAd attributes on the submit machine. Files can be read,
written or removed. Job attributes can be read, and most attributes can be updated.

When invoked by a Condor job, the command-line arguments describe the operation to be per-
formed. Each of these arguments is described below within the section on Chirp Commands. De-
scriptions using the termslocal andremoteare given from the point of view of the executing job.

If the input file name forput or write is a dash,condor_chirpuses standard input as the source. If
the output file name forfetch is a dash,condor_chirpwrites to standard output instead of a local
file.

Jobs that usecondor_chirpmust have the attributeWantIOProxy set toTrue in the job ClassAd.
To do this, place

+WantIOProxy = true

in the submit description file of the job.

condor_chirponly works for jobs run in the vanilla, parallel and java universes.

Chirp Commands

fetch RemoteFileName LocalFileNameCopy theRemoteFileNamefrom the submit machine to
the execute machine, naming itLocalFileName.

put [-mode mode] [-perm UnixPerm] LocalFileName RemoteFileNameCopy the
LocalFileNamefrom the execute machine to the submit machine, naming itRemoteFileName.
The optional-perm UnixPerm argument describes the file access permissions in a Unix
format; 660 is an example Unix format.

The optional-modemodeargument is one or more of the following characters describing the
RemoteFileNamefile: w, open for writing;a, force all writes to append;t , truncate before

Condor Version 7.7.6, Command Reference

condor_chirp(1) 742

use;c , create the file, if it does not exist;x , fail if c is given and the file already exists.

removeRemoteFileNameRemove theRemoteFileNamefile from the submit machine.

get_job_attr JobAttributeNamePrints the named job ClassAd attribute to standard output.

set_job_attr JobAttributeName AttributeValueSets the named job ClassAd attribute with the
given attribute value.

ulog MessageAppendsMessageto the job’s user log.

read [-offset offset] [-stride length skip] RemoteFileName LengthRead Length bytes from
RemoteFileName. Optionally, implement a stride by starting the read atoffsetand reading
lengthbytes with a stride ofskipbytes.

write [-offset offset] [-stride length skip] RemoteFileName LocalFileNameWrite the contents
of LocalFileNameto RemoteFileName. Optionally, start writing to the remote file atoffset
and writelengthbytes with a stride ofskipbytes.

rmdir [-r] RemotePathDelete the directory specified byRemotePath. If the optional -r is
specified, recursively delete the entire directory.

getdir [-l] RemotePathList the contents of the directory specified byRemotePath. If -l is specified,
list all metadata as well.

whoami Get the user’s current identity.

whoareyouRemoteHostGet the identity ofRemoteHost.

link [-s] OldRemotePath NewRemotePathCreate a hard link from OldRemotePath to
NewRemotePath. If the optional-s is specified, create a symbolic link instead.

readlink RemoteFileNameRead the contents of the file defined by the symbolic link
RemoteFileName.

stat RemotePathGet metadata forRemotePath. Examines the target, if it is a symbolic link.

Condor Version 7.7.6, Command Reference

condor_chirp(1) 743

lstat RemotePathGet metadata forRemotePath. Examines the file, if it is a symbolic link.

statfsRemotePathGet file system metadata forRemotePath.

accessRemotePath ModeCheck access permissions forRemotePath. Modeis one or more of the
charactersr , w, x , or f , representing read, write, execute, and existence, respectively.

chmodRemotePath UnixPermChange the permissions ofRemotePathto UnixPerm. UnixPerm
describes the file access permissions in a Unix format; 660 isan example Unix format.

chownRemotePath UID GID Change the ownership ofRemotePathto UID andGID. Changes
the target ofRemotePath, if it is a symbolic link.

chownRemotePath UID GID Change the ownership ofRemotePathto UID andGID. Changes
the link, if RemotePathis a symbolic link.

truncate RemoteFileName LengthTruncatesRemoteFileNameto Lengthbytes.

utime RemotePath AccessTime ModifyTimeChange the access toAccessTimeand modification
time toModifyTimeof RemotePath.

Examples

To copy a file from the submit machine to the execute machine while the user job is running, run

condor_chirp fetch remotefile localfile

To print to standard output the value of theRequirements expression from within a running job,
run

condor_chirp get_job_attr Requirements

Note that the remote (submit-side) directory path is relative to the submit directory, and the local
(execute-side) directory is relative to the current directory of the running program.

To append the word "foo" to a file calledRemoteFile on the submit machine, run

echo foo | condor_chirp put -mode wa - RemoteFile

Condor Version 7.7.6, Command Reference

condor_chirp(1) 744

To append the message "Hello World" to the user log, run

condor_chirp ulog "Hello World"

Exit Status

condor_chirpwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_cod(1) 745

condor_cod

manage COD machines and jobs

Synopsis

condor_cod [-help | -version]

condor_cod request [-pool centralmanagerhostname[:portnumber]| -namescheddname
]| [-addr "<a.b.c.d:port>"] [[-help | -version] | [-debug| -timeout N | -classad file]
][-requirements expr] [-lease N]

condor_codrelease-id ClaimID [[-help | -version] | [-debug| -timeout N | -classad file]][-fast]

condor_cod activate -id ClaimID [[-help | -version] | [-debug| -timeout N | -classad file]
][-keyword string | -jobad filename| -cluster N | -proc N | -requirements expr]

condor_cod deactivate -id ClaimID [[-help | -version] | [-debug| -timeout N | -classad file]
][-fast]

condor_codsuspend-id ClaimID [[-help | -version] | [-debug| -timeout N | -classad file]]

condor_codrenew-id ClaimID [[-help | -version] | [-debug| -timeout N | -classad file]]

condor_codresume-id ClaimID [[-help | -version] | [-debug| -timeout N | -classad file]]

condor_coddelegate_proxy-id ClaimID [[-help | -version] | [-debug| -timeout N | -classad file]
][-x509proxy ProxyFile]

Description

condor_codissues commands that manage and use COD claims on machines, given proper autho-
rization.

Instead of specifying an argument ofrequest, release, activate, deactivate, suspend, renew, or
resume, the user may invoke thecondor_codtool by appending an underscore followed by one
of these arguments. As an example, the following two commands are equivalent:

condor_cod release -id "<128.105.121.21:49973>#1073352 104#4"

condor_cod_release -id "<128.105.121.21:49973>#107335 2104#4"

To make these extended-name commands work, hard link the extended name to thecondor_cod
executable. For example on a Unix machine:

Condor Version 7.7.6, Command Reference

condor_cod(1) 746

ln condor_cod_request condor_cod

The requestargument gives a claim ID, and the other commands (release, activate, deactivate,
suspend, andresume) use the claim ID. The claim ID is given as the last line of output for arequest,
and the output appears of the form:

ID of new claim is: "<a.b.c.d:portnumber>#x#y"

An actual example of this line of output is

ID of new claim is: "<128.105.121.21:49973>#1073352104#4 "

Also see section 4.3 for more a complete description of COD.

Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

-namescheddnameSend the command to a machine identified byscheddname

-addr " <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

-leaseN For therequestof a new claim, automatically release the claim afterN seconds.

request Create a new COD claim

release Relinquish a claim and kill any running job

activate Start a job on a given claim

deactivate Kill the current job, but keep the claim

suspend Suspend the job on a given claim

Condor Version 7.7.6, Command Reference

condor_cod(1) 747

renew Renew the lease to the COD claim

resume Resume the job on a given claim

delegate_proxyDelegate an X509 proxy for the given claim

General Remarks

Examples

Exit Status

condor_codwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_cold_start(1) 748

condor_cold_start

install and start Condor on this machine

Synopsis

condor_cold_start-help

condor_cold_start [-basedir directory] [-force] [-setuponly| -runonly] [-arch architecture]
[-site repository] [-localdir directory] [-runlocalconfig file] [-logarchive archive]
[-spoolarchive archive] [-execarchivearchive] [-filelock] [-pid] [-artifact filename] [-wget]
[-globuslocation directory] -configfilefile

Description

condor_cold_startinstalls and starts Condor on this machine, setting up or using a predefined con-
figuration. In addition, it has the functionality to determine the local architecture if one is not speci-
fied. Additionally, this program can install pre-madelog , execute , and/orspool directories by
specifying the archived versions.

Options

-arch architecturestr Use the givenarchitecturestrto fetch the installation package. The string is
in the format:

<condor_version>-<machine_arch>-<os_name>-<os_version>

(for example 6.6.7-i686-Linux-2.4). The portion of this string <condor_version> may be
replaced with the string "latest" (for example, latest-i686-Linux-2.4) to substitute the most
recent version of Condor.

-artifact filename Use filename for name of the artifact file used to determine whether the
condor_masterdaemon is still alive.

-basedirdirectory The directory to install or find the Condor executables and libraries. When not
specified, the current working directory is assumed.

-execarchivearchive Create the Condorexecute directory from the givenarchivefile.

-filelock Specifies that this program should use a POSIX file lock midwife program to create an
artifact of the birth of acondor_masterdaemon. A file lock undertaker can later be used to

Condor Version 7.7.6, Command Reference

condor_cold_start(1) 749

determine whether thecondor_masterdaemon has exited. This is the preferred option when
the user wants to check the status of thecondor_masterdaemon from another machine that
shares a distributed file system that supports POSIX file locking, for example, AFS.

-force Overwrite previously installed files, if necessary.

-globuslocationdirectory The location of the globus installation on this machine. When not
specified/opt/globus is the directory used. This option is only necessary when other
options of the form-*archive are specified.

-help Display brief usage information and exit.

-localdir directory The directory where the Condorlog , spool , andexecute directories will
be installed. Each running instance of Condor must have its own local directory.

-logarchivearchive Create the Condor log directory from the givenarchivefile.

-pid This program is to use a unique process id midwife program to create an artifact of the birth
of a condor_masterdaemon. A unique pid undertaker can later be used to determine whether
thecondor_masterdaemon has exited. This is the default option and the preferred method to
check the status of thecondor_masterdaemon from the same machine it was started on.

-runlocalconfig file A special local configuration file bound into the Condor configuration at
runtime. This file only affects the instance of Condor started by this command. No other
Condor instance sharing the same global configuration file will be affected.

-runonly Run Condor from the specified installation directory without installing it. It is possible to
run several instantiations of Condor from a single installation.

-setuponly Install Condor without running it.

-site repository The ftp, http, gsiftp, or mounted file system directory wherethe installation pack-
ages can be found (for example,www.cs.example.edu/packages/coldstart).

-spoolarchivearchive Create the Condor spool directory from the givenarchivefile.

-wget Usewgetto fetch thelog , spool , andexecute directories, if other options of the form
-*archive are specified.wgetmust be installed on the machine and in the user’s path.

Condor Version 7.7.6, Command Reference

condor_cold_start(1) 750

-configfilefile A required option to specify the Condor configuration file to use for this installation.
This file can be located on an http, ftp, or gsiftp site, or alternatively on a mounted file system.

Exit Status

condor_cold_startwill exit with a status value of 0 (zero) upon success, and non-zero otherwise.

Examples

To start a Condor installation on the current machine, using
http://www.example.com/Condor/deployment as the installation site:

% condor_cold_start \
-configfile http://www.example.com/Condor/deployment /condor_config.mobile \
-site http://www.example.com/Condor/deployment

Optionally if this instance of Condor requires a local configuration filecondor_config.local :

% condor_cold_start \
-configfile http://www.example.com/Condor/deployment /condor_config.mobile \
-site http://www.example.com/Condor/deployment \
-runlocalconfig condor_config.local

See Also

condor_cold_stop(on page 751),filelock_midwife(on page 941),uniq_pid_midwife(on page 951).

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_cold_stop(1) 751

condor_cold_stop

reliably shut down and uninstall a running Condor instance

Synopsis

condor_cold_stop-help

condor_cold_stop [-force] [-basedir directory] [-localdir directory] [-runlocalconfig file]
[-cleaninstall] [-cleanlocal] [-stop] [-logarchive archive] [-spoolarchive archive]
[-execarchivearchive] [-filelock] [-pid] [-artifact file] [-nogurl] [-globuslocation directory]
-configfilefile

Description

condor_cold_stopreliably shuts down and uninstall a running Condor instance. This program
first usescondor_local_stopto reliably shut down the running Condor instance. It then usescon-
dor_cleanup_localto create and store archives of thelog , spool , andexecute directories. Its
last task is to uninstall the Condor binaries and libraries usingcleanup_release.

Options

-artifact file Usesfile as the artifact file to determine whether thecondor_masterdaemon is still
alive.

-basedirdirectory Directory where the Condor installation can be found. When not specified, the
current working directory is assumed.

-cleaninstall Remove the Condor installation. If none of the options-cleaninstall, -cleanlocal, or
-stopare specified, the program behaves as though all of them have been provided.

-cleanlocal The program will remove thelog , spool , exec directories for this Condor instance.
If none of the options-cleaninstall, -cleanlocal, or -stop are specified, the program behaves
as though all of them have been provided.

-configfilefile The same configuration file path given tocondor_cold_start. This program assumes
the file is in the installation directory or the current working directory.

Condor Version 7.7.6, Command Reference

condor_cold_stop(1) 752

-execarchivearchive The program will create a tar’ed and gzip’ed archive of theexecute
directory and stores it asarchive. Thearchivecan be a file path or a grid-ftp url.

-filelock Determine whether thecondor_masterdaemon has exited using a file lock undertaker.
This option must match the corresponding option given tocondor_cold_start.

-force Ignore the status of thecondor_schedddaemon (whether it has jobs in the queue or not)
when shutting down Condor.

-globuslocationdirectory The directory containing the Globus installation. This option is re-
quired if any of the options of the form-*archive are used, and Globus is not installed in
/opt/globus .

-localdir directory Directory where thelog , spool , andexecute directories are stored for this
running instance of Condor. Required if the-cleanlocaloption is specified.

-logarchivearchive The program will create a tar’ed and gzip’ed archive of thelog directory and
stores it asarchive. Thearchivecan be a file path or a grid-ftp url.

-nogurl Do not useglobus-url-copyto store the archives. This implies that the archives can only
be stored on mounted file systems.

-pid Determine whether thecondor_masterdaemon has exited using a unique process id under-
taker. This option must match the corresponding option given tocondor_cold_start.

-runlocalconfig file Bind file into the configuration used by this instance of Condor. This option
should the one provided tocondor_cold_start.

-spoolarchivearchive The program will create a tar’ed and gzip’ed archive of thespool directory
and stores it asarchive. Thearchivecan be a file path or a grid-ftp url.

-stop The program will shut down this running instance of Condor. If none of the options
-cleaninstall, -cleanlocal, or -stop are specified, the program behaves as though all of them
have been provided.

Exit Status

condor_cold_stopwill exit with a status value of 0 (zero) upon success, and non-zero otherwise.

Condor Version 7.7.6, Command Reference

condor_cold_stop(1) 753

Examples

To shut down a Condor instance on the target machine:

% condor_cold_stop -configfile condor_config.mobile

To shutdown a Condor instance and archive the log directory:

% condor_cold_stop -configfile condor_config.mobile \
-logarchive /tmp/log.tar.gz

See Also

condor_cold_start(on page 748),filelock_undertaker(on page 943),uniq_pid_undertaker(on
page 953).

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_compile(1) 754

condor_compile

create a relinked executable for submission to the StandardUniverse

Synopsis

condor_compilecc | CC | gcc| f77 | g++ | ld | make| . . .

Description

Usecondor_compileto relink a program with the Condor libraries for submissioninto Condor’s
Standard Universe. The Condor libraries provide the program with additional support, such as
the capability to checkpoint, which is required in Condor’sStandard Universe mode of operation.
condor_compilerequires access to the source or object code of the program tobe submitted; if
source or object code for the program is not available (i.e. only an executable binary, or if it is a
shell script), then the program must submitted into Condor’s Vanilla Universe. See the reference
page forcondor_submitand/or consult the "Condor Users and Administrators Manual" for further
information.

To usecondor_compile, simply enter "condor_compile" followed by whatever you would normally
enter to compile or link your application. Any resulting executables will have the Condor libraries
linked in. For example:

condor_compile cc -O -o myprogram.condor file1.c file2.c . ..

will produce a binary "myprogram.condor" which is relinkedfor Condor, capable of
checkpoint/migration/remote-system-calls, and ready tosubmit to the Standard Universe.

If the Condor administrator has opted to fully installcondor_compile, thencondor_compilecan be
followed by practically any command or program, including make or shell-script programs. For
example, the following would all work:

condor_compile make

condor_compile make install

condor_compile f77 -O mysolver.f

condor_compile /bin/csh compile-me-shellscript

If the Condor administrator has opted to only do a partial install of condor_compile, the you are
restricted to followingcondor_compilewith one of these programs:

Condor Version 7.7.6, Command Reference

condor_compile(1) 755

cc (the system C compiler)

c89 (POSIX compliant C compiler, on some systems)

CC (the system C++ compiler)

f77 (the system FORTRAN compiler)

gcc (the GNU C compiler)

g++ (the GNU C++ compiler)

g77 (the GNU FORTRAN compiler)

ld (the system linker)

NOTE: If you use explicitly call “ld” when you normally create your binary, simply use:

condor_compile ld <ld arguments and options>

instead.

Exit Status

condor_compileis a script that executes specified compilers and/or linkers. If an error is encoun-
tered before calling these other programs,condor_compilewill exit with a status value of 1 (one).
Otherwise, the exit status will be that given by the executedprogram.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_config_bind(1) 756

condor_config_bind

bind together a set of configuration files

Synopsis

condor_config_bind-help

condor_config_bind-o outputfile configfile1 configfile2[configfile3. . .]

Description

condor_config_binddynamically binds two or more Condor configuration files through the use of
a new configuration file. The purpose of this tool is to allow the user to dynamically bind a local
configuration file into an already created, and possible immutable, configuration file. This is partic-
ularly useful when the user wants to modify a configuration but cannot actually make any changes to
the global configuration file (even to change the list of localconfiguration files). This program does
not modify the given configuration files. Rather, it creates anew configuration file that specifies the
given configuration files as local configuration files.

Condor evaluates each of the configuration files in the given command-line order (left to right). A
value defined in two or more of the configuration files results in the last one evaluated defining the
value. It overrides any others. To bind a new local configuration into a global configuration, specify
the local configuration second within the command-line ordering.

Options

configfile1 First configuration file to bind.

configfile2 Second configuration file to bind.

configfile3. . . An optional list of other configuration files to bind.

-help Display brief usage information and exit

-o output_file Specifies the file name where this program should output the binding configuration.

Condor Version 7.7.6, Command Reference

condor_config_bind(1) 757

Exit Status

condor_config_bindwill exit with a status value of 0 (zero) upon success, and non-zero on error.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_config_val(1) 758

condor_config_val

Query or set a given Condor configuration variable

Synopsis

condor_config_val[options] [-config] [-verbose] variable[variable. . .]

condor_config_val[options] -setstring [string . . .]

condor_config_val[options] -rset string [string . . .]

condor_config_val[options] -unsetvariable[variable. . .]

condor_config_val[options] -runset variable[variable. . .]

condor_config_val[options] -tilde

condor_config_val[options] -owner

condor_config_val[options] -config

condor_config_val[options] -dump [-expand] [-verbose]

Description

condor_config_valcan be used to quickly see what the current Condor configuration is on any given
machine. Given a list of variables,condor_config_valwill report what each of these variables is
currently set to. If a given variable is not defined,condor_config_valwill halt on that variable, and
report that it is not defined. By default,condor_config_vallooks in the local machine’s configuration
files in order to evaluate the variables.

condor_config_valcan also be used to quickly set configuration variables for a specific daemon on
a given machine. Each daemon remembers settings made bycondor_config_val. The configuration
file is not modified by this command. Persistent settings remain when the daemon is restarted.
Runtime settings are lost when the daemon is restarted. In general, modifying a host’s configuration
with condor_config_valrequires theCONFIGaccess level, which is disabled on all hosts by default.
Administrators have more fine-grained control over which access levels can modify which settings.
See section 3.6.1 on page 326 for more details on security settings.

The -verboseoption displays the configuration file name and line number where a configuration
variable is defined.

Any changes made bycondor_config_valwill not take effect untilcondor_reconfigis invoked.

It is generally wise to test a new configuration on a single machine to ensure that no syntax or other
errors in the configuration have been made before the reconfiguration of many machines. Having

Condor Version 7.7.6, Command Reference

condor_config_val(1) 759

bad syntax or invalid configuration settings is a fatal errorfor Condor daemons, and they will exit.
It is far better to discover such a problem on a single machinethan to cause all the Condor daemons
in the pool to exit.

The -set option sets one or more persistent configuration file entries. Thestring must be a single
argument, so enclose it in double quote marks. A string must be of the form"variable =
value" . Use of the-setoption implies the use of configuration variablesSETTABLE_ATTRS. . .
(see 3.3.5),ENABLE_PERSISTENT_CONFIG(see 3.3.5), andHOSTALLOW. . . (see 3.3.5).

The -rset option sets one or more runtime configuration file entries. The string must be a single
argument, so enclose it in double quote marks. A string must be of the form"variable =
value" . Use of the-rset option implies the use of configuration variablesSETTABLE_ATTRS. . .
(see 3.3.5),ENABLE_RUNTIME_CONFIG(see 3.3.5), andHOSTALLOW. . . (see 3.3.5).

The-unsetoption changes one or more persistent configuration file entries to their previous value.

The-runset option changes one or more runtime configuration file entriesto their previous value.

The-tilde option displays the path to the Condor home directory.

The-owner option displays the owner of thecondor_config_valprocess.

The-configoption displays the current configuration files in use.

The -dump option displays a list of all of the defined macros in the configuration files found by
condor_config_val, along with their values. If the-verboseoption is supplied as well, then the
specific configuration file which defined each variable, alongwith the line number of its definition is
also printed. NOTE: The output of this argument is likely to change in a future revision of Condor. If
the-expandoption is given in addition to the-dump option, then variable values in the configuration
files are expanded before being printed out.

Options

-namemachine_nameQuery the specified machine’scondor_masterdaemon for its configuration.
Does not function together with any of the options:-dump, -config, or -verbose.

-pool centralmanagerhostname[:portnumber]Use the given central manager and an optional port
number to find daemons.

-address<ip:port> Connect to the given IP address and port number.

-master | -schedd| -startd | -collector | -negotiator The specific daemon to query.

-local-name Inspect the values of attributes that use local names.

Condor Version 7.7.6, Command Reference

condor_config_val(1) 760

Exit Status

condor_config_valwill exit with a status value of 0 (zero) upon success, and it will exit with the
value 1 (one) upon failure.

Examples

Here is a set of examples to show a sequence of operations using condor_config_val. To request the
condor_schedddaemon on host perdita to display the value of theMAX_JOBS_RUNNINGconfigu-
ration variable:

% condor_config_val -name perdita -schedd MAX_JOBS_RUNNI NG
500

To request thecondor_schedddaemon on host perdita to set the value of theMAX_JOBS_RUNNING
configuration variable to the value 10.

% condor_config_val -name perdita -schedd -set "MAX_JOBS_ RUNNING = 10"
Successfully set configuration "MAX_JOBS_RUNNING = 10" on
schedd perdita.cs.wisc.edu <128.105.73.32:52067>.

A command that will implement the change just set in the previous example.

% condor_reconfig -schedd perdita
Sent "Reconfig" command to schedd perdita.cs.wisc.edu

A re-check of the configuration variable reflects the change implemented:

% condor_config_val -name perdita -schedd MAX_JOBS_RUNNI NG
10

To set the configuration variableMAX_JOBS_RUNNINGback to what it was before the command
to set it to 10:

% condor_config_val -name perdita -schedd -unset MAX_JOBS _RUNNING
Successfully unset configuration "MAX_JOBS_RUNNING" on
schedd perdita.cs.wisc.edu <128.105.73.32:52067>.

A command that will implement the change just set in the previous example.

% condor_reconfig -schedd perdita
Sent "Reconfig" command to schedd perdita.cs.wisc.edu

A re-check of the configuration variable reflects that variable has gone back to is value before initial
set of the variable:

% condor_config_val -name perdita -schedd MAX_JOBS_RUNNI NG
500

Condor Version 7.7.6, Command Reference

condor_config_val(1) 761

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_configure(1) 762

condor_configure

Configure or install Condor

Synopsis

condor_configureor condor_install[-- help]

condor_configureor condor_install [-- install[=<path/to/release>]] [-- install-dir= <path>]
[-- prefix=<path>] [-- local-dir=<path>] [-- make-personal-condor] [-- type = < submit,
execute, manager>] [-- central-manager = < hostname>] [-- owner = < ownername >]
[-- make-personal-stork] [-- overwrite] [-- ignore-missing-libs] [-- force] [-- no-env-scripts]
[-- env-scripts-dir = < directory >] [-- backup] [-- stork] [-- credd] [-- verbose]

Description

condor_configureandcondor_installrefer to a single script that installs and/or configures Condor
on Unix machines. As the names imply,condor_installis intended to perform a Condor installation,
andcondor_configureis intended to configure (or reconfigure) an existing installation. Both will
run with Perl 5.6.0 or more recent versions.

condor_configure(andcondor_install) are designed to be run more than one time where required.
It can install Condor when invoked with a correct configuration via

condor_install

or

condor_configure --install

or, it can change the configuration files when invoked via

condor_configure

Note that changes in the configuration files do not result in changes while Condor is running. To
effect changes while Condor is running, it is necessary to further use thecondor_reconfigor con-
dor_restartcommand. condor_reconfigis required where the currently executing daemons need
to be informed of configuration changes.condor_restartis required where the options-- make-
personal-condoror -- type are used, since these affect which daemons are running.

Runningcondor_configureor condor_installwith no options results in a usage screen being printed.
The-- help option can be used to display a full help screen.

Condor Version 7.7.6, Command Reference

condor_configure(1) 763

Within the options given below, the phraserelease directoriesis the list of directories that are re-
leased with Condor. This list includes:bin , etc , examples , include , lib , libexec , man,
sbin , sql andsrc .

Options

—help Print help screen and exit

—install Perform installation, assuming that the current working directory contains the release
directories. Without further options, the configuration isthat of a Personal Condor, a
complete one-machine pool. If used as an upgrade within an existing installation directory,
existing configuration files and local directory are preserved. This is the default behavior of
condor_install.

—install-dir= <path> Specifies the path where Condor should be installed or the path where it
already is installed. The default is the current working directory.

—prefix=<path> This is an alias for–install-dir .

—local-dir=<path> Specifies the location of the local directory, which is the directory that gener-
ally contains the local (machine-specific) configuration file as well as the directories where
Condor daemons write their run-time information (spool , log , execute). This loca-
tion is indicated by theLOCAL_DIR variable in the configuration file. When installing
(that is, if –install is specified),condor_configurewill properly create the local directory
in the location specified. If none is specified, the default value is given by the evaluation of
$(RELEASE_DIR)/local.$(HOSTNAME) .

During subsequent invocations ofcondor_configure(that is, without the —install option), if
the —local-dir option is specified, the new directory will becreated and thelog , spool and
execute directories will be moved there from their current location.

—make-personal-condor Installs and configures for Personal Condor, a fully-functional, one-
machine pool.

—type= < submit, execute, manager> One or more of the types may be listed. This determines
the roles that a machine may play in a pool. In general, any machine can be a submit and/or
execute machine, and there is one central manager per pool. In the case of a Personal Condor,
the machine fulfills all three of these roles.

—central-manager=<hostname> Instructs the current Condor installation to use the specified
machine as the central manager. This modifies the configuration variableCOLLECTOR_HOST

Condor Version 7.7.6, Command Reference

condor_configure(1) 764

to point to the given host name). The central manager machine’s Condor configuration needs
to be independently configured to act as a manager using the option –type=manager.

—owner=<ownername> Set configuration such that Condor daemons will be executed as the
given owner. This modifies the ownership on thelog , spool andexecute directories and
sets theCONDOR_IDSvalue in the configuration file, to ensure that Condor daemonsstart up
as the specified effective user. See section 3.6.13 on UIDs inCondor on page 360 for details.
This is only applicable whencondor_configureis run by root. If not run as root, the owner is
the user running thecondor_configurecommand.

–overwrite Always overwrite the contents of thesbin directory in the installation directory. By
default,condor_installwill not install if it finds an existingsbin directory with Condor pro-
grams in it. In this case,condor_installwill exit with an error message. Specify–overwrite
or –backup to tell condor_installwhat to do.

This preventscondor_installfrom moving ansbin directory out of the way that it should
not move. This is particularly useful when trying to installCondor in a location used by other
things (/usr , /usr/local , etc.) For example:condor_install–prefix=/usr will not move
/usr/sbin out of the way unless you specify the–backupoption.

The–backup behavior is used to preventcondor_installfrom overwriting running daemons
– Unix semantics will keep the existing binaries running, even if they have been moved to a
new directory.

—backup Always backup thesbin directory in the installation directory. By default,con-
dor_install will not install if it finds an existingsbin directory with Condor programs in
it. In this case,condor_installwith exit with an error message. You must specify–overwrite
or –backup to tell condor_installwhat to do.

This preventscondor_installfrom moving ansbin directory out of the way that it should not
move. This is particularly useful if you’re trying to install Condor in a location used by other
things (/usr , /usr/local , etc.) For example:condor_install–prefix=/usr will not move
/usr/sbin out of the way unless you specify the–backupoption.

The–backup behavior is used to preventcondor_installfrom overwriting running daemons
– Unix semantics will keep the existing binaries running, even if they have been moved to a
new directory.

—ignore-missing-libs Ignore missing shared libraries that are detected bycondor_install. By de-
fault, condor_install will detect missing shared libraries such aslibstdc++.so.5
on Linux; it will print messages and exit if missing libraries are detected. The
—ignore-missing-libs will cause condor_install to not exit, and to proceed with the
installation if missing libraries are detected.

Condor Version 7.7.6, Command Reference

condor_configure(1) 765

—force This is equivalent to enabling both the—overwrite and—ignore-missing-libscommand
line options.

—no-env-scripts By default,condor_configurewrites simple sh and csh shell scripts which can be
sourced by their respective shells to set the user’sPATHandCONDOR_CONFIGenvironment
variables. This option preventscondor_configurefrom generating these scripts.

—env-scripts-dir=<directory> By default, the simple sh and csh shell scripts (see
—no-env-scripts for details) are created in the root directory of the Condor installa-
tion. This option causescondor_configureto generate these scripts in the specified directory.

—make-personal-stork Creates a Personal Stork, using thecondor_credddaemon.

—stork Configures the Stork data placement server. Use this option with the—credd option.

—credd Configure the thecondor_credddaemon (credential manager daemon).

—verbose Print information about changes to configuration variablesas they occur.

Exit Status

condor_configurewill exit with a status value of 0 (zero) upon success, and it will exit with a nonzero
value upon failure.

Examples

Install Condor on the machine (machine1@cs.wisc.edu) to bethe pool’s central manager. On ma-
chine1, within the directory that contains the unzipped Condor distribution directories:

% condor_install --type=submit,execute,manager

This will allow the machine to submit and execute Condor jobs, in addition to being the central
manager of the pool.

To change the configuration such that machine2@cs.wisc.eduis an execute-only machine (that is, a
dedicated computing node) within a pool with central manager on machine1@cs.wisc.edu, issue the
command on that machine2@cs.wisc.edu from within the directory where Condor is installed:

% condor_configure --central-manager=machine1@cs.wisc .edu --type=execute

Condor Version 7.7.6, Command Reference

condor_configure(1) 766

To change the location of theLOCAL_DIRdirectory in the configuration file, do (from the directory
where Condor is installed):

% condor_configure --local-dir=/path/to/new/local/dir ectory

This will move thelog ,spool ,execute directories to/path/to/new/local/directory
from the current local directory.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_continue(1) 767

condor_continue

continue suspended jobs from the Condor queue

Synopsis

condor_continue [-help | -version]

condor_continue[-debug] [-pool centralmanagerhostname[:portnumber]| -namescheddname]|
[-addr "<a.b.c.d:port>"] cluster| cluster.process| user| -constraintexpression| -all

Description

condor_continuecontinues one or more suspended jobs from the Condor job queue. If the -name
option is specified, the namedcondor_scheddis targeted for processing. Otherwise, the localcon-
dor_scheddis targeted. The job(s) to be continued are identified by one of the job identifiers, as
described below. For any given job, only the owner of the job or one of the queue super users
(defined by theQUEUE_SUPER_USERSmacro) can continue the job.

Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

-namescheddnameSend the command to a machine identified byscheddname

-addr " <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOL_DEBUG

cluster Continue all jobs in the specified cluster

Condor Version 7.7.6, Command Reference

condor_continue(1) 768

cluster.processContinue the specific job in the cluster

user Continue jobs belonging to specified user

-constraint expressionContinue all jobs which match the job ClassAd expression constraint

-all Continue all the jobs in the queue

Exit Status

condor_continuewill exit with a status value of 0 (zero) upon success, and it will exit with the value
1 (one) upon failure.

Examples

To continue all jobs except for a specific user:

% condor_continue -constraint 'Owner =!= "foo"'

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_convert_history(1) 769

condor_convert_history

Convert the history file to the new format

Synopsis

condor_convert_history[-help]

condor_convert_historyhistory-file1[history-file2. . .]

Description

As of Condor version 6.7.19, the Condor history file has a new format to allow fast searches back-
wards through the file. Not all queries can take advantage of the speed increase, but the ones that
can are significantly faster.

Entries placed in the history file after upgrade to Condor 6.7.19 will automatically be saved in
the new format. The new format adds information to the stringwhich distinguishes and separates
job entries. In order to search within this new format, no changes are necessary. However, to be
able to search the entire history, the history file must be converted to the updated format.con-
dor_convert_historydoes this.

Turn thecondor_schedddaemon off while converting history files. Turn it back on after conversion
is completed.

Arguments tocondor_convert_historyare the history files to convert. The history file is normally
in the Condor spool directory; it is namedhistory . Since the history file is rotated, there may be
multiple history files, and all of them should be converted. On Unix platform variants, the easiest
way to do this is:

cd `condor_config_val SPOOL`
condor_convert_history history*

condor_convert_historymakes a back up of each original history files in case of a problem. The
names of these back up files are listed; names are formed by appending the suffix.oldver to the
original file name. Move these back up files to a directory other than the spool directory. If kept in
the spool directory,condor_historywill find the back ups, and will appear to have duplicate jobs.

Exit Status

condor_convert_historywill exit with a status value of 0 (zero) upon success, and it will exit with
the value 1 (one) upon failure.

Condor Version 7.7.6, Command Reference

condor_convert_history(1) 770

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_dagman(3) 771

condor_dagman

meta scheduler of the jobs submitted as the nodes of a DAG or DAGs

Synopsis

condor_dagman [-debug level] [-maxidle numberOfJobs] [-maxjobs numberOfJobs]
[-maxpre NumberOfPREscripts] [-maxpost NumberOfPOSTscripts] [-noeventchecks]
[-allowlogerror] [-usedagdir] -lockfile filename [-waitfordebug] [-autorescue 0|1]
[-dorescuefrom number] -csdversionversion_string [-allowversionmismatch]
[-DumpRescue] [-verbose] [-force] [-notification value] [-dagman DagmanExecutable]
[-outfile_dir directory] [-update_submit] [-import_env] [-DontAlwaysRunPost] -dagdag_file
[-dagdag_file_2. . .-dagdag_file_n]

Description

condor_dagmanis a meta scheduler for the Condor jobs within a DAG (directedacyclic graph) (or
multiple DAGs). In typical usage, a submitter of jobs that are organized into a DAG submits the
DAG usingcondor_submit_dag. condor_submit_dagdoes error checking on aspects of the DAG
and then submitscondor_dagmanas a Condor job.condor_dagmanuses log files to coordinate the
further submission of the jobs within the DAG.

As part ofdaemoncore, the set of command-line arguments given in section 3.9.2 work for con-
dor_dagman.

Arguments tocondor_dagmanare either automatically set bycondor_submit_dagor they are spec-
ified as command-line arguments tocondor_submit_dagand passed on tocondor_dagman. The
method by which the arguments are set is given in their description below.

condor_dagmancan run multiple, independent DAGs. This is done by specifying multiple
-dagarguments. Pass multiple DAG input files as command-line arguments tocondor_submit_dag.

Debugging output may be obtained by using the-debug leveloption. Level values and what they
produce is described as

• level = 0; never produce output, except for usage info

• level = 1; very quiet, output severe errors

• level = 2; normal output, errors and warnings

• level = 3; output errors, as well as all warnings

• level = 4; internal debugging output

• level = 5; internal debugging output; outer loop debugging

Condor Version 7.7.6, Command Reference

condor_dagman(3) 772

• level = 6; internal debugging output; inner loop debugging; output DAG input file lines as
they are parsed

• level = 7; internal debugging output; rarely used; output DAG input file lines as they are
parsed

Options

-debug level An integer level of debugging output.level is an integer, with values of 0-7 inclusive,
where 7 is the most verbose output. This command-line optionto condor_submit_dagis
passed tocondor_dagmanor defaults to the value 3.

-maxidle NumberOfJobsSets the maximum number of idle jobs allowed beforecondor_dagman
stops submitting more jobs. If DAG nodes have a cluster with more than one job in it, each
job in the cluster is counted individually. Once idle jobs start to run,condor_dagmanwill
resume submitting jobs.NumberOfJobsis a positive integer. This command-line option to
condor_submit_dagis passed tocondor_dagman. If not specified, the number of idle jobs is
unlimited.

-maxjobsnumberOfJobsSets the maximum number of clusters within the DAG that will be
submitted to Condor at one time.numberOfJobsis a positive integer. This command-line
option to condor_submit_dagis passed tocondor_dagman. If not specified, the default
number of clusters is unlimited. If a cluster contains more than one job, only the cluster is
counted for purposes ofmaxjobs.

-maxpre NumberOfPREscriptsSets the maximum number of PRE scripts within the DAG that
may be running at one time.NumberOfPREScriptsis a positive integer. This command-line
option to condor_submit_dagis passed tocondor_dagman. If not specified, the default
number of PRE scripts is unlimited.

-maxpostNumberOfPOSTscriptsSets the maximum number of POST scripts within the DAG that
may be running at one time.NumberOfPOSTScriptsis a positive integer. This command-line
option to condor_submit_dagis passed tocondor_dagman. If not specified, the default
number of POST scripts is unlimited.

-noeventchecksThis argument is no longer used; it is now ignored. Its functionality is now
implemented by theDAGMAN_ALLOW_EVENTSconfiguration macro (see section 3.3.25).

-allowlogerror This optional argument hascondor_dagmantry to run the specified DAG, even in
the case of detected errors in the user log specification. As of version 7.3.2, this argument has
an effect only on DAGs containing Stork job nodes.

Condor Version 7.7.6, Command Reference

condor_dagman(3) 773

-usedagdir This optional argument causescondor_dagmanto run each specified DAG as if the
directory containing that DAG file was the current working directory. This option is most
useful when running multiple DAGs in a singlecondor_dagman.

-lockfile filename Names the file created and used as a lock file. The lock file prevents execution
of two of the same DAG, as defined by a DAG input file. A default lock file ending with the
suffix .dag.lock is passed tocondor_dagmanby condor_submit_dag.

-waitfordebug This optional argument causescondor_dagmanto wait at startup until someone
attaches to the process with a debugger and sets the wait_for_debug variable in main_init() to
false.

-autorescue0|1 Whether to automatically run the newest rescue DAG for the given DAG file, if
one exists (0 =false , 1 = true).

-dorescuefromnumber Forcescondor_dagmanto run the specified rescue DAG number for the
given DAG. A value of 0 is the same as not specifying this option. Specifying a nonexistent
rescue DAG is a fatal error.

-csdversionversion_string version_stringis the version of thecondor_submit_dagprogram. At
startup,condor_dagmanchecks for a version mismatch with thecondor_submit_dagversion
in this argument.

-allowversionmismatch This optional argument causescondor_dagmanto allow a version
mismatch betweencondor_dagmanitself and the.condor.sub file produced bycon-
dor_submit_dag(or, in other words, betweencondor_submit_dagand condor_dagman).
WARNING! This option should be used only if absolutely necessary. Allowing version
mismatches can cause subtle problems when running DAGs. (Note that, starting with
version 7.4.0,condor_dagmanno longer requires an exact version match between itself
and the.condor.sub file. Instead, a "minimum compatible version" is defined, andany
.condor.sub file of that version or newer is accepted.)

-DumpRescueThis optional argument causescondor_dagmanto immediately dump a Rescue
DAG and then exit, as opposed to actually running the DAG. This feature is mainly intended
for testing. The Rescue DAG file is produced whether or not there are parse errors reading
the original DAG input file. The name of the file differs if there was a parse error.

-verbose (This argument is included only to be passed tocondor_submit_dagif lazy submit
file generation is used for nested DAGs.) Causecondor_submit_dagto give verbose error
messages.

Condor Version 7.7.6, Command Reference

condor_dagman(3) 774

-force (This argument is included only to be passed tocondor_submit_dagif lazy submit file
generation is used for nested DAGs.) Requirecondor_submit_dagto overwrite the files
that it produces, if the files already exist. Note thatdagman.out will be appended to, not
overwritten. If new-style rescue DAG mode is in effect, and any new-style rescue DAGs
exist, the-force flag will cause them to be renamed, and the original DAG will berun. If
old-style rescue DAG mode is in effect, any existing old-style rescue DAGs will be deleted,
and the original DAG will be run. Section 2.10.8 details rescue DAGs.

-notification value (This argument is only included to be passed tocondor_submit_dagif lazy
submit file generation is used for nested DAGs.) Sets the e-mail notification for DAGMan
itself. This information will be used within the Condor submit description file for DAGMan.
This file is produced bycondor_submit_dag. Seenotification within the section of submit
description file commands in thecondor_submitmanual page on page 873 for specification
of value.

-dagmanDagmanExecutable(This argument is included only to be passed tocondor_submit_dag
if lazy submit file generation is used for nested DAGs.) Allows the specification of an
alternatecondor_dagmanexecutable to be used instead of the one found in the user’s path.
This must be a fully qualified path.

-outfile_dir directory (This argument is included only to be passed tocondor_submit_dagif
lazy submit file generation is used for nested DAGs.) Specifies the directory in which the
.dagman.out file will be written. Thedirectory may be specified relative to the current
working directory ascondor_submit_dagis executed, or specified with an absolute path.
Without this option, the.dagman.out file is placed in the same directory as the first DAG
input file listed on the command line.

-update_submit (This argument is included only to be passed tocondor_submit_dagif lazy
submit file generation is used for nested DAGs.) This optional argument causes an existing
.condor.sub file to not be treated as an error; rather, the.condor.sub file will be
overwritten, but the existing values of-maxjobs, -maxidle, -maxpre, and-maxpostwill be
preserved.

-import_env (This argument is included only to be passed tocondor_submit_dagif lazy submit
file generation is used for nested DAGs.) This optional argument causescondor_submit_dag
to import the current environment into theenvironment command of the.condor.sub
file it generates.

-dagfilename filenameis the name of the DAG input file that is set as an argument tocon-
dor_submit_dag, and passed tocondor_dagman.

Condor Version 7.7.6, Command Reference

condor_dagman(3) 775

-DontAlwaysRunPost This option causescondor_dagmanto observe the exit status of the PRE
script when deciding whether or not to run the POST script. Versions ofcondor_dagman
previous to Condor version 7.7.2 would not run the POST script if the PRE script exited
with a nonzero status, but this default has been changed suchthat the POST script will
run, regardless of the exit status of the PRE script. Using this option restores the previous
behavior, in whichcondor_dagmanwill not run the POST script if the PRE script fails.

Exit Status

condor_dagmanwill exit with a status value of 0 (zero) upon success, and it will exit with the value
1 (one) upon failure.

Examples

condor_dagmanis normally not run directly, but submitted as a Condor job byrunning con-
dor_submit_dag. See the condor_submit_dag manual page 909for examples.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_drain(1) 776

condor_drain

Control draining of an execute machine

Synopsis

condor_drain[-help]

condor_drain [-debug] [-pool pool-name] [-graceful | -quick | -fast] [-resume-on-completion]
[-check expr] machine-name

condor_drain [-debug] [-pool pool-name] -cancel[-request-id id] machine-name

Description

condor_drainis an administrative command used to control the draining ofall slots on an execute
machine. When a machine is draining, it will not accept any new jobs. Which machine to drain
is specified by the argumentmachine-name, and will be the same as the machine ClassAd attribute
Machine .

How currently running jobs are treated depends on the draining schedule that is chosen with a
command-line option:

-graceful Initiate a graceful eviction of the job. This means all promises that have been made to the
job are honored, includingMaxJobRetirementTime . The eviction of jobs is coordinated
to reduce idle time. This means that if one slot has a job with along retirement time and the
other slots have jobs with shorter retirement times, the effective retirement time for all of the
jobs is the longer one. If no draining schedule is specified,-graceful is chosen by default.

-quick MaxJobRetirementTime is not honored. Eviction of jobs is immediately initiated. Jobs
are given time to shut down and produce checkpoints, according to the usual policy, that is,
given byMachineMaxVacateTime .

-fast Jobs are immediately hard-killed, with no chance to gracefully shut down or produce a check-
point.

Once draining is complete, the machine will enter the Drained/Idle state. To resume normal opera-
tion (negotiation) at that time or any previous time during draining, the-canceloption may be used.
The-resume-on-completionoption results in automatic resumption of normal operationonce drain-
ing has completed, and may be used when initiating draining.This is useful for forcing a machine
with a partitionable slots to join all of the resources back together into one machine, facilitating
de-fragmentation and whole machine negotiation.

Condor Version 7.7.6, Command Reference

condor_drain(1) 777

Options

-help Display brief usage information and exit.

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOL_DEBUG

-pool pool-nameSpecify an alternate Condor pool, if the default one is not desired.

-graceful (the default) Honor the maximum vacate and retirement time policy.

-quick Honor the maximum vacate time, but not the retirement time policy.

-fast Honor neither the maximum vacate time policy nor the retirement time policy.

-resume-on-completionWhen done draining, resume normal operation, such that potentially the
whole machine could be claimed.

-checkexpr Abort draining, ifexpr is not true for all slots to be drained.

-cancel Cancel a prior draining request, to permit thecondor_negotiatorto use the machine again.

-request-id id Specify a specific draining request to cancel, whereid is given by the
DrainingRequestId machine ClassAd attribute.

Exit Status

condor_drainwill exit with a non-zero status value if it fails and zero status if it succeeds.

Author

Condor Team, University of Wisconsin–Madison

Condor Version 7.7.6, Command Reference

condor_drain(1) 778

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_fetchlog(1) 779

condor_fetchlog

Retrieve a daemon’s log file that is located on another computer

Synopsis

condor_fetchlog[-help | -version]

condor_fetchlog[-pool centralmanagerhostname[:portnumber]] [-master | -startd | -schedd| -
collector | -negotiator | -kbdd] machine-name subsystem[.extension]

Description

condor_fetchlogcontacts Condor running on the machine specified bymachine-name, and asks it
to return a log file from that machine. Which log file is determined from thesubsystem[.extension]
argument. The log file is printed to standard output. This command eliminates the need to remotely
log in to a machine in order to retrieve a daemon’s log file.

For security purposes of authentication and authorization, this command requires an administrator’s
level of access. See section 3.6.1 on page 326 for more details about Condor’s security mechanisms.

Thesubsystem[.extension]argument is utilized to construct the log file’s name. Without an optional
.extension, the value of the configuration variable namedsubsystem_LOG defines the log file’s name.
When specified, the.extensionis appended to this value.

Typical strings for the argumentsubsystemare as given as possible values of the predefined con-
figuration variable$(SUBSYSTEM). See the definition in section 3.3.1. Note that access to any
additional logs can be enabled by simply specifying the pathto each log in the configuration file
with a configuration parameter named<NAME>_LOG, choosing an arbitrary unique name for each
case.

A value for the optional.extensionargument is typically one of the three strings:

1. .old

2. .slot<X>

3. .slot<X>.old

Within these strings,<X> is substituted with the slot number.

Condor Version 7.7.6, Command Reference

condor_fetchlog(1) 780

Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

-master Send the command to thecondor_masterdaemon (default)

-startd Send the command to thecondor_startddaemon

-schedd Send the command to thecondor_schedddaemon

-collector Send the command to thecondor_collectordaemon

-kbdd Send the command to thecondor_kbdddaemon

Examples

To get thecondor_negotiatordaemon’s log from a host namedhead.example.com from within
the current pool:

condor_fetchlog head.example.com NEGOTIATOR

To get thecondor_startddaemon’s log from a host namedexecute.example.com from within
the current pool:

condor_fetchlog execute.example.com STARTD

This command requested thecondor_startddaemon’s log from thecondor_master. If the con-
dor_masterhas crashed or is unresponsive, ask another daemon running on that computer to return
the log. For example, ask thecondor_startddaemon to return thecondor_master’s log:

condor_fetchlog -startd execute.example.com MASTER

Condor Version 7.7.6, Command Reference

condor_fetchlog(1) 781

Exit Status

condor_fetchlogwill exit with a status value of 0 (zero) upon success, and it will exit with the value
1 (one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_findhost(1) 782

condor_findhost

find machine(s) in the pool that can be used with minimal impact on currently running Condor jobs
and best meet any specified constraints

Synopsis

condor_findhost[-help] [-m] [-n num] [-c c_expr] [-r r_expr] [-p centralmanagerhostname]

Description

condor_findhostsearches a Condor pool of machines for the best machine or machines that will
have the minimum impact on running Condor jobs if the machineor machines are taken out of the
pool. The search may be limited to the machine or machines that match a set of constraints and rank
expression.

condor_findhostreturns a fully-qualified domain name for each machine. The search is limited
(constrained) to a specific set of machines using the-c option. The search can use the-r option for
rank, the criterion used for selecting a machine or machinesfrom the constrained list.

Options

-help Display usage information and exit

-m Only search for entire machines. Slots within an entire machine are not considered.

-n num Find and list up tonummachines that fulfill the specification.num is an integer greater
than zero.

-c c_expr Constrain the search to only consider machines that result from the evaluation ofc_expr.
c_expris a ClassAd expression.

-r r_expr r_expr is the rank expression evaluated to use as a basis for machineselection.r_expr is
a ClassAd expression.

-p centralmanagerhostnameSpecify the pool to be searched by giving the central manager’s host
name. Without this option, the current pool is searched.

Condor Version 7.7.6, Command Reference

condor_findhost(1) 783

General Remarks

condor_findhostis used to locate a machine within a pool that can be taken out of the pool with the
least disturbance of the pool.

An administrator should set preemption requirements for the Condor pool. The expression

(Interactive =?= TRUE)

will let condor_findhostknow that it can claim a machine even if Condor would not normally pre-
empt a job running on that machine.

Exit Status

The exit status ofcondor_findhostis zero on success. If not able to identify as many machines as
requested, it returns one more than the number of machines identified. For example, if 8 machines
are requested, andcondor_findhostonly locates 6, the exit status will be 7. If not able to locateany
machines, or an error is encountered,condor_findhostwill return the value 1.

Examples

To find and list four machines, preferring those with the highest mips (on Drystone benchmark)
rating:

condor_findhost -n 4 -r "mips"

To find and list 24 machines, considering only those where thekflops attribute is not defined:

condor_findhost -n 24 -c "kflops=?=undefined"

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_gather_info(1) 784

condor_gather_info

Gather information about a Condor installation and a queuedjob

Synopsis

condor_gather_info[-- jobid <ClusterId.ProcId>] [-- scratch /path/to/directory]

Description

NOTE: The usage information that the Condor versions 7.7.3 and 7.7.4 condor_gather_infotool
outputs is not quite correct. This manual page is more accurate for those releases.

condor_gather_infowill collect and output information about the machine it is run upon, about
the Condor installation local to the machine, and optionally about a specified Condor job. The
information gathered by this tool is most often used as a debugging aid for the developers of Condor.

Without the-- jobid option, information about the local machine and its Condor installation is
gathered and placed into the file calledcondor-profile.txt , in the current working directory.
Specification of the information gathered is given in theGeneral Remarkssection below, under the
category of Identity.

With the -- jobid option, additional information is gathered about the job identified by its
ClusterId and ProcId ClassAd attributes. This information includes both categories
as given in theGeneral Remarks section below: Identity and Job information. As the
quantity of information can be extensive, this informationis placed into a compressed tar
file. The file is placed into the current working directory, and it is named using the format
cgi-<username>-jid<ClusterId>.<ProcId>-<year>-<mont h>-<day>-<hour>_<minute>_<second>-<TZ>
where all values within<> are substituted with current values. The building of this potentially
large tar file can require a fair amount of temporary space. Ifthe -- scratch option is specified, it
identifies a directory in which to build the tar file. If the-- scratch option isnot specified, then
the directory will be/tmp/cgi-<PID> , where the process ID is that of thecondor_gather_info
executable.

Options

—jobid <ClusterId.ProcId> Data mine information about this Condor job from the local Condor
installation andcondor_schedd.

—scratch /path/to/directory A path to temporary space needed when building the output tar
file. Defaults to /tmp/cgi-<PID> , where <PID> is replaced by the process ID of

Condor Version 7.7.6, Command Reference

condor_gather_info(1) 785

condor_gather_info.

General Remarks

The information gathered by this tool is:

1. Identity

• User name who generated the report

• Script location and machine name

• Date of report creation

• uname -a

• Contents of/etc/issue

• Contents of/etc/redhat-release

• Contents of/etc/debian_version

• ps -auxww -forest

• df -h

• iptables -L

• ls ‘condor_config_val LOG‘

• ldd ‘condor_config_val SBIN‘/condor_schedd

• Contents of/etc/hosts

• Contents of/etc/nsswitch.conf

• ulimit -a

• Network interface configuration (ifconfig)

• Condor version

• Location of Condor configuration files

• Condor configuration variables

– All variables and values
– Definition locations for each configuration variable

2. Job Information

• condor_q jobid

• condor_q -l jobid

• condor_q -better-analyze jobid

• Job user log, if it exists

– Only events pertaining to the job ID

Condor Version 7.7.6, Command Reference

condor_gather_info(1) 786

Files

condor-profile.txt The Identity portion of the information gathered whencon-
dor_gather_infois run without arguments.

cgi-<username>-jid<cluster>.<proc>-<year>-<month>-< day>-<hour>_<minute>_<second>-<TZ>.
The output file which contains all of the information produced by this tool.

Exit Status

condor_gather_infowill exit with a status value of 0 (zero) upon success, and it will exit with the
value 1 (one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_glidein(1) 787

condor_glidein

add a remote grid resource to a local Condor pool

Synopsis

condor_glidein[-help]

condor_glidein [-admin address] [-anybody] [-archdir dir] [-basedir basedir]
[-count CPU count] [<Execute Task Options>] [<Generate File Options>]
[-gsi_daemon_namecert_name] [-idletime minutes] [-install_gsi_trusted_ca_dir path]
[-install_gsi_gridmap file] [-localdir dir] [-memory MBytes] [-project name] [-queue name]
[-runtime minutes] [-runonly] [<Set Up Task Options>] [-suffix suffix] [-slots slot count]
<contact argument>

Description

condor_glideinallows the temporary addition of a grid resource to a local Condor pool. The addi-
tion is accomplished by installing and executing some of theCondor daemons on the remote grid
resource, such that it reports in as part of the local Condor pool. condor_glideinaccomplishes two
separate tasks: set up and execution. These separated tasksallow flexibility, in that the user may use
condor_glideinto do only one of the tasks or both, in addition to customizingthe tasks.

The set up task generates a script that may be used to start theCondor daemons during the execution
task, places this script on the remote grid resource, composes and installs a configuration file, and it
installs thecondor_master, condor_startdandcondor_starterdaemons on the grid resource.

The execution task runs the script generated by the set up task. The goal of the script is to invoke the
condor_masterdaemon. The Condor jobglidein_startupappears in the queue of the local Condor
pool for each invocation ofcondor_glidein. To remove the grid resource from the local Condor pool,
usecondor_rmto remove theglidein_startupjob.

The Condor jobs to do both the set up and execute tasks utilizeCondor-G and Globus gt2 protocols
to communicate with the remote resource. Therefore, an X.509 certificate (proxy) is required for the
user runningcondor_glidein.

Specify the remote grid machine with the command line argument <contact argument>.
<contact argument>takes one of 4 forms:

1. hostname

2. Globus contact string

3. hostname/jobmanager-<schedulername>

Condor Version 7.7.6, Command Reference

condor_glidein(1) 788

4. -contactfilefilename

The argument-contactfilefilenamespecifies the full path and file name of a file that contains Globus
contact strings. Each of the resources given by a Globus contact string is added to the local Condor
pool.

The set up task ofcondor_glideincopies the binaries for the correct platform from a central server.
To obtain access to the server, or to set up your own server, follow instructions on the Glidein Server
Setup page, at http://www.cs.wisc.edu/condor/glidein. Set up need only be done once per site, as the
installation is never removed.

By default, all files installed on the remote grid resource are placed in the directory
$(HOME)/Condor_glidein . $(HOME) is evaluated and defined on the remote machine us-
ing a grid map. This directory must be in a shared file system accessible by all machines that will
run the Condor daemons. By default, the daemon’s log files will also be written in this directory.
Change this directory with the-localdir option to make Condor daemons write to local scratch space
on the execution machine. For debugging initial problems, it may be convenient to have the log files
in the more accessible default directory. If using the default directory, occasionally clean up old log
and execute directories to avoid running out of space.

Examples

To have 10 grid resources running PBS at a grid site with a gatekeeper named gatekeeper.site.edu
join the local Condor pool:

% condor_glidein -count 10 gatekeeper.site.edu/jobmanag er-pbs

If you try something like the above andcondor_glideinis not able to automatically determine every-
thing it needs to know about the remote site, it will ask you toprovide more information. A typical
result of this process is something like the following command:

% condor_glidein \
-count 10 \
-arch 6.6.7-i686-pc-Linux-2.4 \
-setup_jobmanager jobmanager-fork \
gatekeeper.site.edu/jobmanager-pbs

The Condor jobs that do the set up and execute tasks will appear in the queue for the local Condor
pool. As a result of a successful glidein, usecondor_statusto see that the remote grid resources are
part of the local Condor pool.

A list of common problems and solutions is presented in this manual page.

Condor Version 7.7.6, Command Reference

http://www.cs.wisc.edu/condor/glidein

condor_glidein(1) 789

Generate File Options

-genconfig Create a local copy of the configuration file that may be used onthe remote resource.
The file is namedglidein_condor_config.<suffix> . The string defined by
<suffix> defaults to the process id (PID) of thecondor_glideinprocess or is defined with
the -suffix command line option. The configuration file may be edited for later use with the
-useconfigoption.

-genstartup Create a local copy of the script used on the remote resource to invoke thecon-
dor_master. The file is namedglidein_startup.<suffix> . The string defined by
<suffix> defaults to the process id (PID) of thecondor_glideinprocess or is defined with the
-suffix command line option. The file may be edited for later use with the-usestartupoption.

-gensubmit Generate submit description files, but do not submit. The submit description file for
the set up task is namedglidein_setup.submit.<suffix> . The submit description
file for the execute task is namedglidein_run.submit.<suffix> . The string defined
by <suffix> defaults to the process id (PID) of thecondor_glideinprocess or is defined with
the-suffix command line option.

Set Up Task Options

-setuponly Do only the set up task ofcondor_glidein. This option cannot be run simultaneously
with -runonly .

-setup_here Do the set up task on the local machine, instead of at a remote grid resource. This may
be used, for example, to do the set up task ofcondor_glideinin an AFS area that is read-only
from the remote grid resource.

-forcesetup During the set up task, force the copying of files, even if thisoverwrites existing files.
Use this to push out changes to the configuration.

-useconfigconfig_file The set up task copies the specified configuration file, ratherthan generating
one.

-usestartupstartup_file The set up task copies the specified startup script, rather than generating
one.

-setup_jobmanagerjobmanagernameIdentifies the jobmanager on the remote grid resource to
receive the files during the set up task. If a reasonable default can be discovered through

Condor Version 7.7.6, Command Reference

condor_glidein(1) 790

MDS, this is optional. jobmanagernameis a string representing any gt2 name for the job
manager. The correct string in most cases will bejobmanager-fork. Other common strings
may bejobmanager, jobmanager-condor, jobmanager-pbs, andjobmanager-lsf.

Execute Task Options

-runonly Starts execution of the Condor daemons on the grid resource.If any of the necessary files
or executables are missing,condor_glideinexits with an error code. This option cannot be
run simultaneously with-setuponly.

-run_here Runs condor_masterdirectly rather than submitting a Condor job that causes the
remote execution. To instead generate a script that does this, use-run_here in combination
with -gensubmit. This may be useful for running Condor daemons on resources that are not
directly accessible by Condor.

Options

-help Display brief usage information and exit.

-basedirbasedir Specifies the base directory on the remote grid resource usedfor placing files.
The default directory is$(HOME)/Condor_glidein on the grid resource.

-archdir dir Specifies the directory on the remote grid resource for placement of the Condor
executables. The default value for-archdir is based upon version information on the
grid resource. It is of the form<basedir >/ <condor-version >- <Globus
canonicalsystemname >. An example of the directory (without the base direc-
tory) for Condor version 7.6.0 running on a 64-bit Intel processor with RHEL 3 is
7.6.0-x86_64-pc-Linux-2.4-glibc2.3 .

-localdir dir Specifies the directory on the remote grid resource in which to create log and exe-
cution subdirectories needed by Condor. If limited disk quota in the home or base directory
on the grid resource is a problem, set-localdir to a large temporary space, such as/tmp
or /scratch . If the batch system requires invocation of Condor daemons in a temporary
scratch directory, ’.’ may be used for the definition of the-localdir option.

-arch architecture Identifies the platform of the required tarball containing the correct Con-
dor daemon executables to download and install. If a reasonable default can be dis-
covered through MDS, this is optional. A list of possible values may be found at
http://www.cs.wisc.edu/condor/glidein/binaries. The architecture name is the same as the

Condor Version 7.7.6, Command Reference

http://www.cs.wisc.edu/condor/glidein/binaries

condor_glidein(1) 791

tarball name without the suffixtar.gz . An example is 6.6.5-i686-pc-Linux-2.4 .

-queuename The argumentnameis a string used at the grid resource to identify a job queue.

-project name The argumentnameis a string used at the grid resource to identify a project name.

-memory MBytes The maximum memory size in Megabytes to request from the gridresource.

-count CPU count The number of CPUs requested to join the local pool. The default is 1.

-slotsslot count For machines with multiple CPUs, the CPUs maybe divided up into slots.
slot count is the number of slots that results. By default, Condor divides multiple-CPU
resources such that each CPU is a slot, each with an equal share of RAM, disk, and swap
space. This option configures the number of slots, so that multi-threaded jobs can run in a slot
with multiple CPUs. For example, if 4 CPUs are requested and-slotsis not specified, Condor
will divide the request up into 4 slots with 1 CPU each. However, if -slots2 is specified,
Condor will divide the request up into 2 slots with 2 CPUs each, and if -slots1 is specified,
Condor will put all 4 CPUs into one slot.

-idletime minutes The amount of time that a remote grid resource will remain idle state, before
the daemons shut down. A value of 0 (zero) means that the daemons never shut down due to
remaining in the idle state. In this case, the-runtime option defines when the daemons shut
down. The default value is 20 minutes.

-runtime minutes The maximum amount of time the Condor daemons on the remote grid resource
will run before shutting themselves down. This option is useful for resources with enforced
maximum run times. Setting-runtime to be a few minutes shorter than the enforced limit
gives the daemons time to perform a graceful shut down.

-anybodySets the CondorSTARTexpression for the added remote grid resource toTrue . This
permits any user’s job which can run on the added remote grid resource to run. Without this
option, only jobs owned by the user executingcondor_glideincan execute on the remote grid
resource. WARNING: Using this option may violate the usage policies of many institutions.

-admin addressWhere to send e-mail with problems. The default is the login of the user running
condor_glideinat UID domain of the local Condor pool.

-suffix X Suffix to use when generating files. Default is process id.

Condor Version 7.7.6, Command Reference

condor_glidein(1) 792

-gsi_daemon_namecert_name Includes and enables GSI authentication in the configuration for
the remote grid resource. The argument is the GSI certificatename that the daemons will use
to authenticate themselves.

-install_gsi_trusted_ca_dirpath The argument identifies the directory contain-
ing the trusted CA certificates that the daemons are to use (for example,
/etc/grid-security/certificates). The contents of this directory will be
installed at the remote site in the directory<basedir >/grid-security .

-install_gsi_gridmapfile The argument is the file name of the GSI-specific X.509 map
file that the daemons will use. The file will be installed at theremote site in
<basedir >/grid-security . The file contains entries mapping certificates to
user names. At the very least, it must contain an entry for thecertificate given by the
command-line option-gsi_daemon_name. If other Condor daemons use different cer-
tificates, then this file will also list any certificates that the daemons will encounter for
the condor_schedd, condor_collector, andcondor_negotiator. See section 3.6.3 for more
information.

Exit Status

condor_glideinwill exit with a status value of 0 (zero) upon complete success, or with non-zero
values upon failure. The status value will be 1 (one) ifcondor_glideinencountered an error making
a directory, was unable to copy a tar file, encountered an error in parsing the command line, or was
not able to gather required information. The status value will be 2 (two) if there was an error in the
remote set up. The status value will be 3 (three) if there was an error in remote submission. The
status value will be -1 (negative one) if no resource was specified in the command line.

Common problems are listed below. Many of these are best discovered by looking in theStartLog
log file on the remote grid resource.

WARNING: The file xxx is not writable by condor This error occurs whencondor_glideinis run
in a directory that does not have the proper permissions for Condor to access files. An AFS
directory does not give Condor the user’s AFS ACLs.

Glideins fail to run due to GLIBC errors Check the list of available glidein binaries
(http://www.cs.wisc.edu/condor/glidein/binaries), and try specifying the architecture
name that includes the correct glibc version for the remote grid site.

Glideins join pool but no jobs run on them One common cause of this problem is that the remote
grid resources are in a different file system domain, and the submitted Condor jobs have an
implicit requirement that they must run in the same file system domain. See section 2.5.4
for details on using Condor’s file transfer capabilities to solve this problem. Another cause
of this problem is a communication failure. For example, a firewall may be preventing the

Condor Version 7.7.6, Command Reference

http://www.cs.wisc.edu/condor/glidein/binaries

condor_glidein(1) 793

condor_negotiatoror thecondor_schedddaemons from connecting to thecondor_startdon
the remote grid resource. Although work is being done to remove this requirement in the
future, it is currently necessary to have full bidirectional connectivity, at least over a restricted
range of ports. See page 188 for more information on configuring a port range.

Glideins run but fail to join the pool This may be caused by the local pool’s security settings or
by a communication failure. Check that the security settings in the local pool’s configuration
file allow write access to the remote grid resource. To not modify the security settings for the
pool, run a separate pool specifically for the remote grid resources, and use flocking to balance
jobs across the two pools of resources. If the log files indicate a communication failure, then
see the next item.

The startd cannot connect to the collectorThis may be caused by several things. One is a fire-
wall. Another is when the compute nodes do not have even outgoing network access. Con-
figuration to work without full network access to and from thecompute nodes is still in the
experimental stages, so for now, the short answer is that youmust at least have a range of open
(bidirectional) ports and set up the configuration file as described on page 188. Use the option
-genconfig, edit the generated configuration file, and then do the glidein execute task with the
option-useconfig.)

Another possible cause of connectivity problems may be the use of UDP by thecondor_startd
to register itself with thecondor_collector. Force it to use TCP as described on page 189.

Yet another possible cause of connectivity problems is whenthe remote grid resources
have more than one network interface, and the default one chosen by Condor is not
the correct one. One way to fix this is to modify the glidein startup script using the
-genstartup and -usestartup options. The script needs to determine the IP address as-
sociated with the correct network interface, and assign this to the environment variable
_condor_NETWORK_INTERFACE.

NFS file locking problems If the -localdir option uses files on NFS (not recommended, but some-
times convenient for testing), the Condor daemons may have trouble manipulating file locks.
Try inserting the following into the configuration file:

IGNORE_NFS_LOCK_ERRORS = True

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_history(1) 794

condor_history

View log of Condor jobs completed to date

Synopsis

condor_history[-help]

condor_history [-backwards] [-forwards] [-completedsincepostgrestimestamp]
[-constraint expr] [-f filename] [-format formatString AttributeName] [-l | -long | -xml]
[-match number] [-name schedd-name] [cluster | cluster.process| owner]

Description

condor_historydisplays a summary of all Condor jobs listed in the specified history files, or in the
Quill database, when Quill is enabled. If no history files arespecified (with the-f option) and Quill is
not enabled, the local history file as specified in Condor’s configuration file ($(SPOOL)/history
by default) is read. The default listing summarizes in reverse chronological order each job on a single
line, and contains the following items:

ID The cluster/process id of the job.

OWNER The owner of the job.

SUBMITTED The month, day, hour, and minute the job was submitted to the queue.

RUN_TIME Remote wall clock time accumulated by the job to date in days,hours, minutes, and
seconds. See the definition ofRemoteWallClockTime on page 966.

ST Completion status of the job (C = completed and X = removed).

COMPLETED The time the job was completed.

CMD The name of the executable.

If a job ID (in the form ofcluster_idor cluster_id.proc_id) or anowneris provided, output will be
restricted to jobs with the specified IDs and/or submitted bythe specified owner. The-constraint
option can be used to display jobs that satisfy a specified boolean expression.

The history file is kept in chronological order, implying that new entries are appended at the end of
the file. As of Condor version 6.7.19, the format of the history file is altered to enable faster reading
of the history file backwards (most recent job first). Historyfiles written with earlier versions of
Condor, as well as those that have entries of both the older and newer format need to be converted to
the new format. See thecondor_convert_historymanual page on page 769 for details on converting
history files to the new format.

Condor Version 7.7.6, Command Reference

condor_history(1) 795

Options

-help Display usage information and exit.

-backwards List jobs in reverse chronological order. The job most recently added to the history
file is first. This is the default ordering.

-forwards List jobs in chronological order. The job most recently added to the history file is last.

-completedsincepostgrestimestampWhen Quill is enabled, display only job ads that were in
the Completed job state on or after the date and time given by the postgrestimestamp. The
postgrestimestampfollows the syntax as given forPostgreSQLversion 8.0. The behavior of
this option is undefined when Quill isnot enabled.

-constraint expr Display jobs that satisfy the expression.

-f filename Use the specified file instead of the default history file. WhenQuill is enabled, this
option will force the query to read from the history file, and not the database.

-format formatStringAttributeName Display jobs with a custom format. See thecondor_qman
page-format option for details.

-l or -long Display job ads in long format.

-match number Limit the number of jobs displayed tonumber.

-nameschedd-nameWhen Quill is enabled, query job ClassAds from the namedcondor_schedd
daemon, not the defaultcondor_schedddaemon.

-xml Display job ClassAds in xml format. The xml format is fully defined at
http://www.cs.wisc.edu/condor/classad/refman/.

Examples

To see all historical jobs since April 1, 2005 at 1pm,

%condor_history -completedsince '04/01/2005 13:00'

Condor Version 7.7.6, Command Reference

http://www.cs.wisc.edu/condor/classad/refman/

condor_history(1) 796

Exit Status

condor_historywill exit with a status value of 0 (zero) upon success, and it will exit with the value
1 (one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_hold(1) 797

condor_hold

put jobs in the queue into the hold state

Synopsis

condor_hold [-help | -version]

condor_hold [-debug] [-reason reasonstring] [-subcode number]
[-pool centralmanagerhostname[:portnumber]| -namescheddname]| [-addr "<a.b.c.d:port>"]
cluster. . .| cluster.process. . .| user. . . | -constraint expression. . .

condor_hold [-debug] [-reason reasonstring] [-subcode number]
[-pool centralmanagerhostname[:portnumber]| -namescheddname]| [-addr "<a.b.c.d:port>"]
-all

Description

condor_holdplaces jobs from the Condor job queue in the hold state. If the-nameoption is spec-
ified, the namedcondor_scheddis targeted for processing. Otherwise, the localcondor_schedd
is targeted. The jobs to be held are identified by one or more job identifiers, as described be-
low. For any given job, only the owner of the job or one of the queue super users (defined by the
QUEUE_SUPER_USERSmacro) can place the job on hold.

A job in the hold state remains in the job queue, but the job will not run until released withcon-
dor_release.

A currently running job that is placed in the hold state bycondor_holdis sent a hard kill signal. For
a standard universe job, this means that the job is removed from the machine without allowing a
checkpoint to be produced first.

Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

-namescheddnameSend the command to a machine identified byscheddname

Condor Version 7.7.6, Command Reference

condor_hold(1) 798

-addr " <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOL_DEBUG

-reasonreasonstring Sets the job ClassAd attributeHoldReason to the value given by
reasonstring. reasonstringwill be delimited by double quote marks on the command line, if
it contains space characters.

-subcodenumber Sets the job ClassAd attributeHoldReasonSubCode to the integer value
given bynumber.

cluster Hold all jobs in the specified cluster

cluster.processHold the specific job in the cluster

user Hold all jobs belonging to specified user

-constraint expressionHold all jobs which match the job ClassAd expression constraint (within
quotation marks). Note that quotation marks must be escapedwith the backslash characters
for most shells.

-all Hold all the jobs in the queue

See Also

condor_release(on page 832)

Examples

To place on hold all jobs (of the user that issued thecondor_holdcommand) that are not currently
running:

% condor_hold -constraint "JobStatus!=2"

Multiple options within the same command cause the union of all jobs that meet either (or both) of
the options to be placed in the hold state. Therefore, the command

Condor Version 7.7.6, Command Reference

condor_hold(1) 799

% condor_hold Mary -constraint "JobStatus!=2"

places all of Mary’s queued jobs into the hold state, and the constraint holds all queued jobs not
currently running. It also sends a hard kill signal to any of Mary’s jobs that are currently running.
Note that the jobs specified by the constraint will also be Mary’s jobs, if it is Mary that issues this
examplecondor_holdcommand.

Exit Status

condor_holdwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_load_history(1) 800

condor_load_history

Read a Condor history file into a Quill database

Synopsis

condor_load_history-f historyfilename[-name schedd-name jobqueue-birthdate]

Description

condor_load_historyreads a Condor history file, adding its information to a Quilldatabase. The
Quill database is located via configuration variables. The history file to read is defined by the
required-f historyfilenameargument.

The combination of acondor_schedddaemon’s name together with its process creation date (the
job queue’s birthdate) define a unique identifier that may be attached to the Quill database with the
-nameoption. The format of birthdate expected is exactly the firstline of thejob_queue.log
file. The location of this file may be determined using

% condor_config_val spool

Be aware and expect that the reading and processing of a sizable history file may take a large amount
of time.

Options

-nameschedd-name jobqueue-birthdateThe schedd-nameand jobqueue-birthdatecombine to
form a unique name for the database. The expected values are the name of thecondor_schedd
daemon and the first line of thejob_queue.log file, which gives a job queue creation time.

Exit Status

condor_load_historywill exit with a status value of 0 (zero) upon success, and it will exit with the
value 1 (one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Condor Version 7.7.6, Command Reference

condor_load_history(1) 801

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_master(1) 802

condor_master

The master Condor Daemon

Synopsis

condor_master

Description

This daemon is responsible for keeping all the rest of the Condor daemons running on each ma-
chine in your pool. It spawns the other daemons, and periodically checks to see if there are new
binaries installed for any of them. If there are, thecondor_masterwill restart the affected daemons.
In addition, if any daemon crashes, thecondor_masterwill send e-mail to the Condor Administra-
tor of your pool and restart the daemon. Thecondor_masteralso supports various administrative
commands that let you start, stop or reconfigure daemons remotely. Thecondor_masterwill run on
every machine in your Condor pool, regardless of what functions each machine are performing.

Section 3.1.2 in the Administrator’s Manual has more information about thecondor_masterand
other Condor daemons. See Section 3.9.2 for documentation on command line arguments forcon-
dor_master.

TheDAEMON_LISTconfiguration macro is used by thecondor_masterto provide a per-machine
list of daemons that should be started and kept running. For daemons that are specified in the
DC_DAEMON_LISTconfiguration macro, thecondor_masterdaemon will spawn them automati-
cally appending a-f argument. For those listed inDAEMON_LIST, but not inDC_DAEMON_LIST,
there will be no-f argument.

Options

-n name Provides an alternate name for thecondor_masterto override that given by the
MASTER_NAMEconfiguration variable.

Author

Condor Team, University of Wisconsin–Madison

Condor Version 7.7.6, Command Reference

condor_master(1) 803

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_off(1) 804

condor_off

Shutdown Condor daemons

Synopsis

condor_off [-help | -version]

condor_off [-graceful | -fast | -peaceful] [-debug] [-pool centralmanagerhostname[:portnumber]]
[-namehostname| hostname| -addr "<a.b.c.d:port>" | "<a.b.c.d:port>" | -constraint expression
| -all] [-daemon daemonname]

Description

condor_offshuts down a set of the Condor daemons running on a set of one ormore machines. It
does this cleanly so that checkpointable jobs may gracefully exit with minimal loss of work.

The commandcondor_off without any arguments will shut down all daemons exceptcon-
dor_master. Thecondor_mastercan then handle both local and remote requests to restart theother
Condor daemons if need be. To restart Condor running on a machine, see thecondor_oncommand.

With the -daemonmaster option, condor_off will shut down all daemons including thecon-
dor_master. Specification using the-daemonoption will shut down only the specified daemon.

For security purposes (authentication and authorization), this command requires an administrator’s
level of access. See section 3.6.1 on page 326 for further explanation.

Options

-help Display usage information

-version Display version information

-graceful Gracefully shutdown daemons (the default)

-fast Quickly shutdown daemons

-peaceful Wait indefinitely for jobs to finish

Condor Version 7.7.6, Command Reference

condor_off(1) 805

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOL_DEBUG

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

-namehostnameSend the command to a machine identified byhostname

hostnameSend the command to a machine identified byhostname

-addr " <a.b.c.d:port>" Send the command to a machine’s master located at"<a.b.c.d:port>"

" <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

-constraint expressionApply this command only to machines matching the given ClassAd
expression

-all Send the command to all machines in the pool

-daemondaemonnameSend the command to the named daemon. Without this option, the
command is sent to thecondor_masterdaemon.

Exit Status

condor_offwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Examples

To shut down all daemons (other thancondor_master) on the local host:

% condor_off

To shut down only thecondor_collectoron three named machines:

% condor_off cinnamon cloves vanilla -daemon collector

Condor Version 7.7.6, Command Reference

condor_off(1) 806

To shut down daemons within a pool of machines other than the local pool, use the-pooloption. The
argument is the name of the central manager for the pool. Notethat one or more machines within
the pool must be specified as the targets for the command. Thiscommand shuts down all daemons
except thecondor_masteron the single machine namedcae17within the pool of machines that has
condor.cae.wisc.eduas its central manager:

% condor_off -pool condor.cae.wisc.edu -name cae17

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_on(1) 807

condor_on

Start up Condor daemons

Synopsis

condor_on [-help | -version]

condor_on [-debug] [-pool centralmanagerhostname[:portnumber]] [-namehostname |
hostname| -addr "<a.b.c.d:port>" | "<a.b.c.d:port>" | -constraint expression| -all] [-daemon
daemonname]

Description

condor_onstarts up a set of the Condor daemons on a set of machines. Thiscommand assumes
that thecondor_masteris already running on the machine. If this is not the case,condor_onwill
fail complaining that it cannot find the address of the master. The commandcondor_onwith no
arguments or with the-daemonmasteroption will tell the condor_masterto start up the Condor
daemons specified in the configuration variableDAEMON_LIST. If a daemon other than thecon-
dor_masteris specified with the-daemonoption,condor_onstarts up only that daemon.

This command cannot be used to start up thecondor_masterdaemon.

For security purposes (authentication and authorization), this command requires an administrator’s
level of access. See section 3.6.1 on page 326 for further explanation.

Options

-help Display usage information

-version Display version information

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOL_DEBUG

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

-namehostnameSend the command to a machine identified byhostname

Condor Version 7.7.6, Command Reference

condor_on(1) 808

hostnameSend the command to a machine identified byhostname

-addr " <a.b.c.d:port>" Send the command to a machine’s master located at"<a.b.c.d:port>"

" <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

-constraint expressionApply this command only to machines matching the given ClassAd
expression

-all Send the command to all machines in the pool

-daemondaemonnameSend the command to the named daemon. Without this option, the
command is sent to thecondor_masterdaemon.

Exit Status

condor_onwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Examples

To begin running all daemons (other thancondor_master) given in the configuration variable
DAEMON_LISTon the local host:

% condor_on

To start up only thecondor_negotiatoron two named machines:

% condor_on robin cardinal -daemon negotiator

To start up only a daemon within a pool of machines other than the local pool, use the-pool option.
The argument is the name of the central manager for the pool. Note that one or more machines
within the pool must be specified as the targets for the command. This command starts up only the
condor_schedddaemon on the single machine namedcae17within the pool of machines that has
condor.cae.wisc.eduas its central manager:

% condor_on -pool condor.cae.wisc.edu -name cae17 -daemon schedd

Condor Version 7.7.6, Command Reference

condor_on(1) 809

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_power(1) 810

condor_power

send packet intended to wake a machine from a low power state

Synopsis

condor_power[-h]

condor_power[-d] [-m MACaddress] [-s subnet] [ClassAdFile]

Description

condor_powersends one UDP Wake on LAN (WOL) packet to a machine specified either by com-
mand line arguments or by the contents of a machine ClassAd. The machine ClassAd may be in a
file, where the file name specified by the optional argumentClassAdFileis given on the command
line. With no command line arguments to specify the machine,and no file specified,condor_power
quietly presumes that standard input is the file source whichwill specify the machine ClassAd that
includes the public IP address and subnet of the machine.

condor_powerneeds a complete specification of the machine to be successful. If a MAC address is
provided on the command line, but no subnet is given, then thedefault value for the subnet is used.
If a subnet is provided on the command line, but no MAC addressis given, thencondor_powerfalls
back to taking its information in the form of the machine ClassAd as provided in a file or on standard
input. Note that this case implies that the command line specification of the subnet is ignored.

Options

-h Print usage information and exit.

-d Enable debugging messages.

-m MACaddressSpecify the MAC address in the standard format of six groups of two hexadecimal
digits separated by colons.

-ssubnet Specify the subnet in the standard form of an IP address. Without this option, the default
subnet used will be 255.255.255.255, causing a broadcast.

Condor Version 7.7.6, Command Reference

condor_power(1) 811

Exit Status

condor_powerwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_preen(1) 812

condor_preen

remove extraneous files from Condor directories

Synopsis

condor_preen[-mail] [-remove] [-verbose]

Description

condor_preenexamines the directories belonging to Condor, and removes extraneous files and di-
rectories which may be left over from Condor processes whichterminated abnormally either due
to internal errors or a system crash. The directories checked are theLOG, EXECUTE, andSPOOL
directories as defined in the Condor configuration files.condor_preenis intended to be run as user
root or usercondor periodically as a backup method to ensure reasonable file system cleanliness
in the face of errors. This is done automatically by default by thecondor_masterdaemon. It may
also be explicitly invoked on an as needed basis.

When condor_preencleans theSPOOLdirectory, it always leaves behind the files specified in
the configuration variableVALID_SPOOL_FILES as given by the configuration. For theLOG
directory, the only files removed or reported are those listed within the configuration variable
INVALID_LOG_FILES list. The reason for this difference is that, in general, thefiles in the
LOGdirectory ought to be left alone, with few exceptions. An example of exceptions are core files.
As there are new log files introduced regularly, it is less effort to specify those that ought to be
removed than those that are not to be removed.

Options

-mail Send mail to the user defined in thePREEN_ADMIN configuration variable, instead of
writing to the standard output.

-remove Remove the offending files and directories rather than reporting on them.

-verbose List all files found in the Condor directories, even those which are not considered
extraneous.

Condor Version 7.7.6, Command Reference

condor_preen(1) 813

Exit Status

condor_preenwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_prio(1) 814

condor_prio

change priority of jobs in the Condor queue

Synopsis

condor_prio -p priority | + value | - value [-n schedd_name]
cluster| cluster.process| username| -a

condor_prio -p priority | + value | - value [-pool pool_name -n schedd_name
]cluster| cluster.process| username| -a

Description

condor_priochanges the priority of one or more jobs in the Condor queue. If the job identification
is given bycluster.process, condor_prioattempts to change the priority of the single job with job
ClassAd attributesClusterId andProcId . If described bycluster, condor_prioattempts to
change the priority of all processes with the givenClusterId job ClassAd attribute. Ifusername
is specified,condor_prioattempts to change priority of all jobs belonging to that user. For -a,
condor_prioattempts to change priority of all jobs in the queue.

The user must set a new priority with the-p option, or specify a priority adjustment. The priority of
a job can be any integer, with higher numbers corresponding to greater priority. For adjustment of
the current priority,+ valueincreases the priority by the amount given withvalue. - valuedecreases
the priority by the amount given withvalue.

Only the owner of a job or the super user can change the priority.

The priority changed bycondor_priois only used when comparing to the priority jobs owned by the
same user and submitted from the same machine.

Options

-n schedd_nameChange priority of jobs queued at the specifiedcondor_scheddin the local pool.

-pool pool_name-n schedd_nameChange priority of jobs queued at the specifiedcondor_schedd
in the specified pool.

Condor Version 7.7.6, Command Reference

condor_prio(1) 815

Exit Status

condor_priowill exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_procd(1) 816

condor_procd

Track and manage process families

Synopsis

condor_procd-h

condor_procd-A address-file[options]

Description

condor_procdtracks and manages process families on behalf of the Condor daemons. It may track
families of PIDs via relationships such as: direct parent/child, environment variables, UID, and
supplementary group IDs. Management of the PID families include

• registering new families or new members of existing families

• getting usage information

• signaling families for operations such as suspension, continuing, or killing the family

• getting a snapshot of the tree of families

In a regular Condor installation, this program is not intended to be used or executed by any human.

The required argument,-A address-file, is the path and file name of the address file which is the
named pipe that clients must use to speak with thecondor_procd.

Options

-h Print out usage information and exit.

-D Wait for the debugger. Initially sleep 30 seconds before beginning normal function.

-C principal Theprincipal is the UID of the owner of the named pipe that clients must use to speak
to thecondor_procd.

-L log-file A file thecondor_procdwill use to write logging information.

Condor Version 7.7.6, Command Reference

condor_procd(1) 817

-E When specified, another tool such as theprocd_ctltool must allocate the GID associated with a
process. When this option isnot specified, thecondor_procdwill allocate the GID itself.

-P PID If not specified, thecondor_procdwill use thecondor_procd’s parent, which may not be
PID 1 on Unix, as the parent of thecondor_procdand the root of the tracking family. When
not specified, if thecondor_procd’s parent PID dies, thecondor_procdexits. When spec-
ified, thecondor_procdwill track thisPID family in question and not also exit if the PID exits.

-S secondsThe maximum number of seconds thecondor_procdwill wait between taking snapshots
of the tree of families. Different clients to thecondor_procdcan specify different snapshot
times. The quickest snapshot time is the one performed by thecondor_procd. When this
option is not specified, a default value of 60 seconds is used.

-G min-gid max-gid If the -E option is not specified, then track process families using a self-
allocated, free GID out of the inclusive range specified bymin-gid and max-gid. This
means that if a new process shows up using a previously known GID, the new process
will automatically associate into the process family assigned that GID. If the-E option is
specified, then instead of self-allocating the GID, theprocd_ctltool must be used to associate
the GID with the PID root of the family. The associated GID must still be in the range
specified. This is a Linux-only feature.

-K windows-softkill-binary This is the path and executable name of thecondor_softkill.exebinary.
It is used to send softkill signals to process families. Thisis a Windows-only feature.

-I glexec-kill-path glexec-pathSpecifies, withglexec-kill-path, the path and executable name of
a binary used to send a signal to a PID. Theglexecbinary, specified byglexec-path, ex-
ecutes the program specified withglexec-kill-pathunder the right privileges to send the signal.

General Remarks

This program may be used in a stand alone mode, independent ofCondor, to track process families.
The programsprocd_ctlandgidd_allocare used with thecondor_procdin stand alone mode to
interact with the daemon and to inquire about certain state of running processes on the machine,
respectively.

Exit Status

condor_procdwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Condor Version 7.7.6, Command Reference

condor_procd(1) 818

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_q(1) 819

condor_q

Display information about jobs in queue

Synopsis

condor_q[-help]

condor_q [-debug] [-global] [-submitter submitter] [-name name]
[-pool centralmanagerhostname[:portnumber]] [-analyze] [-run] [-hold] [-globus] [-goodput]
[-io] [-dag] [-long] [-xml] [-attributes Attr1 [,Attr2 . . .]] [-format fmt attr] [-cputime]
[-currentrun] [-avgqueuetime] [-jobads file] [-machineads file] [-direct rdbms| schedd]
[-stream-results] [-wide] [{cluster| cluster.process| owner| -constraintexpression. . .}]

Description

condor_qdisplays information about jobs in the Condor job queue. By default,condor_qqueries
the local job queue but this behavior may be modified by specifying:

• the-global option, which queries all job queues in the pool

• a schedd name with the-name option, which causes the queue of the named schedd to be
queried

• a submitter with the-submitter option, which causes all queues of the named submitter to be
queried

To restrict the display to jobs of interest, a list of zero or more restrictions may be supplied. Each
restriction may be one of:

• aclusterand aprocessmatches jobs which belong to the specified cluster and have the speci-
fied process number

• aclusterwithout aprocessmatches all jobs belonging to the specified cluster

• aownermatches all jobs owned by the specified owner

• a -constraint expressionwhich matches all jobs that satisfy the specified ClassAd expression.
(See section 4.1 for a discussion of ClassAd expressions.)

If no ownerrestrictions are present in the list, the job matches the restriction list if it matches at least
one restriction in the list. Ifownerrestrictions are present, the job matches the list if it matches one
of theownerrestrictionsandat least one non-owner restriction.

Condor Version 7.7.6, Command Reference

condor_q(1) 820

If the -long option is specified,condor_qdisplays a long description of the queried jobs by printing
the entire job ClassAd. The attributes of the job ClassAd maybe displayed by means of the-format
option, which displays attributes with aprintf(3) format. Multiple -format options may be
specified in the option list to display several attributes ofthe job. If neither-long or -format are
specified,condor_qdisplays a a one line summary of information as follows:

ID The cluster/process id of the condor job.

OWNER The owner of the job.

SUBMITTED The month, day, hour, and minute the job was submitted to the queue.

RUN_TIME Wall-clock time accumulated by the job to date in days, hours, minutes, and seconds.

ST Current status of the job, which varies somewhat according to the job universe and the timing
of updates. H = on hold, R = running, I = idle (waiting for a machine to execute on), C =
completed, X = removed, and > = transferring output.

PRI User specified priority of the job, ranges from -20 to +20, with higher numbers corresponding
to greater priority.

SIZE The value of job ClassAd attributeMemoryUsage (in Mbytes), when the attribute is defined,
andImageSize (in Kbytes), otherwise.

CMD The name of the executable.

If the -dag option is specified, the OWNER column is replaced with NODENAME for jobs started
by thecondor_dagmaninstance.

If the -run option is specified, the ST, PRI, SIZE, and CMD columns are replaced with:

HOST(S) The host where the job is running.

If the -globusoption is specified, the ST, PRI, SIZE, and CMD columns are replaced with:

STATUS The state that Condor believes the job is in. Possible valuesare

PENDING The job is waiting for resources to become available in orderto run.

ACTIVE The job has received resources, and the application is executing.

FAILED The job terminated before completion because of an error, user-triggered cancel, or
system-triggered cancel.

DONE The job completed successfully.

SUSPENDED The job has been suspended. Resources which were allocated for this job may
have been released due to a scheduler-specific reason.

Condor Version 7.7.6, Command Reference

condor_q(1) 821

UNSUBMITTED The job has not been submitted to the scheduler yet, pending the re-
ception of the GLOBUS_GRAM_PROTOCOL_JOB_SIGNAL_COMMIT_REQUEST
signal from a client.

STAGE_IN The job manager is staging in files, in order to run the job.

STAGE_OUT The job manager is staging out files generated by the job.

UNKNOWN

MANAGER A guess at what remote batch system is running the job. It is a guess, because Condor
looks at the Globus jobmanager contact string to attempt identification. If the value is fork,
the job is running on the remote host without a jobmanager. Values may also be condor, lsf,
or pbs.

HOST The host to which the job was submitted.

EXECUTABLE The job as specified as the executable in the submit description file.

If the -goodputoption is specified, the ST, PRI, SIZE, and CMD columns are replaced with:

GOODPUT The percentage of RUN_TIME for this job which has been saved in a checkpoint.
A low GOODPUT value indicates that the job is failing to checkpoint. If a job has not yet
attempted a checkpoint, this column contains[?????] .

CPU_UTIL The ratio of CPU_TIME to RUN_TIME for checkpointed work. A low CPU_UTIL
indicates that the job is not running efficiently, perhaps because it is I/O bound or because the
job requires more memory than available on the remote workstations. If the job has not (yet)
checkpointed, this column contains[??????] .

Mb/s The network usage of this job, in Megabits per second of run-time.

If the -io option is specified, the ST, PRI, SIZE, and CMD columns are replaced with:

READ The total number of bytes the application has read from files and sockets.

WRITE The total number of bytes the application has written to files and sockets.

SEEK The total number of seek operations the application hasperformed on files.

XPUT The effective throughput (average bytes read and written per second) from the application’s
point of view.

BUFSIZE The maximum number of bytes to be buffered per file.

BLOCKSIZE The desired block size for large data transfers.

These fields are updated when a job produces a checkpoint or completes. If a job has not yet
produced a checkpoint, this information is not available.

If the -cputime option is specified, the RUN_TIME column is replaced with:

Condor Version 7.7.6, Command Reference

condor_q(1) 822

CPU_TIME The remote CPU time accumulated by the job to date (which has been stored in a
checkpoint) in days, hours, minutes, and seconds. (If the job is currently running, time accu-
mulated during the current run isnot shown. If the job has not produced a checkpoint, this
column contains 0+00:00:00.)

The -analyzeoption may be used to determine why certain jobs are not running by performing
an analysis on a per machine basis for each machine in the pool. The reasons may vary among
failed constraints, insufficient priority, resource ownerpreferences and prevention of preemption by
the PREEMPTION_REQUIREMENTSexpression. If the-long option is specified along with the
-analyzeoption, the reason for failure is displayed on a per machine basis.

Options

-help Get a brief description of the supported options

-global Get queues of all the submitters in the system

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOL_DEBUG

-submitter submitter List jobs of specific submitter from all the queues in the pool

-pool centralmanagerhostname[:portnumber]Use thecentralmanagerhostnameas the central
manager to locate schedds. (The default is theCOLLECTOR_HOSTspecified in the
configuration file.

-analyze Perform an analysis to determine how many resources are available to run the requested
jobs. These results are only meaningful for jobs using Condor’s matchmaker. This option
is never meaningful for Scheduler universe jobs and only meaningful for grid universe jobs
doing matchmaking.

-run Get information about running jobs.

-hold Get information about jobs in the hold state. Also displays the time the job was placed into
the hold state and the reason why the job was placed in the holdstate.

-globus Get information only about jobs submitted to grid resourcesdescribed asgt2 or gt5.

Condor Version 7.7.6, Command Reference

condor_q(1) 823

-goodput Display job goodput statistics.

-io Display job input/output summaries.

-dag Display DAG node jobs under theircondor_dagmaninstance. Child nodes are listed using
indentation to show the structure of the DAG.

-namename Show only the job queue of the named schedd

-long Display job ads in long format

-xml Display job ads in xml format. The xml format is fully defined at
http://www.cs.wisc.edu/condor/classad/refman/.

-attributes Attr1 [,Attr2 . . .] Explicitly list the attributes (by name, and in a comma separated list)
which should be displayed when using the-xml or -long options. Limiting the number of
attributes increases the efficiency of the query.

-format fmt attr Display attribute or expressionattr in format fmt. To display the attribute
or expression the format must contain a singleprintf(3) -style conversion specifier.
Attributes must be from the job ClassAd. Expressions are ClassAd expressions and may refer
to attributes in the job ClassAd. If the attribute is not present in a given ClassAd and cannot
be parsed as an expression, then the format option will be silently skipped. The conversion
specifier must match the type of the attribute or expression.%s is suitable for strings such
asOwner, %d for integers such asClusterId , and %f for floating point numbers such
asRemoteWallClockTime . %v identifies the type of the attribute, and then prints the
value in an appropriate format. %V identifies the type of the attribute, and then prints the
value in an appropriate format as it would appear in the-long format. As an example, strings
used with %V will have quote marks. An incorrect format will result in undefined behavior.
Do not use more than one conversion specifier in a given format. More than one conversion
specifier will result in undefined behavior. To output multiple attributes repeat the-format
option once for each desired attribute. Likeprintf(3) style formats, one may include
other text that will be reproduced directly. A format without any conversion specifiers may
be specified, but an attribute is still required. Include\n to specify a line break.

-cputime Instead of wall-clock allocation time (RUN_TIME), displayremote CPU time accumu-
lated by the job to date in days, hours, minutes, and seconds.(If the job is currently running,
time accumulated during the current run isnot shown.)

Condor Version 7.7.6, Command Reference

http://www.cs.wisc.edu/condor/classad/refman/

condor_q(1) 824

-currentrun Normally, RUN_TIME contains all the time accumulated during the current run plus
all previous runs. If this option is specified, RUN_TIME onlydisplays the time accumulated
so far on this current run.

-avgqueuetime Display the average of time spent in the queue, considering all jobs not completed
(those that do not haveJobStatus == 4 or JobStatus == 3 .

-jobadsfile Display jobs from a list of ClassAds from a file, instead of thereal ClassAds from the
condor_schedddaemon. This is most useful for debugging purposes. The ClassAds appear
as if condor_q-l is used with the header stripped out.

-machineadsfile When doing analysis, use the machine ads from the file insteadof the ones from
the condor_collectordaemon. This is most useful for debugging purposes. The ClassAds
appear as ifcondor_status-l is used.

-direct rdbms| scheddWhen the use of Quill is enabled, this option allows a direct query to either
the rdbms or thecondor_schedddaemon for the requested queue information. It also prevents
the queue location discovery algorithm from failing over toalternate sources of information
for the queue in case of error. It is useful for debugging an installation of Quill. One of the
stringsrdbmsor scheddis required with this option.

-stream-results Display results as jobs are fetched from the job queue ratherthan storing results
in memory until all jobs have been fetched. This can reduce memory consumption when
fetching large numbers of jobs, but ifcondor_qis paused while displaying results, this could
result in a timeout in communication withcondor_schedd.

-wide If this option is specified, and the command portion of the output would cause the output to
extend beyond 80 columns, display beyond the 80 columns.

Restriction list The restriction list may have zero or more items, each of which may be:

cluster match all jobs belonging to cluster

cluster.proc match all jobs belonging to cluster with a process number ofproc

-constraint expressionmatch all jobs which match the ClassAd expression constraint

A job matches the restriction list if it matches any restriction in the list Additionally, ifowner
restrictions are supplied, the job matches the list only if it also matches anownerrestriction.

Condor Version 7.7.6, Command Reference

condor_q(1) 825

General Remarks

The default output fromcondor_qis formatted to be human readable, not script readable. In an
effort to make the output fit within 80 characters, values in some fields might be truncated. Further-
more, the Condor Project can (and does) change the formatting of this default output as we see fit.
Therefore, any script that is attempting to parse data fromcondor_qis strongly encouraged to use
the-format option (described above, examples given below).

Although-analyzeprovides a very good first approximation, the analyzer cannot diagnose all possi-
ble situations because the analysis is based on instantaneous and local information. Therefore, there
are some situations (such as when several submitters are contending for resources, or if the pool is
rapidly changing state) which cannot be accurately diagnosed.

-goodput, -cputime, and-io are most useful for STANDARD universe jobs, since they rely on values
computed when a job checkpoints.

It is possible to to hold jobs that are in the X state, to avoid this it is best to construct a
-constraint expressionthat contains ’JobStatus != 3’ if the user wishes to avoid this condition.

Examples

The -format option provides a way to specify both the job attributes and formatting of those at-
tributes. There must be only one conversion specification per -format option. As an example, to
list only Jane Doe’s jobs in the queue, choosing to print and format only the owner of the job, the
command line arguments for the job, and the process ID of the job:

%condor_q -submitter jdoe -format "%s" Owner -format " %s " A rgs -format "ProcId = %d\n" ProcId
jdoe 16386 2800 ProcId = 0
jdoe 16386 3000 ProcId = 1
jdoe 16386 3200 ProcId = 2
jdoe 16386 3400 ProcId = 3
jdoe 16386 3600 ProcId = 4
jdoe 16386 4200 ProcId = 7

To display only the JobID’s of Jane Doe’s jobs you can use the following.

%condor_q -submitter jdoe -format "%d." ClusterId -format "%d\n" ProcId
27.0
27.1
27.2
27.3
27.4
27.7

An example that shows the difference (first set of output) between not using an option tocondor_q
and (second set of output) using the-globusoption:

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

Condor Version 7.7.6, Command Reference

condor_q(1) 826

100.0 smith 12/11 13:20 0+00:00:02 R 0 0.0 sleep 10

1 jobs; 0 idle, 1 running, 0 held

ID OWNER STATUS MANAGER HOST EXECUTABLE
100.0 smith ACTIVE fork grid.example.com /bin/sleep

Exit Status

condor_qwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one)
upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_qedit(1) 827

condor_qedit

modify job attributes

Synopsis

condor_qedit [-debug] [-n schedd-name] [-pool pool-name]
{cluster | cluster.proc| owner| -constraint constraint} attribute-name attribute-value. . .

Description

condor_qeditmodifies job ClassAd attributes of queued Condor jobs. The jobs are specified either
by cluster number, job ID, owner, or by a ClassAd constraint expression. Theattribute-valuemay
be any ClassAd expression. String expressions must be surrounded by double quotes. Multiple
attribute value pairs may be listed on the same command line.

To ensure security and correctness,condor_qeditwill not allow modification of the following
ClassAd attributes:

• Owner

• ClusterId

• ProcId

• MyType

• TargetType

• JobStatus

SinceJobStatus may not be changed withcondor_qedit, usecondor_holdto place a job in
the hold state, and usecondor_releaseto release a held job, instead of attempting to modify
JobStatus directly.

If a job is currently running, modified attributes for that job will not affect the job until it restarts. As
an example, forPeriodicRemove to affect when a currently running job will be removed from
the queue, that job must first be evicted from a machine and returned to the queue. The same is true
for other periodic expressions, such asPeriodicHold andPeriodicRelease .

Options

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOL_DEBUG

Condor Version 7.7.6, Command Reference

condor_qedit(1) 828

-n schedd-nameModify job attributes in the queue of the specified schedd

-pool pool-nameModify job attributes in the queue of the schedd specified in the specified pool

Examples

% condor_qedit -name north.cs.wisc.edu -pool condor.cs.w isc.edu 249.0 answer 42
Set attribute "answer".
% condor_qedit -name perdita 1849.0 In '"myinput"'
Set attribute "In".
% condor_qedit jbasney NiceUser TRUE
Set attribute "NiceUser".
% condor_qedit -constraint 'JobUniverse == 1' Requirement s '(Arch == "INTEL") && (OpSys == "SOLARIS26") &&
Set attribute "Requirements".

General Remarks

A job’s ClassAd attributes may be viewed with

condor_q -long

Exit Status

condor_qeditwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_reconfig(1) 829

condor_reconfig

Reconfigure Condor daemons

Synopsis

condor_reconfig[-help | -version]

condor_reconfig [-debug] [-pool centralmanagerhostname[:portnumber]] [-namehostname|
hostname| -addr "<a.b.c.d:port>" | "<a.b.c.d:port>" | -constraint expression| -all] [-daemon
daemonname]

Description

condor_reconfigreconfigures all of the Condor daemons in accordance with thecurrent status of the
Condor configuration file(s). Once reconfiguration is complete, the daemons will behave according
to the policies stated in the configuration file(s). The main exception is with theDAEMON_LIST
variable, which will only be updated if thecondor_restartcommand is used. Other configuration
variables that can only be changed if the Condor daemons are restarted are listed in section 3.3.1 on
page 164. In general,condor_reconfigshould be used when making changes to the configuration
files, since it is faster and more efficient than restarting the daemons.

The commandcondor_reconfigwith no arguments or with the-daemonmasteroption will cause
the reconfiguration of thecondor_masterdaemon and all the child processes of thecondor_master.

For security purposes (authentication and authorization), this command requires an administrator’s
level of access. See section 3.6.1 on page 326 for further explanation.

Options

-help Display usage information

-version Display version information

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOL_DEBUG

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

Condor Version 7.7.6, Command Reference

condor_reconfig(1) 830

-namehostnameSend the command to a machine identified byhostname

hostnameSend the command to a machine identified byhostname

-addr " <a.b.c.d:port>" Send the command to a machine’s master located at"<a.b.c.d:port>"

" <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

-constraint expressionApply this command only to machines matching the given ClassAd
expression

-all Send the command to all machines in the pool

-daemondaemonnameSend the command to the named daemon. Without this option, the
command is sent to thecondor_masterdaemon.

Exit Status

condor_reconfigwill exit with a status value of 0 (zero) upon success, and it will exit with the value
1 (one) upon failure.

Examples

To reconfigure thecondor_masterand all its children on the local host:

% condor_reconfig

To reconfigure only thecondor_startdon a named machine:

% condor_reconfig -name bluejay -daemon startd

To reconfigure a machine within a pool other than the local pool, use the-pooloption. The argument
is the name of the central manager for the pool. Note that one or more machines within the pool
must be specified as the targets for the command. This commandreconfigures the single machine
namedcae17within the pool of machines that hascondor.cae.wisc.eduas its central manager:

% condor_reconfig -pool condor.cae.wisc.edu -name cae17

Condor Version 7.7.6, Command Reference

condor_reconfig(1) 831

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_release(1) 832

condor_release

release held jobs in the Condor queue

Synopsis

condor_release[-help | -version]

condor_release[-debug] [-pool centralmanagerhostname[:portnumber]| -namescheddname]|
[-addr "<a.b.c.d:port>"] cluster. . .| cluster.process. . .| user. . . | -constraint expression. . .

condor_release[-debug] [-pool centralmanagerhostname[:portnumber]| -namescheddname]|
[-addr "<a.b.c.d:port>"] -all

Description

condor_releasereleases jobs from the Condor job queue that were previouslyplaced in hold state. If
the-nameoption is specified, the namedcondor_scheddis targeted for processing. Otherwise, the
localcondor_scheddis targeted. The jobs to be released are identified by one or more job identifiers,
as described below. For any given job, only the owner of the job or one of the queue super users
(defined by theQUEUE_SUPER_USERSmacro) can release the job.

Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

-namescheddnameSend the command to a machine identified byscheddname

-addr " <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOL_DEBUG

Condor Version 7.7.6, Command Reference

condor_release(1) 833

cluster Release all jobs in the specified cluster

cluster.processRelease the specific job in the cluster

user Release jobs belonging to specified user

-constraint expressionRelease all jobs which match the job ClassAd expression constraint

-all Release all the jobs in the queue

See Also

condor_hold(on page 797)

Examples

To release all of the jobs of a user named Mary:

% condor_release Mary

Exit Status

condor_releasewill exit with a status value of 0 (zero) upon success, and it will exit with the value
1 (one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_reschedule(1) 834

condor_reschedule

Update scheduling information to the central manager

Synopsis

condor_reschedule[-help | -version]

condor_reschedule[-debug] [-pool centralmanagerhostname[:portnumber]] [-namehostname|
hostname| -addr "<a.b.c.d:port>" | "<a.b.c.d:port>" | -constraint expression| -all]

Description

condor_rescheduleupdates the information about a set of machines’ resources and jobs to the central
manager. This command is used to force an update before viewing the current status of a machine.
Viewing the status of a machine is done with thecondor_statuscommand. condor_reschedule
also starts a new negotiation cycle between resource ownersand resource providers on the central
managers, so that jobs can be matched with machines right away. This can be useful in situations
where the time between negotiation cycles is somewhat long,and an administrator wants to see if a
job in the queue will get matched without waiting for the nextnegotiation cycle.

A new negotiation cycle cannot occur more frequently than every 20 seconds. Requests for new
negotiation cycle within that 20 second window will be deferred until 20 seconds have passed since
that last cycle.

Options

-help Display usage information

-version Display version information

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOL_DEBUG

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

-namehostnameSend the command to a machine identified byhostname

Condor Version 7.7.6, Command Reference

condor_reschedule(1) 835

hostnameSend the command to a machine identified byhostname

-addr " <a.b.c.d:port>" Send the command to a machine’s master located at"<a.b.c.d:port>"

" <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

-constraint expressionApply this command only to machines matching the given ClassAd
expression

-all Send the command to all machines in the pool

Exit Status

condor_reschedulewill exit with a status value of 0 (zero) upon success, and it will exit with the
value 1 (one) upon failure.

Examples

To update the information on three named machines:

% condor_reschedule robin cardinal bluejay

To reschedule on a machine within a pool other than the local pool, use the-pool option. The argu-
ment is the name of the central manager for the pool. Note thatone or more machines within the pool
must be specified as the targets for the command. This commandreschedules the single machine
namedcae17within the pool of machines that hascondor.cae.wisc.eduas its central manager:

% condor_reschedule -pool condor.cae.wisc.edu -name cae1 7

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

Condor Version 7.7.6, Command Reference

condor_reschedule(1) 836

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_restart(1) 837

condor_restart

Restart a set of Condor daemons

Synopsis

condor_restart [-help | -version]

condor_restart [-debug] [-graceful | -fast | -peaceful]
[-pool centralmanagerhostname[:portnumber]] [-namehostname | hostname |
-addr "<a.b.c.d:port>" | "<a.b.c.d:port>" | -constraint expression| -all] [-daemon dae-
monname]

Description

condor_restartrestarts a set of Condor daemons on a set of machines. The daemons will be put into
a consistent state, killed, and then invoked anew.

If, for example, thecondor_masterneeds to be restarted again with a fresh state, this is the com-
mand that should be used to do so. If theDAEMON_LISTvariable in the configuration file has
been changed, this command is used to restart thecondor_masterin order to see this change. The
condor_reconfigurecommand cannot be used in the case where theDAEMON_LISTexpression
changes.

The commandcondor_restartwith no arguments or with the-daemonmasteroption will safely shut
down all running jobs and all submitted jobs from the machine(s) being restarted, then shut down
all the child daemons of thecondor_master, and then restart thecondor_master. This, in turn, will
allow thecondor_masterto start up other daemons as specified in theDAEMON_LISTconfiguration
file entry.

For security purposes (authentication and authorization), this command requires an administrator’s
level of access. See section 3.6.1 on page 326 for further explanation.

Options

-help Display usage information

-version Display version information

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOL_DEBUG

Condor Version 7.7.6, Command Reference

condor_restart(1) 838

-graceful Gracefully shutdown daemons (the default) before restarting them

-fast Quickly shutdown daemons before restarting them

-peaceful Wait indefinitely for jobs to finish before shutting down daemons, prior to restarting them

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

-namehostnameSend the command to a machine identified byhostname

hostnameSend the command to a machine identified byhostname

-addr " <a.b.c.d:port>" Send the command to a machine’s master located at"<a.b.c.d:port>"

" <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

-constraint expressionApply this command only to machines matching the given ClassAd
expression

-all Send the command to all machines in the pool

-daemondaemonnameSend the command to the named daemon. Without this option, the
command is sent to thecondor_masterdaemon.

Exit Status

condor_restartwill exit with a status value of 0 (zero) upon success, and it will exit with the value
1 (one) upon failure.

Examples

To restart thecondor_masterand all its children on the local host:

% condor_restart

Condor Version 7.7.6, Command Reference

condor_restart(1) 839

To restart only thecondor_startdon a named machine:

% condor_restart -name bluejay -daemon startd

To restart a machine within a pool other than the local pool, use the-pool option. The argument
is the name of the central manager for the pool. Note that one or more machines within the pool
must be specified as the targets for the command. This commandrestarts the single machine named
cae17within the pool of machines that hascondor.cae.wisc.eduas its central manager:

% condor_restart -pool condor.cae.wisc.edu -name cae17

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_rm(1) 840

condor_rm

remove jobs from the Condor queue

Synopsis

condor_rm [-help | -version]

condor_rm [-debug] [-forcex] [-pool centralmanagerhostname[:portnumber] |
-namescheddname]| [-addr "<a.b.c.d:port>"] cluster. . .| cluster.process. . .| user. . . |
-constraint expression. . .

condor_rm [-debug] [-pool centralmanagerhostname[:portnumber]| -namescheddname]|
[-addr "<a.b.c.d:port>"] -all

Description

condor_rmremoves one or more jobs from the Condor job queue. If the-name option is speci-
fied, the namedcondor_scheddis targeted for processing. Otherwise, the localcondor_scheddis
targeted. The jobs to be removed are identified by one or more job identifiers, as described be-
low. For any given job, only the owner of the job or one of the queue super users (defined by the
QUEUE_SUPER_USERSmacro) can remove the job.

When removing a grid job, the job may remain in the “X” state for a very long time. This is normal,
as Condor is attempting to communicate with the remote scheduling system, ensuring that the job
has been properly cleaned up. If it takes too long, or in rare circumstances is never removed, the job
may be forced to leave the job queue by using the-forcex option. This forcibly removes jobs that
are in the “X” state without attempting to finish any clean up at the remote scheduler.

Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

-namescheddnameSend the command to a machine identified byscheddname

Condor Version 7.7.6, Command Reference

condor_rm(1) 841

-addr " <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOL_DEBUG

-forcex Force the immediate local removal of jobs in the ’X’ state (only affects jobs already being
removed)

cluster Remove all jobs in the specified cluster

cluster.processRemove the specific job in the cluster

user Remove jobs belonging to specified user

-constraint expressionRemove all jobs which match the job ClassAd expression constraint

-all Remove all the jobs in the queue

General Remarks

Use the-forcexargument with caution, as it will remove jobs from the local queue immediately, but
can orphan parts of the job that are running remotely and havenot yet been stopped or removed.

Examples

For a user to remove all their jobs that are not currently running:

% condor_rm -constraint 'JobStatus =!= 2'

Exit Status

condor_rmwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Condor Version 7.7.6, Command Reference

condor_rm(1) 842

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_rmdir(1) 843

condor_rmdir

Windows-only no-fail deletion of directories

Synopsis

condor_rmdir[/HELP | /?]

condor_rmdir@filename

condor_rmdir [/VERBOSE] [/DIAGNOSTIC] [/PATH:<path>] [/S] [/C] [/Q] [/NODEL]
directory

Description

condor_rmdircan delete a specifieddirectory, and will not fail if the directory contains files that have
ACLs that deny the SYSTEM process delete access, unlike the built-in Windowsrmdir command.

The directory to be removed together with other command linearguments may be specified within
a file namedfilename, prefixing this argument with an@character.

Thecondor_rmdir.exeexecutable is is intended to be used by Condor with the/S /C options, which
cause it to recurse into subdirectories and continue on errors.

Options

/HELP Print usage information.

/? Print usage information.

/VERBOSE Print detailed output.

/DIAGNOSTIC Print out the internal flow of control information.

/PATH:<path> Remove the directory given by<path>.

/S Include subdirectories in those removed.

/C Continue even if access is denied.

Condor Version 7.7.6, Command Reference

condor_rmdir(1) 844

/Q Print error output only.

/NODEL Do not remove directories. ACLs may still be changed.

Exit Status

condor_rmdirwill exit with a status value of 0 (zero) upon success, and it will exit with the standard
HRESULT error code upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_router_history(1) 845

condor_router_history

Display the history for routed jobs

Synopsis

condor_router_history[-- h]

condor_router_history[-- show_records] [-- show_iwd] [-- agedays] [-- days days] [-- start
"YYYY-MM-DD HH:MM"]

Description

condor_router_historysummarizes statistics for routed jobs over the previous 24 hours. With no
command line options, statistics for run time, number of jobs completed, and number of jobs aborted
are listed per route (site).

Options

—h Display usage information and exit.

—show_records Displays individual records in addition to the summary.

—show_iwd Include working directory in displayed records.

—agedays Set the ending time of the summary to bedaysdays ago.

—daysdays Set the number of days to summarize.

—start "YYYY-MM-DD HH:MM" Set the start time of the summary.

Exit Status

condor_router_historywill exit with a status of 0 (zero) upon success, and non-zerootherwise.

Condor Version 7.7.6, Command Reference

condor_router_history(1) 846

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_router_q(1) 847

condor_router_q

Display information about routed jobs in the queue

Synopsis

condor_router_q [-S] [-R] [-I] [-H] [-route name] [-idle] [-held] [-constraint X]
[condor_q options]

Description

condor_router_qdisplays information about jobs managed by thecondor_job_routerthat are in
the Condor job queue. The functionality of this tool is that of condor_q, with additional options
specialized for routed jobs. Therefore, any of the options for condor_qmay also be used with
condor_router_q.

Options

-S Summarize the state of the jobs on each route.

-R Summarize the running jobs on each route.

-I Summarize the idle jobs on each route.

-H Summarize the held jobs on each route.

-route name Display only the jobs on the route identified byname.

-idle Display only the idle jobs.

-held Display only the held jobs.

-constraint X Display only the jobs matching constraintX.

Condor Version 7.7.6, Command Reference

condor_router_q(1) 848

Exit Status

condor_router_qwill exit with a status of 0 (zero) upon success, and non-zerootherwise.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_run(1) 849

condor_run

Submit a shell command-line as a Condor job

Synopsis

condor_run[-u universe] "shell command"

Description

condor_runbundles a shell command line into a Condor job and submits thejob. Thecondor_run
command waits for the Condor job to complete, writes the job’s output to the terminal, and exits
with the exit status of the Condor job. No output appears until the job completes.

Enclose the shell command line in double quote marks, so it may be passed tocondor_runwithout
modification.condor_runwill not read input from the terminal while the job executes.If the shell
command line requires input, redirect the input from a file, as illustrated by the example

% condor_run "myprog < input.data"

condor_runjobs rely on a shared file system for access to any necessary input files. The current
working directory of the job must be accessible to the machine within the Condor pool where the
job runs.

Specialized environment variables may be used to specify requirements for the machine where the
job may run.

CONDOR_ARCH Specifies the architecture of the required platform. Valueswill be the same as
theArch machine ClassAd attribute.

CONDOR_OPSYS Specifies the operating system of the required platform. Values will be the
same as theOpSys machine ClassAd attribute.

CONDOR_REQUIREMENTS Specifies any additional requirements for the Condor job. Itis rec-
ommended that the value defined forCONDOR_REQUIREMENTSbe enclosed in parenthesis.

When one or more of these environment variables is specified,the job is submitted with:

Requirements = $CONDOR_REQUIREMENTS && Arch == $CONDOR_ARCH && \
OpSys == $CONDOR_OPSYS

Condor Version 7.7.6, Command Reference

condor_run(1) 850

Without these environment variables, the job receives the default requirements expression, which
requests a machine of the same platform as the machine on which condor_runis executed.

All environment variables set whencondor_runis executed will be included in the environment of
the Condor job.

condor_runremoves the Condor job from the queue and deletes its temporary files, if condor_run
is killed before the Condor job completes.

Options

-u universe Submit the job under the specified universe. The default is vanilla. While any universe
may be specified, only the vanilla, standard, scheduler, andlocal universes result in a submit
description file that may work properly.

Examples

condor_runmay be used to compile an executable on a different platform.As an example, first set
the environment variables for the required platform:

% setenv CONDOR_ARCH "SUN4u"
% setenv CONDOR_OPSYS "SOLARIS28"

Then, usecondor_runto submit the compilation as in the following three examples.

% condor_run "f77 -O -o myprog myprog.f"

or

% condor_run "make"

or

% condor_run "condor_compile cc -o myprog.condor myprog.c "

Files

condor_runcreates the following temporary files in the user’s working directory. The placeholder
<pid> is replaced by the process id ofcondor_run.

Condor Version 7.7.6, Command Reference

condor_run(1) 851

.condor_run.<pid>A shell script containing the shell command line.

.condor_submit.<pid>The submit description file for the job.

.condor_log.<pid>The Condor job’s log file; it is monitored bycondor_run, to determine
when the job exits.

.condor_out.<pid>The output of the Condor job before it is output to the terminal.

.condor_error.<pid>Any error messages for the Condor job before they are output to the
terminal.

condor_runremoves these files when the job completes. However, ifcondor_runfails, it is possible
that these files will remain in the user’s working directory,and the Condor job may remain in the
queue.

General Remarks

condor_runis intended for submitting simple shell command lines to Condor. It does not provide
the full functionality ofcondor_submit. Therefore, somecondor_submiterrors and system failures
may not be handled correctly.

All processes specified within the single shell command linewill be executed on the single machine
matched with the job. Condor will not distribute multiple processes of a command line pipe across
multiple machines.

condor_runwill use the shell specified in theSHELL environment variable, if one exists. Otherwise,
it will use /bin/shto execute the shell command-line.

By default,condor_runexpects Perl to be installed in/usr/bin/perl . If Perl is installed in
another path, ask the Condor administrator to edit the path in thecondor_runscript, or explicitly
call Perl from the command line:

% perl path-to-condor/bin/condor_run "shell-cmd"

Exit Status

condor_runexits with a status value of 0 (zero) upon complete success. The exit status ofcon-
dor_runwill be non-zero upon failure. The exit status in the case of asingle error due to a system
call will be the error number (errno) of the failed call.

Author

Condor Team, University of Wisconsin–Madison

Condor Version 7.7.6, Command Reference

condor_run(1) 852

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_set_shutdown(1) 853

condor_set_shutdown

Set a program to execute uponcondor_mastershut down

Synopsis

condor_set_shutdown[-help | -version]

condor_set_shutdown-execprogramname[-debug] [-pool centralmanagerhostname[:portnumber]]
[-namehostname| hostname| -addr "<a.b.c.d:port>" | "<a.b.c.d:port>" | -constraint expression
| -all]

Description

condor_set_shutdownsets a program (typically a script) to execute when thecondor_masterdae-
mon shuts down. The-execprogramnameargument is required, and specifies the program to
run. The stringprogramnamemust match the string that definesNamein the configuration vari-
ableMASTER_SHUTDOWN_<Name> in thecondor_masterdaemon’s configuration. If it does not
match, thecondor_masterwill log an error and ignore the request.

For purposes of authentication and authorization, this command requires theADMINISTRATOR
access level. See section 3.6.1 on page 326 for further explanation.

Options

-help Display usage information

-version Display version information

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOL_DEBUG

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

-namehostnameSend the command to a machine identified byhostname

hostnameSend the command to a machine identified byhostname

Condor Version 7.7.6, Command Reference

condor_set_shutdown(1) 854

-addr " <a.b.c.d:port>" Send the command to a machine’s master located at"<a.b.c.d:port>"

" <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

-constraint expressionApply this command only to machines matching the given ClassAd
expression

-all Send the command to all machines in the pool

Exit Status

condor_set_shutdownwill exit with a status value of 0 (zero) upon success, and it will exit with the
value 1 (one) upon failure.

Examples

To have allcondor_masterdaemons run the program/bin/rebootupon shut down, configure the
condor_masterto contain a definition similar to:

MASTER_SHUTDOWN_REBOOT = /sbin/reboot

whereREBOOTis an invented name for this program that thecondor_masterwill execute. On the
command line, run

% condor_set_shutdown -exec reboot -all
% condor_off -graceful -all

where the stringreboot matches the invented name.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

Condor Version 7.7.6, Command Reference

condor_set_shutdown(1) 855

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_ssh_to_job(1) 856

condor_ssh_to_job

create an ssh session to a running job

Synopsis

condor_ssh_to_job[-help]

condor_ssh_to_job [-debug] [-name schedd-name] [-pool pool-name] [-ssh ssh-command]
[-keygen-optionsssh-keygen-options] [-shells shell1,shell2,...] [-auto-retry]
cluster| cluster.process| cluster.process.node[remote-command]

Description

condor_ssh_to_jobcreates ansshsession to a running job. The job is specified with the argument.
If only the jobclusterid is given, then the jobprocessid defaults to the value 0.

It is available in Unix Condor distributions, and it works for vanilla, vm, java, local, and par-
allel universe jobs. The user must be the owner of the job or must be a queue super user, and
both thecondor_scheddandcondor_starterdaemons must allowcondor_ssh_to_jobaccess. If no
remote-commandis specified, an interactive shell is created. An alternatesshprogram such assftp
may be specified, using the-sshoption for uploading and downloading files.

The remote command or shell runs with the same user id as the running job, and it is initialized with
the same working directory. The environment is initializedto be the same as that of the job, plus
any changes made by the shell setup scripts and any environment variables passed by thesshclient.
In addition, the environment variable_CONDOR_JOB_PIDSis defined. It is a space-separated list
of PIDs associated with the job. At a minimum, the list will contain the PID of the process started
when the job was launched, and it will be the first item in the list. It may contain additional PIDs of
other processes that the job has created.

The sshsession and all processes it creates are treated by Condor asthough they are processes
belonging to the job. If the slot is preempted or suspended, thesshsession is killed or suspended
along with the job. If the job exits before thesshsession finishes, the slot remains in the Claimed
Busy state and is treated as though not all job processes haveexited until allsshsessions are closed.
Multiple sshsessions may be created to the same job at the same time. Resource consumption of
the sshdprocess and all processes spawned by it are monitored by thecondor_starteras though
these processes belong to the job, so any policies such asPREEMPTthat enforce a limit on resource
consumption also take into account resources consumed by thesshsession.

condor_ssh_to_jobstores ssh keys in temporary files within a newly created and uniquely named
directory. The newly created directory will be within the directory defined by the environment
variableTMPDIR. When the ssh session is finished, this directory and the ssh keys contained within
it are removed.

Condor Version 7.7.6, Command Reference

condor_ssh_to_job(1) 857

See section 3.3.32 for details of the configuration variables related tocondor_ssh_to_job.

An sshsession works by first authenticating and authorizing a secure connection betweencon-
dor_ssh_to_joband thecondor_starterdaemon, using Condor protocols. Thecondor_startergen-
erates an ssh key pair and sends it securely tocondor_ssh_to_job. Then thecondor_starterspawns
sshdin inetd mode with its stdin and stdout attached to the TCP connection fromcondor_ssh_to_job.
condor_ssh_to_jobacts as a proxy for thesshclient to communicate withsshd, using the existing
connection authorized by Condor.At no point is sshd listening on the network for connections or
running with any privileges other than that of the user identity running the job. If CCB is being
used to enable connectivity to the execute node from outsideof a firewall or private network,con-
dor_ssh_to_jobis able to make use of CCB in order to form thesshconnection.

The login shell of the user id running the job is used to run therequested command,sshdsubsystem,
or interactive shell. This is hard-coded behavior inOpenSSHand cannot be overridden by configu-
ration. This means thatcondor_ssh_to_jobaccess is effectively disabled if the login shell disables
access, as in the example programs/bin/trueand/sbin/nologin.

condor_ssh_to_jobis intended to work withOpenSSHas installed in typical environments. It does
not work on Windows platforms. If thesshprograms are installed in non-standard locations, then the
paths to these programs will need to be customized within theCondor configuration. Versions ofssh
other thanOpenSSHmay work, but they will likely require additional configuration of command-
line arguments, changes to thesshdconfiguration template file, and possibly modification of the
$(LIBEXEC)/condor_ssh_to_job_sshd_setup script used by thecondor_starterto set
upsshd.

Options

-help Display brief usage information and exit.

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOL_DEBUG

-nameschedd-nameSpecify an alternatecondor_schedd, if the default (local) one is not desired.

-pool pool-nameSpecify an alternate Condor pool, if the default one is not desired.

-sshssh-commandSpecify an alternatesshprogram to run in place ofssh, for examplesftp or
scp. Additional arguments are specified asssh-command. Since the arguments are delimited
by spaces, place double quote marks around the whole command, to prevent the shell from
splitting it into multiple arguments tocondor_ssh_to_job. If any arguments must contain
spaces, enclose them within single quotes.

Condor Version 7.7.6, Command Reference

condor_ssh_to_job(1) 858

-keygen-optionsssh-keygen-optionsSpecify additional arguments to thessh_keygenprogram, for
creating the ssh key that is used for the duration of the session. For example, a different
number of bits could be used, or a different key type than the default.

-shellsshell1,shell2,...Specify a comma-separated list of shells to attempt to launch. If the first
shell does not exist on the remote machine, then the following ones in the list will be tried.
If none of the specified shells can be found,/bin/sh is used by default. If this option is not
specified, it defaults to the environment variableSHELL from within thecondor_ssh_to_job
environment.

-auto-retry Specifies that if the job is not yet running,condor_ssh_to_jobshould keep trying
periodically until it succeeds or encounters some other error.

-X Enable X11 forwarding.

Examples

% condor_ssh_to_job 32.0
Welcome to slot2@tonic.cs.wisc.edu!
Your condor job is running with pid(s) 65881.
% gdb -p 65881
(gdb) where
...
% logout
Connection to condor-job.tonic.cs.wisc.edu closed.

To upload or download files interactively withsftp:

% condor_ssh_to_job -ssh sftp 32.0
Connecting to condor-job.tonic.cs.wisc.edu...
sftp> ls
...
sftp> get outputfile.dat

This example shows downloading a file from the job withscp. The string "remote" is used in place
of a host name in this example. It is not necessary to insert the correct remote host name, or even
a valid one, because the connection to the job is created automatically. Therefore, the placeholder
string "remote" is perfectly fine.

% condor_ssh_to_job -ssh scp 32 remote:outputfile.dat .

This example usescondor_ssh_to_jobto accomplish the task of runningrsyncto synchronize a local
file with a remote file in the job’s working directory. Job id 32.0 is used in place of a host name in
this example. This causesrsyncto insert the expected job id in the arguments tocondor_ssh_to_job.

Condor Version 7.7.6, Command Reference

condor_ssh_to_job(1) 859

% rsync -v -e "condor_ssh_to_job" 32.0:outputfile.dat .

Note thatcondor_ssh_to_jobwas added to Condor in version 7.3. If one usescondor_ssh_to_jobto
connect to a job on an execute machine running a version of Condor older than the 7.3 series, the
command will fail with the error message

Failed to send CREATE_JOB_OWNER_SEC_SESSION to starter

Exit Status

condor_ssh_to_jobwill exit with a non-zero status value if it fails to set up an ssh session. If it
succeeds, it will exit with the status value of the remote command or shell.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_stats(1) 860

condor_stats

Display historical information about the Condor pool

Synopsis

condor_stats [-f filename] [-orgformat] [-pool centralmanagerhostname[:portnumber]]
[time-range] query-type

Description

condor_statsdisplays historic information about a Condor pool. Based onthe type of information
requested, a query is sent to thecondor_collectordaemon, and the information received is displayed
using the standard output. If the-f option is used, the information will be written to a file instead of
to standard output. The-pooloption can be used to get information from other pools, instead of from
the local (default) pool. Thecondor_statstool is used to query resource information (single or by
platform), submitter and user information, and checkpointserver information. If a time range is not
specified, the default query provides information for the previous 24 hours. Otherwise, information
can be retrieved for other time ranges such as the last specified number of hours, last week, last
month, or a specified date range.

The information is displayed in columns separated by tabs. The first column always represents the
time, as a percentage of the range of the query. Thus the first entry will have a value close to 0.0,
while the last will be close to 100.0. If the-orgformat option is used, the time is displayed as
number of seconds since the Unix epoch. The information in the remainder of the columns depends
on the query type.

Note that logging of pool history must be enabled in thecondor_collectordaemon, otherwise no
information will be available.

One query type is required. If multiple queries are specified, only the last one takes effect.

Time Range Options

-lastday Get information for the last day.

-lastweek Get information for the last week.

-lastmonth Get information for the last month.

Condor Version 7.7.6, Command Reference

condor_stats(1) 861

-lasthoursn Get information for the n last hours.

-from m d y Get information for the time since the beginning of the specified date. A start date
prior to the Unix epoch causescondor_statsto print its usage information and quit.

-to m d y Get information for the time up to the beginning of the specified date, instead of up to
now. A finish date in the future causescondor_statsto print its usage information and quit.

Query Type Arguments

The query types that do not list all of a category require further specification as given by an argument.

-resourcequeryhostnameA single resource query provides information about a singlemachine.
The information also includes the keyboard idle time (in seconds), the load average, and the
machine state.

-resourcelist A query of a single list of resources to provide a list of all the machines for which the
condor_collectordaemon has historic information within the query’s time range.

-resgroupqueryarch/opsys | “Total” A query of a specified group to provide information about a
group of machines based on their platform (operating systemand architecture). The archi-
tecture is defined by the machine ClassAdArch , and the operating system is defined by the
machine ClassAdOpSys. The string “Total” ask for information about all platforms.

The columns displayed are the number of machines that are unclaimed, matched, claimed,
preempting, owner, shutdown, delete, backfill, and drainedstate.

-resgrouplist Queries for a list of all the group names for which thecondor_collectorhas historic
information within the query’s time range.

-userqueryemail_address/submit_machineQuery for a specific submitter on a specific machine.
The information displayed includes the number of running jobs and the number of idle jobs.
An example argument appears as

-userquery jondoe@sample.com/onemachine.sample.com

-userlist Queries for the list of all submitters for which thecondor_collectordaemon has historic
information within the query’s time range.

Condor Version 7.7.6, Command Reference

condor_stats(1) 862

-usergroupqueryemail_address | “Total”Query for all jobs submitted by the specific user,
regardless of the machine they were submitted from, or all jobs. The information displayed
includes the number of running jobs and the number of idle jobs.

-usergrouplist Queries for the list of all users for which thecondor_collectorhas historic informa-
tion within the query’s time range.

-ckptquery hostnameQuery about a checkpoint server given its host name. The information
displayed includes the number of Mbytes received, Mbytes sent, average receive bandwidth
(in Kbytes/sec), and average send bandwidth (in Kbytes/sec).

-ckptlist Query for the entire list of checkpoint servers for which thecondor_collectorhas historic
information in the query’s time range.

Options

-f filename Write the information to a file instead of the standard output.

-pool centralmanagerhostname[:portnumber]Contact the specified central manager instead of
the local one.

-orgformat Display the information in an alternate format for timing, which presents times-
tamps since the Unix epoch. This argument only affects the display of resoursequery,
resgroupquery, userquery, usergroupquery, andckptquery.

Exit Status

condor_statswill exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Condor Version 7.7.6, Command Reference

condor_stats(1) 863

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_status(1) 864

condor_status

Display status of the Condor pool

Synopsis

condor_status [-debug] [help options] [query options] [display options] [custom options]
[name. . .]

Description

condor_statusis a versatile tool that may be used to monitor and query the Condor pool. Thecon-
dor_statustool can be used to query resource information, submitter information, checkpoint server
information, and daemon master information. The specific query sent and the resulting informa-
tion display is controlled by the query options supplied. Queries and display formats can also be
customized.

The options that may be supplied tocondor_statusbelong to five groups:

• Help optionsprovide information about thecondor_statustool.

• Query optionscontrol the content and presentation of status information.

• Display optionscontrol the display of the queried information.

• Custom optionsallow the user to customize query and display information.

• Host optionsspecify specific machines to be queried

At any time, only onehelp option, onequery optionand onecustom optionmay be specified. Any
number ofcustomandhost optionsmay be specified.

Options

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOL_DEBUG

-help (Help option) Display usage information

-diagnose (Help option) Print out query ClassAd without performing query

Condor Version 7.7.6, Command Reference

condor_status(1) 865

-any (Query option) Query all ClassAds and display their type, target type, and name

-avail (Query option) Querycondor_startdClassAds and identify resources which are available

-ckptsrvr (Query option) Querycondor_ckpt_serverClassAds and display checkpoint server
attributes

-claimed (Query option) Querycondor_startdClassAds and print information about claimed
resources

-cod (Query option) Display only machine ClassAds that have COD claims. Information displayed
includes the claim ID, the owner of the claim, and the state ofthe COD claim.

-collector (Query option) Querycondor_collectorClassAds and display attributes

-direct hostname (Query option) Go directly to the given host name to get the ClassAds to display

-java (Query option) Display only Java-capable resources.

-license (Query option) Display license attributes.

-master (Query option) Querycondor_masterClassAds and display daemon master attributes

-negotiator (Query option) Querycondor_negotiatorClassAds and display attributes

-pool centralmanagerhostname[:portnumber](Query option) Query the specified central man-
ager using an optional port number.condor_statusqueries the machine specified by the
configuration variableCOLLECTOR_HOSTby default.

-quill (Query option) Display attributes of machines running Quill.

-run (Query option) Display information about machines currently running jobs.

-schedd (Query option) Querycondor_scheddClassAds and display attributes

-server (Query option) Querycondor_startdClassAds and display resource attributes

Condor Version 7.7.6, Command Reference

condor_status(1) 866

-startd (Query option) Querycondor_startdClassAds

-state (Query option) Querycondor_startdClassAds and display resource state information

-statisticsWhichStatistics (Query option) Can only be used if the-direct option has been specified.
Identifies which Statistics attributes to include in the ClassAd. WhichStatisticsis specified
using the same syntax as defined forSTATISTICS_TO_PUBLISH. See the definition at
3.3.11 for details.

-storage (Query option) Display attributes of machines with networkstorage resources.

-submitters (Query option) Query ClassAds sent by submitters and display important submitter
attributes

-subsystemtype (Query option) If type is one ofcollector, negotiator, master, schedd, startd,
or quill, then behavior is the same as the query option without the-subsystemoption. For
example,-subsystemcollector is the same as-collector. A value of type of CkptServer,
Machine, DaemonMaster, or Schedulertargets that type of ClassAd.

-vm (Query option) Querycondor_startdClassAds, and display only VM-enabled machines.
Information displayed includes the the machine name, the virtual machine software version,
the state of machine, the virtual machine memory, and the type of networking.

-attributes Attr1[,Attr2 . . .] (Display option) Explicitly list the attributes in a comma separated list
which should be displayed when using the-xml or -long options. Limiting the number of
attributes increases the efficiency of the query.

-expert (Display option) Display shortened error messages

-long (Display option) Display entire ClassAds (same as-verbose)

-sort expr (Display option) Change the display order to be based on ascending values of an evalu-
ated expression given byexpr. Evaluated expressions of a string type are in a case insensitive
alphabetical order. If multiple-sort arguments appear on the command line, the primary sort
will be on the leftmost one within the command line, and it is numbered 0. A secondary sort
will be based on the second expression, and it is numbered 1. For informational or debugging
purposes, the ClassAd output to be displayed will appear as if the ClassAd had two additional
attributes. CondorStatusSortKeyExpr<N> is the expression, where<N> is replaced
by the number of the sort.CondorStatusSortKey<N> gives the result of evaluating the

Condor Version 7.7.6, Command Reference

condor_status(1) 867

sort expression that is numbered<N>.

-total (Display option) Display totals only

-verbose (Display option) Display entire ClassAds. Implies that totals will not be displayed.

-xml (Display option) Display entire ClassAds, in XML format. The XML format is fully defined
at http://www.cs.wisc.edu/condor/classad/refman/.

-constraint const (Custom option) Add constraint expression. See section 4.1and section 4.1.4 for
details on ClassAds and on writing expressions.

-format fmt attr (Custom option) Display attribute or expressionattr in format fmt. To display
the attribute or expression the format must contain a singleprintf(3) -style conversion
specifier. Attributes must be from the resource ClassAd. Expressions are ClassAd expressions
and may refer to attributes in the resource ClassAd. If the attribute is not present in a given
ClassAd and cannot be parsed as an expression, then the format option will be silently
skipped. The conversion specifier must match the type of the attribute or expression. %s
is suitable for strings such asName, %d for integers such asLastHeardFrom , and %f
for floating point numbers such asLoadAvg . %v identifies the type of the attribute, and
then prints the value in an appropriate format. %V identifiesthe type of the attribute, and
then prints the value in an appropriate format as it would appear in the-long format. As an
example, strings used with %V will have quote marks. An incorrect format will result in
undefined behavior. Do not use more than one conversion specifier in a given format. More
than one conversion specifier will result in undefined behavior. To output multiple attributes
repeat the-format option once for each desired attribute. Likeprintf(3) -style formats,
one may include other text that will be reproduced directly.A format without any conversion
specifiers may be specified, but an attribute is still required. Include\n to specify a line break.

General Remarks

• The default output fromcondor_statusis formatted to be human readable, not script readable.
In an effort to make the output fit within 80 characters, values in some fields might be trun-
cated. Furthermore, the Condor Project can (and does) change the formatting of this default
output as we see fit. Therefore, any script that is attemptingto parse data fromcondor_status
is strongly encouraged to use the-format option (described above).

• The information obtained fromcondor_startdandcondor_schedddaemons may sometimes
appear to be inconsistent. This is normal sincecondor_startdandcondor_schedddaemons
update the Condor manager at different rates, and since there is a delay as information propa-
gates through the network and the system.

Condor Version 7.7.6, Command Reference

http://www.cs.wisc.edu/condor/classad/refman/

condor_status(1) 868

• Note that theActivityTime in the Idle state isnot the amount of time that the machine
has been idle. See the section oncondor_startdstates in theAdministrator’s Manualfor more
information.

• When usingcondor_statuson a pool with SMP machines, you can either provide the host
name, in which case you will get back information about all slots that are represented on that
host, or you can list specific slots by name. See the examples below for details.

• If you specify host names, without domains, Condor will automatically try to resolve those
host names into fully qualified host names for you. This also works when specifying specific
nodes of an SMP machine. In this case, everything after the “@” sign is treated as a host name
and that is what is resolved.

• You can use the-direct option in conjunction with almost any other set of options. However,
at this time, the only daemon that will allow direct queries for its ad(s) is thecondor_startd.
So, the only options currently not supported with-direct are-scheddand-master. Most other
options use startd ads for their information, so they work seamlessly with-direct. The only
other restriction on-direct is that you may only use 1-direct option at a time. If you want to
query information directly from multiple hosts, you must run condor_statusmultiple times.

• Unless you use the local host name with-direct, condor_statuswill still have to contact a
collector to find the address where the specified daemon is listening. So, using a-pool option
in conjunction with-direct just tellscondor_statuswhich collector to query to find the address
of the daemon you want. The information actually displayed will still be retrieved directly
from the daemon you specified as the argument to-direct.

Examples

Example 1To view information from all nodes of an SMP machine, use onlythe host name. For
example, if you had a 4-CPU machine, namedvulture.cs.wisc.edu , you might see

% condor_status vulture

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

slot1@vulture.cs.w LINUX INTEL Claimed Busy 1.050 512 0+01 :47:42
slot2@vulture.cs.w LINUX INTEL Claimed Busy 1.000 512 0+01 :48:19
slot3@vulture.cs.w LINUX INTEL Unclaimed Idle 0.070 512 1+ 11:05:32
slot4@vulture.cs.w LINUX INTEL Unclaimed Idle 0.000 512 1+ 11:05:34

Total Owner Claimed Unclaimed Matched Preempting Backfill

INTEL/LINUX 4 0 2 2 0 0 0

Total 4 0 2 2 0 0 0

Example 2To view information from a specific nodes of an SMP machine, specify the node directly.
You do this by providing the name of the slot. This has the formslot#@hostname . For example:

Condor Version 7.7.6, Command Reference

condor_status(1) 869

% condor_status slot3@vulture

Name OpSys Arch State Activity LoadAv Mem ActvtyTime

slot3@vulture.cs.w LINUX INTEL Unclaimed Idle 0.070 512 1+ 11:10:32

Total Owner Claimed Unclaimed Matched Preempting Backfill

INTEL/LINUX 1 0 0 1 0 0 0

Total 1 0 0 1 0 0 0

Constraint option examples

Further explanation and examples are in section??.

The Unix command to use the constraint option to see all machines with theOpSys of "LINUX" :

% condor_status -constraint OpSys==\"LINUX\"

Note that quotation marks must be escaped with the backslashcharacters for most shells.

The Windows command to do the same thing:

>condor_status -constraint " OpSys==""LINUX"" "

Note that quotation marks are used to delimit the single argument which is the expression, and the
quotation marks that identify the string must be escaped by using a set of two double quote marks
without any intervening spaces.

To see all machines that are currently in the Idle state, the Unix command is

% condor_status -constraint State==\"Idle\"

To see all machines that are bench marked to have a MIPS ratingof more than 750, the Unix
command is

% condor_status -constraint 'Mips>750'

-cod option example

The-codoption displays the status of COD claims within a given Condor pool.

Name ID ClaimState TimeInState RemoteUser JobId Keyword
astro.cs.wi COD1 Idle 0+00:00:04 wright
chopin.cs.w COD1 Running 0+00:02:05 wright 3.0 fractgen
chopin.cs.w COD2 Suspended 0+00:10:21 wright 4.0 fractgen

Total Idle Running Suspended Vacating Killing
INTEL/LINUX 3 1 1 1 0 0

Total 3 1 1 1 0 0

Condor Version 7.7.6, Command Reference

condor_status(1) 870

Exit Status

condor_statuswill exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_store_cred(1) 871

condor_store_cred

securely stash a password

Synopsis

condor_store_cred[-help]

condor_store_credadd [-c | -u username][-p password] [-n machinename] [-f filename]

condor_store_creddelete[-c | -u username][-n machinename]

condor_store_credquery[-c | -u username][-n machinename]

Description

condor_store_credstores passwords in a secure manner. There are two separate uses ofcon-
dor_store_cred:

1. A shared pool password is needed in order to implement thePASSWORDauthentication
method. condor_store_credusing the-c option deals with the password for the implied
condor_pool@$(UID_DOMAIN) user name.

On a Unix machine,condor_store_credwith the-f option is used to set the pool password, as
needed when used with thePASSWORDauthentication method. The pool password is placed
in a file specified by theSEC_PASSWORD_FILEconfiguration variable.

2. In order to submit a job from a Windows platform machine, orto execute a job on a Win-
dows platform machine utilizing therun_as_ownerfunctionality,condor_store_credstores
the password of a user/domain pair securely in the Windows registry. Using this stored pass-
word, Condor may act on behalf of the submitting user to access files, such as writing output
or log files. Condor is able to run jobs with the user ID of the submitting user. The password
is stored in the same manner as the system does when setting orchanging account passwords.

Passwords are stashed in a persistent manner; they are maintained across system reboots.

Theaddargument on the Windows platform stores the password securely in the registry. The user
is prompted to enter the password twice for confirmation, andcharacters are not echoed. If there is
already a password stashed, the old password will be overwritten by the new password.

Thedeleteargument deletes the current password, if it exists.

Thequeryreports whether the password is stored or not.

Condor Version 7.7.6, Command Reference

condor_store_cred(1) 872

Options

-c Operations refer to the pool password, as used in thePASSWORDauthentication method.

-f filename For Unix machines only, generates a pool password file namedfilenamethat may be
used with thePASSWORDauthentication method.

-help Displays a brief summary of command options.

-n machinenameApply the command on the given machine.

-p passwordStorespassword, rather than prompting the user to enter a password.

-u usernameSpecify the user name.

Exit Status

condor_store_credwill exit with a status value of 0 (zero) upon success, and it will exit with the
value 1 (one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_submit(1) 873

condor_submit

Queue jobs for execution under Condor

Synopsis

condor_submit [-verbose] [-unused] [-name schedd_name] [-remote schedd_name]
[-addr <ip:port>] [-pool pool_name] [-disable] [-password passphrase] [-debug] [-append
command. . .][-spool] [-dump filename] [submit description file]

Description

condor_submitis the program for submitting jobs for execution under Condor. condor_submitre-
quires a submit description file which contains commands to direct the queuing of jobs. One submit
description file may contain specifications for the queuing of many Condor jobs at once. A single
invocation ofcondor_submitmay cause one or more clusters. A cluster is a set of jobs specified in
the submit description file betweenqueuecommands for which the executable is not changed. It is
advantageous to submit multiple jobs as a single cluster because:

• Only one copy of the checkpoint file is needed to represent all jobs in a cluster until they begin
execution.

• There is much less overhead involved for Condor to start thenext job in a cluster than for
Condor to start a new cluster. This can make a big difference when submitting lots of short
jobs.

Multiple clusters may be specified within a single submit description file. Each cluster must specify
a single executable.

The job ClassAd attributeClusterId identifies a cluster. See specifics for this attribute in the
Appendix on page 956.

Note that submission of jobs from a Windows machine requiresa stashed password to allow Con-
dor to impersonate the user submitting the job. To stash a password, use thecondor_store_cred
command. See the manual page at page 871 for details.

For lengthy lines within the submit description file, the backslash (\) is a line continuation character.
Placing the backslash at the end of a line causes the current line’s command to be continued with
the next line of the file. Submit description files may containcomments. A comment is any line
beginning with a pound character (#).

Here is a list of the commands that may be placed in the submit description file to direct the submis-
sion of a job.

Condor Version 7.7.6, Command Reference

condor_submit(1) 874

Options

-verbose Verbose output - display the created job ClassAd

-unused As a default, causes no warnings to be issued about user-defined macros not being used
within the submit description file. The meaning reverses (toggles) when the configuration
variableWARN_ON_UNUSED_SUBMIT_FILE_MACROSis set to the nondefault value of
False . Printing the warnings can help identify spelling errors ofsubmit description file
commands. The warnings are sent to stderr.

-nameschedd_nameSubmit to the specifiedcondor_schedd. Use this option to submit to a
condor_scheddother than the default local one.schedd_nameis the value of theName
ClassAd attribute on the machine where thecondor_schedddaemon runs.

-remoteschedd_nameSubmit to the specifiedcondor_schedd, spooling all required input files
over the network connection.schedd_nameis the value of theNameClassAd attribute on
the machine where thecondor_schedddaemon runs. This option is equivalent to using both
-nameand-spool.

-addr <ip:port> Submit to thecondor_scheddat the IP address and port given by thesinful string
argument<ip:port>.

-pool pool_nameLook in the specified pool for thecondor_scheddto submit to. This option is
used with-nameor -remote.

-disable Disable file permission checks when submitting a job for readpermissions on all input
files, such as those defined by commandsinput and transfer_input_files, as well as write
permission to output files, such as a log file defined bylog and output files defined with
output or transfer_output_files.

-passwordpassphraseSpecify a password to theMyProxyserver.

-debug Cause debugging information to be sent tostderr , based on the value of the configuration
variableTOOL_DEBUG.

-appendcommand Augment the commands in the submit description file with the given command.
This command will be considered to immediately precede the Queue command within the
submit description file, and come after all other previous commands. The submit description
file is not modified. Multiple commands are specified by using the -appendoption multiple
times. Each new command is given in a separate-appendoption. Commands with spaces in

Condor Version 7.7.6, Command Reference

condor_submit(1) 875

them will need to be enclosed in double quote marks.

-spool Spool all required input files, user log, and proxy over the connection to thecondor_schedd.
After submission, modify local copies of the files without affecting your jobs. Any output
files for completed jobs need to be retrieved withcondor_transfer_data.

-dump filename Sends all ClassAds to the specified file, instead of to thecondor_schedd.

submit description fileThe pathname to the submit description file. If this optionalargument is
missing or equal to “-”, then the commands are taken from standard input.

Submit Description File Commands

Each submit description file describes one cluster of jobs tobe placed in the Condor execution
pool. All jobs in a cluster must share the same executable, but they may have different input and
output files, and different program arguments. The submit description file is the only command-line
argument tocondor_submit. If the submit description file argument is omitted,condor_submitwill
read the submit description from standard input.

The submit description file must contain oneexecutablecommand and at least onequeuecommand.
All of the other commands have default actions.

The commands which can appear in the submit description file are numerous. They are listed here
in alphabetical order by category.

BASIC COMMANDS

arguments =<argument_list> List of arguments to be supplied to the executable as part of the
command line.

In the java universe, the first argument must be the name of the class containingmain .

There are two permissible formats for specifying arguments, identified as the old syntax and
the new syntax. The old syntax supports white space characters within arguments only in
special circumstances, hence the new syntax, which supports uniform quoting of white space
characters within arguments.

Old Syntax

In the old syntax, individual command line arguments are delimited (separated) by space
characters. To allow a double quote mark in an argument, it isescaped with a backslash; that
is, the two character sequence\" becomes a single double quote mark within an argument.

Further interpretation of the argument string differs depending on the operating system. On
Windows, the entire argument string is passed verbatim (other than the backslash in front
of double quote marks) to the Windows application. Most Windows applications will allow

Condor Version 7.7.6, Command Reference

condor_submit(1) 876

spaces within an argument value by surrounding the argumentwith double quotes marks. In
all other cases, there is no further interpretation of the arguments.

Example:

arguments = one \"two\" 'three'

Produces in Unix vanilla universe:

argument 1: one
argument 2: "two"
argument 3: 'three'

New Syntax

Here are the rules for using the new syntax:

1. The entire string representing the command line arguments is surrounded by double
quote marks. This permits the white space characters of spaces and tabs to potentially be
embedded within a single argument. Putting the double quotemark within the arguments
is accomplished by escaping it with another double quote mark.

2. The white space characters of spaces or tabs delimit arguments.

3. To embed white space characters of spaces or tabs within a single argument, surround
the entire argument with single quote marks.

4. To insert a literal single quote mark, escape it within an argument already delimited by
single quote marks by adding another single quote mark.

Example:

arguments = "3 simple arguments"

Produces:

argument 1: 3
argument 2: simple
argument 3: arguments

Another example:

arguments = "one 'two with spaces' 3"

Produces:

argument 1: one
argument 2: two with spaces
argument 3: 3

Condor Version 7.7.6, Command Reference

condor_submit(1) 877

And yet another example:

arguments = "one ""two"" 'spacey ''quoted'' argument'"

Produces:

argument 1: one
argument 2: "two"
argument 3: spacey 'quoted' argument

Notice that in the new syntax, the backslash has no special meaning. This is for the conve-
nience of Windows users.

environment = <parameter_list> List of environment variables.

There are two different formats for specifying the environment variables: the old format and
the new format. The old format is retained for backward-compatibility. It suffers from a
platform-dependent syntax and the inability to insert somespecial characters into the environ-
ment.

The new syntax for specifying environment values:

1. Put double quote marks around the entire argument string.This distinguishes the new
syntax from the old. The old syntax does not have double quotemarks around it. Any
literal double quote marks within the string must be escapedby repeating the double
quote mark.

2. Each environment entry has the form

<name>=<value>

3. Use white space (space or tab characters) to separate environment entries.

4. To put any white space in an environment entry, surround the space and as much of the
surrounding entry as desired with single quote marks.

5. To insert a literal single quote mark, repeat the single quote mark anywhere inside of a
section surrounded by single quote marks.

Example:

environment = "one=1 two=""2"" three='spacey ''quoted'' v alue'"

Produces the following environment entries:

one=1
two="2"
three=spacey 'quoted' value

Under the old syntax, there are no double quote marks surrounding the environment specifi-
cation. Each environment entry remains of the form

Condor Version 7.7.6, Command Reference

condor_submit(1) 878

<name>=<value>

Under Unix, list multiple environment entries by separating them with a semicolon (;). Under
Windows, separate multiple entries with a vertical bar (|). There is no way to insert a literal
semicolon under Unix or a literal vertical bar under Windows. Note that spaces are accepted,
but rarely desired, characters within parameter names and values, because they are treated as
literal characters, not separators or ignored white space.Place spaces within the parameter
list only if required.

A Unix example:

environment = one=1;two=2;three="quotes have no 'special ' meaning"

This produces the following:

one=1
two=2
three="quotes have no 'special' meaning"

If the environment is set with theenvironmentcommandandgetenvis also set to true, values
specified withenvironment override values in the submitter’s environment (regardless of the
order of theenvironment andgetenvcommands).

error = <pathname> A path and file name used by Condor to capture any error messages the
program would normally write to the screen (that is, this filebecomesstderr). A path is
given with respect to the file system of the machine on which the job is submitted. The file is
written (by the job) in the remote scratch directory of the machine where the job is executed.
When the job exits, the resulting file is transferred back to the machine where the job was
submitted, and the path is utilized for file placement. If notspecified, the default value of
/dev/null is used for submission to a Unix machine. If not specified, error messages are
ignored for submission to a Windows machine. More than one job should not use the same
error file, since this will cause one job to overwrite the errors of another. The error file and the
output file should not be the same file as the outputs will overwrite each other or be lost. For
grid universe jobs,error may be a URL that the Globus toolglobus_url_copyunderstands.

executable =<pathname> An optional path and a required file name of the executable filefor this
job cluster. Only oneexecutablecommand within a submit description file is guaranteed to
work properly. More than one often works.

If no path or a relative path is used, then the executable file is presumed to be relative to the
current working directory of the user as thecondor_submitcommand is issued.

If submitting into the standard universe, then the named executable must have been re-linked
with the Condor libraries (such as via thecondor_compilecommand). If submitting into the
vanilla universe (the default), then the named executable need not be re-linked and can be any
process which can run in the background (shell scripts work fine as well). If submitting into
the Java universe, then the argument must be a compiled.class file.

Condor Version 7.7.6, Command Reference

condor_submit(1) 879

getenv =<True | False> If getenvis set toTrue , thencondor_submitwill copy all of the user’s
current shell environment variables at the time of job submission into the job ClassAd. The
job will therefore execute with the same set of environment variables that the user had at
submit time. Defaults toFalse .

If the environment is set with theenvironmentcommandandgetenvis also set to true, values
specified withenvironment override values in the submitter’s environment (regardless of the
order of theenvironment andgetenvcommands).

input = <pathname> Condor assumes that its jobs are long-running, and that the user will not
wait at the terminal for their completion. Because of this, the standard files which normally
access the terminal, (stdin , stdout , andstderr), must refer to files. Thus, the file name
specified withinput should contain any keyboard input the program requires (that is, this file
becomesstdin). A path is given with respect to the file system of the machineon which
the job is submitted. The file is transferred before execution to the remote scratch directory
of the machine where the job is executed. If not specified, thedefault value of/dev/null
is used for submission to a Unix machine. If not specified, input is ignored for submission
to a Windows machine. For grid universe jobs,input may be a URL that the Globus tool
globus_url_copyunderstands.

Note that this command doesnot refer to the command-line arguments of the program. The
command-line arguments are specified by theargumentscommand.

log = <pathname> Use log to specify a file name where Condor will write a log file of what is
happening with this job cluster. For example, Condor will place a log entry into this file when
and where the job begins running, when the job produces a checkpoint, or moves (migrates)
to another machine, and when the job completes. Most users find specifying alog file to be
handy; its use is recommended. If nolog entry is specified, Condor does not create a log for
this cluster.

log_xml = <True | False> If log_xml is True , then the log file will be written in ClassAd XML.
If not specified, XML is not used. Note that the file is an XML fragment; it is missing the file
header and footer. Do not mix XML and non-XML within a single file. If multiple jobs write
to a single log file, ensure that all of the jobs specify this option in the same way.

notification = <Always | Complete| Error | Never> Owners of Condor jobs are notified by e-
mail when certain events occur. If defined byAlways, the owner will be notified whenever the
job produces a checkpoint, as well as when the job completes.If defined byComplete(the
default), the owner will be notified when the job terminates.If defined byError, the owner
will only be notified if the job terminates abnormally, or if the job is placed on hold because
of a failure, and not by user request. If defined byNever, the owner will not receive e-mail,
regardless to what happens to the job. The statistics included in the e-mail are documented in
section 2.6.7 on page 51.

notify_user = <email-address> Used to specify the e-mail address to use when Condor sends
e-mail about a job. If not specified, Condor defaults to usingthe e-mail address defined by

job-owner@UID_DOMAIN

Condor Version 7.7.6, Command Reference

condor_submit(1) 880

where the configuration variableUID_DOMAIN is specified by the Condor site administrator.
If UID_DOMAIN has not been specified, Condor sends the e-mail to:

job-owner@submit-machine-name

output = <pathname> The output file captures any information the program would ordinarily
write to the screen (that is, this file becomesstdout). A path is given with respect to the
file system of the machine on which the job is submitted. The file is written (by the job) in
the remote scratch directory of the machine where the job is executed. When the job exits,
the resulting file is transferred back to the machine where the job was submitted, and the path
is utilized for file placement. If not specified, the default value of /dev/null is used for
submission to a Unix machine. If not specified, output is ignored for submission to a Windows
machine. Multiple jobs should not use the same output file, since this will cause one job to
overwrite the output of another. The output file and the errorfile should not be the same file
as the outputs will overwrite each other or be lost. For grid universe jobs,output may be a
URL that the Globus toolglobus_url_copyunderstands.

Note that if a program explicitly opens and writes to a file, that file shouldnot be specified as
theoutput file.

priority = <integer> A Condor job priority can be any integer, with 0 being the default. Jobs
with higher numerical priority will run before jobs with lower numerical priority. Note that
this priority is on a per user basis. One user with many jobs may use this command to order
his/her own jobs, and this will have no effect on whether or not these jobs will run ahead of
another user’s jobs.

queue [number-of-procs] Places one or more copies of the job into the Condor queue. Theoptional
argumentnumber-of-procsspecifies how many times to submit the job to the queue, and it
defaults to 1. If desired, any commands may be placed betweensubsequentqueuecommands,
such as newinput , output, error , initialdir , or argumentscommands. This is handy when
submitting multiple runs into one cluster with one submit description file.

universe =<vanilla | standard | scheduler| local | grid | java | vm> Specifies which Con-
dor Universe to use when running this job. The Condor Universe specifies a Condor exe-
cution environment. Thestandard Universe tells Condor that this job has been re-linked via
condor_compilewith the Condor libraries and therefore supports checkpointing and remote
system calls. Thevanilla Universe is the default (except where the configuration variable
DEFAULT_UNIVERSEdefines it otherwise), and is an execution environment for jobs which
have not been linked with the Condor libraries.Note:Use thevanilla Universe to submit shell
scripts to Condor. Thescheduler is for a job that should act as a metascheduler. Thegrid
universe forwards the job to an external job management system. Further specification of the
grid universe is done with thegrid_resourcecommand. Thejava universe is for programs
written to the Java Virtual Machine. Thevm universe facilitates the execution of a virtual
machine.

COMMANDS FOR MATCHMAKING

Condor Version 7.7.6, Command Reference

condor_submit(1) 881

rank = <ClassAd Float Expression> A ClassAd Floating-Point expression that states how to
rank machines which have already met the requirements expression. Essentially, rank ex-
presses preference. A higher numeric value equals better rank. Condor will give the job the
machine with the highest rank. For example,

requirements = Memory > 60
rank = Memory

asks Condor to find all available machines with more than 60 megabytes of memory and give
to the job the machine with the most amount of memory. See section 2.5.2 within the Condor
Users Manual for complete information on the syntax and available attributes that can be used
in the ClassAd expression.

request_cpus =<num-cpus> A requested number of CPUs (cores). If not specified, the number
requested will be 1. If specified, the expression

&& (RequestCpus <= Target.Cpus)

is appended to therequirementsexpression for the job.

For pools that enable dynamiccondor_startdprovisioning (see section 3.12.8), specifies the
minimum number of CPUs requested for this job, resulting in adynamic slot being created
with this many cores.

request_disk =<quantity> The requested amount of disk space in Kbytes requested for this job.
If not specified, it will be set to the job ClassAd attributeDiskUsage . The expression

&& (RequestDisk <= Target.Disk)

is appended to therequirementsexpression for the job.

For pools that enable dynamiccondor_startdprovisioning (see section 3.12.8), a dynamic slot
will be created with at least this much disk space.

Characters may be appended to a numerical value to indicate units. K or KB indicates Kbytes.
Mor MBindicates Mbytes.Gor GBindicates Gbytes.T or TB indicates Tbytes.

request_memory =<quantity> The required amount of memory in Mbytes that this job needs
to avoid excessive swapping. If not specified and the submit commandvm_memory is
specified, then the value specified forvm_memory definesrequest_memory. If neitherre-
quest_memorynor vm_memory is specified, the value is set by the configuration variable
JOB_DEFAULT_REQUESTMEMORY. The actual amount of memory used by a job is repre-
sented by the job ClassAd attributeMemoryUsage .

For pools that enable dynamiccondor_startdprovisioning (see section 3.12.8), a dynamic slot
will be created with at least this much RAM.

The expression

&& (RequestMemory <= Target.Memory)

Condor Version 7.7.6, Command Reference

condor_submit(1) 882

is appended to therequirementsexpression for the job.

Characters may be appended to a numerical value to indicate units. K or KB indicates Kbytes.
Mor MBindicates Mbytes.Gor GBindicates Gbytes.T or TB indicates Tbytes.

requirements =<ClassAd Boolean Expression> The requirements command is a boolean
ClassAd expression which uses C-like operators. In order for any job in this cluster to run
on a given machine, this requirements expression must evaluate to true on the given machine.

For scheduler and local universe jobs, the requirements expression is evaluated against the
Scheduler ClassAd which represents the thecondor_schedddaemon running on the submit
machine, rather than a remote machine. Like all commands in the submit description file, if
multiple requirements commands are present, all but the last one are ignored. By default,
condor_submitappends the following clauses to the requirements expression:

1. Arch and OpSys are set equal to the Arch and OpSys of the submit machine. In other
words: unless you request otherwise, Condor will give your job machines with the same
architecture and operating system version as the machine runningcondor_submit.

2. Cpus>= RequestCpus, if the job ClassAd attributeRequestCpus is defined.

3. Disk >= RequestDisk, if the job ClassAd attributeRequestDisk is defined. Oth-
erwise, Disk>= DiskUsage is appended to the requirements. TheDiskUsage at-
tribute is initialized to the size of the executable plus thesize of any files specified in
a transfer_input_files command. It exists to ensure there is enough disk space on the
target machine for Condor to copy over both the executable and needed input files. The
DiskUsage attribute represents the maximum amount of total disk spacerequired by
the job in kilobytes. Condor automatically updates theDiskUsage attribute approxi-
mately every 20 minutes while the job runs with the amount of space being used by the
job on the execute machine.

4. Memory>= RequestMemory, if the job ClassAd attributeRequestMemory is de-
fined.

5. If Universe is set to Vanilla, FileSystemDomain is set equal to the submit machine’s
FileSystemDomain.

View the requirements of a job which has already been submitted (along with everything
else about the job ClassAd) with the commandcondor_q -l; see the command reference for
condor_qon page 819. Also, see the Condor Users Manual for complete information on the
syntax and available attributes that can be used in the ClassAd expression.

FILE TRANSFER COMMANDS

output_destination =<destination-URL> When present, defines a URL that specifies both a
plug-in and a destination for the transfer of the entire output sandbox or a subset of output
files as specified by the submit commandtransfer_output_files. The plug-in does the trans-
fer of files, and no files are sent back to the submit machine. See both section 3.12.2 and
section 2.5.4 for details.

Condor Version 7.7.6, Command Reference

condor_submit(1) 883

should_transfer_files =<YES | NO | IF_NEEDED > The should_transfer_files setting is
used to define if Condor should transfer files to and from the remote machine where the
job runs. The file transfer mechanism is used to run jobs whichare not in the standard uni-
verse (and can therefore use remote system calls for file access) on machines which do not
have a shared file system with the submit machine.should_transfer_filesequal toYESwill
cause Condor to always transfer files for the job.NO disables Condor’s file transfer mech-
anism. IF_NEEDEDwill not transfer files for the job if it is matched with a resource in
the sameFileSystemDomain as the submit machine (and therefore, on a machine with
the same shared file system). If the job is matched with a remote resource in a different
FileSystemDomain , Condor will transfer the necessary files.

For more information about this and other settings related to transferring files, see section 2.5.4
on page 25.

Note thatshould_transfer_filesis not supported for jobs submitted to the grid universe.

skip_filechecks =<True | False> WhenTrue , file permission checks for the submitted job are
disabled. WhenFalse , file permissions are checked; this is the behavior when thiscommand
is not present in the submit description file. File permissions are checked for read permissions
on all input files, such as those defined by commandsinput andtransfer_input_files, and for
write permission to output files, such as a log file defined bylog and output files defined with
output or transfer_output_files.

stream_error = <True | False> If True , thenstderr is streamed back to the machine from
which the job was submitted. IfFalse , stderr is stored locally and transferred back when
the job completes. This command is ignored if the job ClassAdattributeTransferErr is
False . The default value isTrue in the grid universe andFalse otherwise. This command
must be used in conjunction witherror , otherwisestderr will sent to/dev/null on Unix
machines and ignored on Windows machines.

stream_input = <True | False> If True , thenstdin is streamed from the machine on which
the job was submitted. The default value isFalse . The command is only relevant for jobs
submitted to the vanilla or java universes, and it is ignoredby the grid universe. This command
must be used in conjunction withinput , otherwisestdin will be /dev/null on Unix
machines and ignored on Windows machines.

stream_output =<True | False> If True , thenstdout is streamed back to the machine from
which the job was submitted. IfFalse , stdout is stored locally and transferred back when
the job completes. This command is ignored if the job ClassAdattributeTransferOut is
False . The default value isTrue in the grid universe andFalse otherwise. This command
must be used in conjunction withoutput, otherwisestdout will sent to /dev/null on
Unix machines and ignored on Windows machines.

transfer_executable =<True | False> This command is applicable to jobs submitted to the grid
and vanilla universes. Iftransfer_executableis set toFalse , then Condor looks for the
executable on the remote machine, and does not transfer the executable over. This is useful
for an already pre-staged executable; Condor behaves more like rsh. The default value is
True .

Condor Version 7.7.6, Command Reference

condor_submit(1) 884

transfer_input_files = < file1,file2,file...> A comma-delimited list of all the files and directories
to be transferred into the working directory for the job, before the job is started. By default,
the file specified in theexecutablecommand and any file specified in theinput command (for
example,stdin) are transferred.

When a path to an input file or directory is specified, this specifies the path to the file
on the submit side. The file is placed in the job’s temporary scratch directory on the
execute side, and it is named using the base name of the original path. For example,
/path/to/input_file becomesinput_file in the job’s scratch directory.

A directory may be specified using a trailing path separator.An example of a trailing path
separator is the slash character on Unix platforms; a directory example using a trailing path
separator isinput_data/ . When a directory is specified with a trailing path separator, the
contents of the directory are transferred, but the directory itself is not transferred. It is as if
each of the items within the directory were listed in the transfer list. When there is no trailing
path separator, the directory is transferred, its contentsare transferred, and these contents are
placed inside the transferred directory.

For grid universe jobs other than Condor-C, the transfer of directories is not currently sup-
ported.

Symbolic links to files are transferred as the files they pointto. Transfer of symbolic links to
directories is not currently supported.

For vanilla and vm universe jobs only, a file may be specified bygiving a URL, instead of a
file name. The implementation for URL transfers requires both configuration and available
plug-in. See section 3.12.2 for details.

For more information about this and other settings related to transferring files, see section 2.5.4
on page 25.

transfer_output_files =< file1,file2,file...> This command forms an explicit list of output files
and directories to be transferred back from the temporary working directory on the execute
machine to the submit machine. If there are multiple files, they must be delimited with com-
mas.

For Condor-C jobs and all other non-grid universe jobs, iftransfer_output_files is not speci-
fied, Condor will automatically transfer back all files in thejob’s temporary working directory
which have been modified or created by the job. Subdirectories are not scanned for output, so
if output from subdirectories is desired, the output list must be explicitly specified. For grid
universe jobs other than Condor-C, desired output files mustalso be explicitly listed. Another
reason to explicitly list output files is for a job that creates many files, and the user wants only
a subset transferred back.

For grid universe jobs other than with grid typecondor, to have files other than standard
output and standard error transferred from the execute machine back to the submit machine,
do usetransfer_output_files, listing all files to be transferred. These files are found on the
execute machine in the working directory of the job.

When a path to an output file or directory is specified, it specifies the path to the file on
the execute side. As a destination on the submit side, the fileis placed in the job’s initial
working directory, and it is named using the base name of the original path. For example,

Condor Version 7.7.6, Command Reference

condor_submit(1) 885

path/to/output_file becomesoutput_file in the job’s initial working directory.
The name and path of the file that is written on the submit side may be modified by using
transfer_output_remaps. Note that this remap function only works with files but not with
directories.

A directory may be specified using a trailing path separator.An example of a trailing path
separator is the slash character on Unix platforms; a directory example using a trailing path
separator isinput_data/ . When a directory is specified with a trailing path separator, the
contents of the directory are transferred, but the directory itself is not transferred. It is as if
each of the items within the directory were listed in the transfer list. When there is no trailing
path separator, the directory is transferred, its contentsare transferred, and these contents are
placed inside the transferred directory.

For grid universe jobs other than Condor-C, the transfer of directories is not currently sup-
ported.

Symbolic links to files are transferred as the files they pointto. Transfer of symbolic links to
directories is not currently supported.

For more information about this and other settings related to transferring files, see section 2.5.4
on page 25.

transfer_output_remaps= < “ name = newname ; name2= newname2 ... ”> This specifies
the name (and optionally path) to use when downloading output files from the completed
job. Normally, output files are transferred back to the initial working directory with the same
name they had in the execution directory. This gives you the option to save them with a dif-
ferent path or name. If you specify a relative path, the final path will be relative to the job’s
initial working directory.

namedescribes an output file name produced by your job, andnewnamedescribes the file
name it should be downloaded to. Multiple remaps can be specified by separating each with
a semicolon. If you wish to remap file names that contain equals signs or semicolons, these
special characters may be escaped with a backslash. You cannot specify directories to be
remapped.

when_to_transfer_output =< ON_EXIT | ON_EXIT_OR_EVICT > Setting
when_to_transfer_output equal to ON_EXIT will cause Condor to transfer the job’s
output files back to the submitting machine only when the job completes (exits on its own).

TheON_EXIT_OR_EVICToption is intended for fault tolerant jobs which periodically save
their own state and can restart where they left off. In this case, files are spooled to the submit
machine any time the job leaves a remote site, either becauseit exited on its own, or was
evicted by the Condor system for any reason prior to job completion. The files spooled back
are placed in a directory defined by the value of theSPOOLconfiguration variable. Any output
files transferred back to the submit machine are automatically sent back out again as input files
if the job restarts.

For more information about this and other settings related to transferring files, see section 2.5.4
on page 25.

POLICY COMMANDS

Condor Version 7.7.6, Command Reference

condor_submit(1) 886

hold = <True | False> If hold is set toTrue , then the submitted job will be placed into the Hold
state. Jobs in the Hold state will not run until released bycondor_release. Defaults toFalse .

keep_claim_idle =<integer> An integer number of seconds that a job requests thecon-
dor_scheddto wait before releasing its claim after the job exits.

The process by which thecondor_scheddclaims a condor_startd is somewhat time-
consuming. To amortize this cost, thecondor_scheddtries to reuse claims to run subsequent
jobs, after a job using a claim is done. However, it can only dothis if there is an idle job in
the queue at the moment the previous job completes. Sometimes, and especially for the node
jobs when using DAGMan, there is a subsequent job about to be submitted, but it has not yet
arrived in the queue when the previous job completes. As a result, thecondor_scheddreleases
the claim, and the next job must wait an entire negotiation cycle to start. When this submit
command is defined with a non-negative integer, when the job exits, thecondor_scheddtries
as usual to reuse the claim. If it cannot, instead of releasing the claim, thecondor_schedd
keeps the claim until either the number of seconds given as a parameter, or a new job which
matches that claim arrives, whichever comes first. Thecondor_startdin question will remain
in the Claimed/Idle state, and the original job will be "charged" (in terms of priority) for the
time in this state.

leave_in_queue =<ClassAd Boolean Expression> When the ClassAd Expression evaluates to
True , the job is not removed from the queue upon completion. This allows the user of a
remotely spooled job to retrieve output files in cases where Condor would have removed them
as part of the cleanup associated with completion. The job will only exit the queue once it has
been marked for removal (viacondor_rm, for example) and theleave_in_queueexpression
has becomeFalse . leave_in_queuedefaults toFalse .
As an example, if the job is to be removed once the output is retrieved with con-
dor_transfer_data, then use

leave_in_queue = (JobStatus == 4) && ((StageOutFinish =?= U NDEFINED) ||\
(StageOutFinish == 0))

next_job_start_delay =<ClassAd Boolean Expression> This expression specifies the num-
ber of seconds to delay after starting up this job before the next job is started.
The maximum allowed delay is specified by the Condor configuration variable
MAX_NEXT_JOB_START_DELAY, which defaults to 10 minutes. This command does not
apply toscheduleror local universe jobs.

This command has been historically used to implement a form of job start throttling from the
job submitter’s perspective. It was effective for the case of multiple job submission where the
transfer of extremely large input data sets to the execute machine caused machine performance
to suffer. This command is no longer useful, as throttling should be accomplished through
configuration of thecondor_schedddaemon.

on_exit_hold =<ClassAd Boolean Expression> The ClassAd expression is checked when the
job exits, and ifTrue , places the job into the Hold state. IfFalse (the default value when
not defined), then nothing happens and theon_exit_remove expression is checked to
determine if that needs to be applied.

Condor Version 7.7.6, Command Reference

condor_submit(1) 887

For example: Suppose a job is known to run for a minimum of an hour. If the job exits after
less than an hour, the job should be placed on hold and an e-mail notification sent, instead of
being allowed to leave the queue.

on_exit_hold = (CurrentTime - JobStartDate) < (60 * $(MINUT E))

This expression places the job on hold if it exits for any reason before running for an hour.
An e-mail will be sent to the user explaining that the job was placed on hold because this
expression becameTrue .

periodic_* expressions take precedence overon_exit_* expressions, and*_hold ex-
pressions take precedence over a*_remove expressions.

Only job ClassAd attributes will be defined for use by this ClassAd expression. This ex-
pression is available for the vanilla, java, parallel, grid, local and scheduler universes. It is
additionally available, when submitted from a Unix machine, for the standard universe.

on_exit_hold_reason =<ClassAd String Expression> When the job is placed on hold due to the
on_exit_hold expression becomingTrue , this expression is evaluated to set the value of
HoldReason in the job ClassAd. If this expression isUNDEFINEDor produces an empty
or invalid string, a default description is used.

on_exit_hold_subcode =<ClassAd Integer Expression> When the job is placed on hold due
to the on_exit_hold expression becomingTrue , this expression is evaluated to set the
value of HoldReasonSubCode in the job ClassAd. The default subcode is 0. The
HoldReasonCode will be set to 3, which indicates that the job went on hold due to a
job policy expression.

on_exit_remove =<ClassAd Boolean Expression> The ClassAd expression is checked when the
job exits, and ifTrue (the default value when undefined), then it allows the job to leave the
queue normally. IfFalse , then the job is placed back into the Idle state. If the user job runs
under the vanilla universe, then the job restarts from the beginning. If the user job runs under
the standard universe, then it continues from where it left off, using the last checkpoint.
For example, suppose a job occasionally segfaults, but chances are that the job will finish
successfully if the job is run again with the same data. Theon_exit_removeexpression can
cause the job to run again with the following command. Assumethat the signal identifier for
the segmentation fault is 11 on the platform where the job will be running.

on_exit_remove = (ExitBySignal == False) || (ExitSignal != 11)

This expression lets the job leave the queue if the job was notkilled by a signal or if it was
killed by a signal other than 11, representing segmentationfault in this example. So, if the
exited due to signal 11, it will stay in the job queue. In any other case of the job exiting, the
job will leave the queue as it normally would have done.

As another example, if the job should only leave the queue if it exited on its own with status
0, thison_exit_removeexpression works well:

on_exit_remove = (ExitBySignal == False) && (ExitCode == 0)

Condor Version 7.7.6, Command Reference

condor_submit(1) 888

If the job was killed by a signal or exited with a non-zero exitstatus, Condor would leave the
job in the queue to run again.

periodic_* expressions take precedence overon_exit_* expressions, and*_hold ex-
pressions take precedence over a*_remove expressions.

Only job ClassAd attributes will be defined for use by this ClassAd expression. This ex-
pression is available for the vanilla, java, parallel, grid, local and scheduler universes. It
is additionally available, when submitted from a Unix machine, for the standard universe.
Note that thecondor_schedddaemon, by default, only checks these periodic expressions
once every 300 seconds. The period of these evaluations can be adjusted by setting the
PERIODIC_EXPR_INTERVALconfiguration macro.

periodic_hold = <ClassAd Boolean Expression> This expression is checked periodi-
cally at an interval of the number of seconds set by the configuration variable
PERIODIC_EXPR_INTERVAL. If it becomesTrue , the job will be placed on hold.
If unspecified, the default value isFalse .

periodic_* expressions take precedence overon_exit_* expressions, and*_hold ex-
pressions take precedence over a*_remove expressions.

Only job ClassAd attributes will be defined for use by this ClassAd expression. This ex-
pression is available for the vanilla, java, parallel, grid, local and scheduler universes. It
is additionally available, when submitted from a Unix machine, for the standard universe.
Note that thecondor_schedddaemon, by default, only checks these periodic expressions
once every 300 seconds. The period of these evaluations can be adjusted by setting the
PERIODIC_EXPR_INTERVALconfiguration macro.

periodic_hold_reason =<ClassAd String Expression> When the job is placed on hold due to
theperiodic_hold expression becomingTrue , this expression is evaluated to set the value of
HoldReason in the job ClassAd. If this expression isUNDEFINEDor produces an empty
or invalid string, a default description is used.

periodic_hold_subcode =<ClassAd Integer Expression> When the job is placed on hold due
to the periodic_hold expression becoming true, this expression is evaluated to set the
value of HoldReasonSubCode in the job ClassAd. The default subcode is 0. The
HoldReasonCode will be set to 3, which indicates that the job went on hold due to a
job policy expression.

periodic_release =<ClassAd Boolean Expression> This expression is checked periodi-
cally at an interval of the number of seconds set by the configuration variable
PERIODIC_EXPR_INTERVALwhile the job is in the Hold state. If the expression
becomesTrue , the job will be released.

Only job ClassAd attributes will be defined for use by this ClassAd expression. This
expression is available for the vanilla, java, parallel, grid, local and scheduler universes.
It is additionally available, when submitted from a Unix machine, for the standard uni-
verse. Note that thecondor_schedddaemon, by default, only checks periodic expressions
once every 300 seconds. The period of these evaluations can be adjusted by setting the
PERIODIC_EXPR_INTERVALconfiguration macro.

Condor Version 7.7.6, Command Reference

condor_submit(1) 889

periodic_remove =<ClassAd Boolean Expression> This expression is checked period-
ically at an interval of the number of seconds set by the configuration variable
PERIODIC_EXPR_INTERVAL. If it becomes True , the job is removed from the
queue. If unspecified, the default value isFalse .

See section 10, the Examples section of thecondor_submitmanual page, for an example of a
periodic_removeexpression.

periodic_* expressions take precedence overon_exit_* expressions, and*_hold ex-
pressions take precedence over a*_remove expressions. So, theperiodic_remove
expression takes precedent over theon_exit_remove expression, if the two describe con-
flicting actions.

Only job ClassAd attributes will be defined for use by this ClassAd expression. This
expression is available for the vanilla, java, parallel, grid, local and scheduler universes.
It is additionally available, when submitted from a Unix machine, for the standard uni-
verse. Note that thecondor_schedddaemon, by default, only checks periodic expressions
once every 300 seconds. The period of these evaluations can be adjusted by setting the
PERIODIC_EXPR_INTERVALconfiguration macro.

COMMANDS SPECIFIC TO THE STANDARD UNIVERSE

allow_startup_script = <True | False> If True, a standard universe job will execute a script in-
stead of submitting the job, and the consistency check to seeif the executable has been linked
usingcondor_compileis omitted. Theexecutablecommand within the submit description
file specifies the name of the script. The script is used to do preprocessing before the job is
submitted. The shell script ends with anexecof the job executable, such that the process id of
the executable is the same as that of the shell script. Here isan example script that gets a copy
of a machine-specific executable before theexec.

#! /bin/sh

get the host name of the machine
$host=`uname -n`

grab a standard universe executable designed specificall y
for this host
scp elsewhere@cs.wisc.edu:${host} executable

The PID MUST stay the same, so exec the new standard universe process.
exec executable ${1+"$@"}

If this command is not present (defined), then the value defaults to false.

append_files = file1, file2, ...If your job attempts to access a file mentioned in this list, Condor will
force all writes to that file to be appended to the end. Furthermore, condor_submit will not
truncate it. This list uses the same syntax as compress_files, shown above.

This option may yield some surprising results. If several jobs attempt to write to the same
file, their output may be intermixed. If a job is evicted from one or more machines during
the course of its lifetime, such an output file might contain several copies of the results. This
option should be only be used when you wish a certain file to be treated as a running log
instead of a precise result.

Condor Version 7.7.6, Command Reference

condor_submit(1) 890

This option only applies to standard-universe jobs.

buffer_files = < “ name = (size,block-size) ; name2= (size,block-size) ... ”>

buffer_size= <bytes-in-buffer>

buffer_block_size= <bytes-in-block> Condor keeps a buffer of recently-used data for each file
a job accesses. This buffer is used both to cache commonly-used data and to consolidate small
reads and writes into larger operations that get better throughput. The default settings should
produce reasonable results for most programs.

These options only apply to standard-universe jobs.

If needed, you may set the buffer controls individually for each file using the buffer_files
option. For example, to set the buffer size to 1 Mbyte and the block size to 256 Kbytes for the
file input.data , use this command:

buffer_files = "input.data=(1000000,256000)"

Alternatively, you may use these two options to set the default sizes for all files used by your
job:

buffer_size = 1000000
buffer_block_size = 256000

If you do not set these, Condor will use the values given by these two configuration file
macros:

DEFAULT_IO_BUFFER_SIZE = 1000000
DEFAULT_IO_BUFFER_BLOCK_SIZE = 256000

Finally, if no other settings are present, Condor will use a buffer of 512 Kbytes and a block
size of 32 Kbytes.

compress_files = file1, file2, ...If your job attempts to access any of the files mentioned in this list,
Condor will automatically compress them (if writing) or decompress them (if reading). The
compress format is the same as used by GNU gzip.

The files given in this list may be simple file names or completepaths and may include∗ as a
wild card. For example, this list causes the file /tmp/data.gz, any file named event.gz, and any
file ending in .gzip to be automatically compressed or decompressed as needed:

compress_files = /tmp/data.gz, event.gz, *.gzip

Due to the nature of the compression format, compressed filesmust only be accessed se-
quentially. Random access reading is allowed but is very slow, while random access writing
is simply not possible. This restriction may be avoided by using both compress_files and
fetch_files at the same time. When this is done, a file is kept inthe decompressed state at the
execution machine, but is compressed for transfer to its original location.

This option only applies to standard universe jobs.

Condor Version 7.7.6, Command Reference

condor_submit(1) 891

fetch_files = file1, file2, ...If your job attempts to access a file mentioned in this list, Condor will
automatically copy the whole file to the executing machine, where it can be accessed quickly.
When your job closes the file, it will be copied back to its original location. This list uses the
same syntax as compress_files, shown above.

This option only applies to standard universe jobs.

file_remaps= < “ name = newname ; name2= newname2 ... ”> Directs Condor to use a new
file name in place of an old one.namedescribes a file name that your job may attempt to
open, andnewnamedescribes the file name it should be replaced with.newnamemay include
an optional leading access specifier,local: or remote: . If left unspecified, the default
access specifier isremote: . Multiple remaps can be specified by separating each with a
semicolon.

This option only applies to standard universe jobs.

If you wish to remap file names that contain equals signs or semicolons, these special charac-
ters may be escaped with a backslash.

Example One: Suppose that your job reads a file nameddataset.1 . To instruct Condor
to force your job to readother.dataset instead, add this to the submit file:

file_remaps = "dataset.1=other.dataset"

Example Two: Suppose that your run many jobs which all read in the same large file, called
very.big . If this file can be found in the same place on a local disk in every ma-
chine in the pool, (say/bigdisk/bigfile ,) you can instruct Condor of this fact by
remappingvery.big to /bigdisk/bigfile and specifying that the file is to be
read locally, which will be much faster than reading over thenetwork.

file_remaps = "very.big = local:/bigdisk/bigfile"

Example Three: Several remaps can be applied at once by separating each witha semicolon.

file_remaps = "very.big = local:/bigdisk/bigfile ; datase t.1 = other.dataset"

local_files = file1, file2, ...If your job attempts to access a file mentioned in this list, Condor will
cause it to be read or written at the execution machine. This is most useful for temporary files
not used for input or output. This list uses the same syntax ascompress_files, shown above.

local_files = /tmp/*

This option only applies to standard universe jobs.

want_remote_io =<True | False> This option controls how a file is opened and manipulated in
a standard universe job. If this option is true, which is the default, then thecondor_shadow
makes all decisions about how each and every file should be opened by the executing job. This
entails a network round trip (or more) from the job to thecondor_shadowand back again for
every singleopen() in addition to other needed information about the file. If setto false,
then when the job queries thecondor_shadowfor the first time about how to open a file, the
condor_shadowwill inform the job to automatically perform all of its file manipulation on the
local file system on the execute machine and any file remappingwill be ignored. This means

Condor Version 7.7.6, Command Reference

condor_submit(1) 892

that theremust be a shared file system (such as NFS or AFS) between the executemachine
and the submit machine and thatALL paths that the job could open on the execute machine
must be valid. The ability of the standard universe job to checkpoint, possibly to a checkpoint
server, is not affected by this attribute. However, when thejob resumes it will be expecting
the same file system conditions that were present when the jobcheckpointed.

COMMANDS FOR THE GRID

cream_attributes =<name=value;. . .;name=value> Provides a list of attribute/value pairs to be
set in a CREAM job description of a grid universe job destinedfor the CREAM grid system.
The pairs are separated by semicolons, and written in New ClassAd syntax.

delegate_job_GSI_credentials_lifetime =<seconds> Specifies the maximum number
of seconds for which delegated proxies should be valid. The default behavior
when this command is not specified is determined by the configuration variable
DELEGATE_JOB_GSI_CREDENTIALS_LIFETIME, which defaults to one day. A
value of 0 indicates that the delegated proxy should be validfor as long as allowed by the
credential used to create the proxy. This setting currentlyonly applies to proxies delegated for
non-grid jobs and for Condor-C jobs. It does not currently apply to globus grid jobs, which
always behave as though this setting were 0. This variable has no effect if the configuration
variableDELEGATE_JOB_GSI_CREDENTIALSis False , because in that case the job
proxy is copied rather than delegated.

deltacloud_hardware_profile =<Deltacloud profile name> Used fordeltacloud jobs. An op-
tional identifier for the type of VM desired. If not provided,a service-defined default is used.

deltacloud_hardware_profile_cpu =<cpu details> Used fordeltacloud jobs. An optional de-
scription of the CPUs desired for the VM, overriding the selected hardware profile.

deltacloud_hardware_profile_memory =<memory details> Used fordeltacloud jobs. An op-
tional description of the memory (RAM) desired for the VM, overriding the selected hardware
profile.

deltacloud_hardware_profile_storage =<storage details> Used fordeltacloud jobs. An op-
tional description of the storage (disk) desired for the VM,overriding the selected hardware
profile.

deltacloud_image_id =<Deltacloud image ID> Used fordeltacloud jobs. Identifier of the VM
image to run.

deltacloud_keyname =<Deltacloud key name> Used fordeltacloud jobs. Identifier of the SSH
key pair that should be used to allow remote login to the running instance. The key pair needs
to be created before submission.

deltacloud_password_file =<pathname> Used fordeltacloud jobs. Path and file name of a file
containing the secret key to be used to authenticate with a Deltacloud service.

Condor Version 7.7.6, Command Reference

condor_submit(1) 893

deltacloud_realm_id =<Deltacloud realm ID> Used fordeltacloud jobs. An optional identifier
specifying which of multiple locations within a cloud service should be used to run the VM.
If not provided, a service-selected default is used.

deltacloud_user_data =<data> Used fordeltacloud jobs. A string, representing a block of data
that can be accessed by the virtual machine job inside the cloud service.

deltacloud_username =<Deltacloud username> Used fordeltacloud jobs. The user name to be
used to authenticate with a Deltacloud service.

ec2_access_key_id =<pathname> For grid typeec2jobs, identifies the file containing the access
key.

ec2_ami_id =<EC2 xMI ID > For grid typeec2jobs, identifies the machine image. Services com-
patible with the EC2 Query API may refer to these with abbreviations other thanAMI, for
exampleEMI is valid for Eucalyptus.

ec2_elastic_ip =<elastic IP address> For grid typeec2 jobs, specifies an Elastic IP address to
associate with the instance.

ec2_instance_type =<instance type> For grid typeec2jobs, identifies the instance type. Differ-
ent services may offer different instance types, so no default value is set.

ec2_secret_access_key =<pathname> For grid typeec2 jobs, specifies the path and file name
containing the secret access key.

ec2_security_groups = group1, group2, ...For grid typeec2jobs, defines the list of EC2 security
groups which should be associated with the job.

ec2_user_data =<data> For grid typeec2jobs, provides a block of data that can be accessed by
the virtual machine. If bothec2_user_dataandec2_user_data_fileare specified for a job, the
two blocks of data are concatenated, with the data from thisec2_user_datasubmit command
occurring first.

ec2_user_data_file =<pathname> For grid type ec2 jobs, specifies a path and file name
whose contents can be accessed by the virtual machine. If both ec2_user_dataand
ec2_user_data_fileare specified for a job, the two blocks of data are concatenated, with
the data from thatec2_user_datasubmit command occurring first.

ec2_tag_names =<name0,name1,name...> For grid typeec2jobs, specifies the case of tag names
that will be associated with the running instance. This is only necessary if a tag name case
matters. By default the list will be automatically generated.

ec2_tag_<name> = <value> For grid typeec2 jobs, specifies a tag to be associated with the
running instance. The tag name will be lower-cased, useec2_tag_namesto change the case.

globus_rematch =<ClassAd Boolean Expression> This expression is evaluated by thecon-
dor_gridmanagerwhenever:

1. theglobus_resubmitexpression evaluates toTrue

Condor Version 7.7.6, Command Reference

condor_submit(1) 894

2. thecondor_gridmanagerdecides it needs to retry a submission (as when a previous
submission failed to commit)

If globus_rematchevaluates toTrue , thenbeforethe job is submitted again to globus, the
condor_gridmanagerwill request that thecondor_schedddaemon renegotiate with the match-
maker (thecondor_negotiator). The result is this job will be matched again.

globus_resubmit =<ClassAd Boolean Expression> The expression is evaluated by thecon-
dor_gridmanagereach time thecondor_gridmanagergets a job ad to manage. Therefore,
the expression is evaluated:

1. when a grid universe job is first submitted to Condor-G

2. when a grid universe job is released from the hold state

3. when Condor-G is restarted (specifically, whenever thecondor_gridmanageris
restarted)

If the expression evaluates toTrue , then any previous submission to the grid universe will be
forgotten and this job will be submitted again as a fresh submission to the grid universe. This
may be useful if there is a desire to give up on a previous submission and try again. Note that
this may result in the same job running more than once. Do not treat this operation lightly.

globus_rsl =<RSL-string> Used to provide any additional Globus RSL string attributeswhich
are not covered by other submit description file commands or job attributes. Used forgrid
universe jobs, where the grid resource has agrid-type-string of gt2.

grid_resource =<grid-type-string> <grid-specific-parameter-list> For each grid-type-
string value, there are further type-specific values that must specified. This submit
description file command allows each to be given in a space-separated list. Allowable
grid-type-string values arecondor, cream, deltacloud, ec2, gt2, gt5, lsf, nordugrid , pbs,
sge, andunicore. See section 5.3 for details on the variety of grid types.

For agrid-type-string of condor, the first parameter is the name of the remotecondor_schedd
daemon. The second parameter is the name of the pool to which the remotecondor_schedd
daemon belongs. See section 5.3.1 for details.

For agrid-type-string of cream, there are three parameters. The first parameter is the web
services address of the CREAM server. The second parameter is the name of the batch system
that sits behind the CREAM server. The third parameter identifies a site-specific queue within
the batch system. See section 5.3.9 for details.

For agrid-type-string of deltacloud, the single parameter is the URL of the deltacloud ser-
vice requested. See section 5.3.10 for details.

For a grid-type-string of ec2, one additional parameter specifies the EC2 URL. See sec-
tion 5.3.8 for details.

For agrid-type-string of gt2, the single parameter is the name of the pre-WS GRAM resource
to be used. See section 5.3.2 for details.

For agrid-type-string of gt5, the single parameter is the name of the pre-WS GRAM resource
to be used, which is the same as for thegrid-type-string of gt2. See section 5.3.2 for details.

Condor Version 7.7.6, Command Reference

condor_submit(1) 895

For agrid-type-string of lsf, no additional parameters are used. See section 5.3.6 for details.

For a grid-type-string of nordugrid , the single parameter is the name of the NorduGrid
resource to be used. See section 5.3.3 for details.

For agrid-type-string of pbs, no additional parameters are used. See section 5.3.5 for details.

For agrid-type-string of sge, no additional parameters are used. See section 5.3.7 for details.

For agrid-type-string of unicore, the first parameter is the name of the Unicore Usite to be
used. The second parameter is the name of the Unicore Vsite tobe used. See section 5.3.4 for
details.

keystore_alias =<name> A string to locate the certificate in a Java keystore file, as used for a
unicore job.

keystore_file =<pathname> The complete path and file name of the Java keystore file containing
the certificate to be used for aunicore job.

keystore_passphrase_file =<pathname> The complete path and file name to the file containing
the passphrase protecting a Java keystore file containing the certificate. Relevant for aunicore
job.

MyProxyCredentialName = <symbolic name> The symbolic name that identifies a credential to
theMyProxyserver. This symbolic name is set as the credential is initially stored on the server
(usingmyproxy-init).

MyProxyHost = <host>:<port> The Internet address of the host that is theMyProxyserver. The
host may be specified by either a host name (as inhead.example.com) or an IP address
(of the form 123.456.7.8). Theport number is an integer.

MyProxyNewProxyLifetime = <number-of-minutes> The new lifetime (in minutes) of the
proxy after it is refreshed.

MyProxyPassword =<password> The password needed to refresh a credential on theMyProxy
server. This password is set when the user initially stores credentials on the server (using
myproxy-init). As an alternative to usingMyProxyPasswordin the submit description file, the
password may be specified as a command line argument tocondor_submitwith the-password
argument.

MyProxyRefreshThreshold =<number-of-seconds> The time (in seconds) before the expira-
tion of a proxy that the proxy should be refreshed. For example, if MyProxyRefreshThresh-
old is set to the value 600, the proxy will be refreshed 10 minutesbefore it expires.

MyProxyServerDN = <credential subject> A string that specifies the expected Distinguished
Name (credential subject, abbreviated DN) of theMyProxyserver. It must be specified when
theMyProxyserver DN does not follow the conventional naming scheme of ahost credential.
This occurs, for example, when theMyProxyserver DN begins with a user credential.

nordugrid_rsl = <RSL-string> Used to provide any additional RSL string attributes which are
not covered by regular submit description file parameters. Used when theuniverse is grid ,
and the type of grid system isnordugrid .

Condor Version 7.7.6, Command Reference

condor_submit(1) 896

transfer_error = <True | False> For jobs submitted to the grid universe only. IfTrue , then the
error output (fromstderr) from the job is transferred from the remote machine back to the
submit machine. The name of the file after transfer is given bytheerror command. IfFalse ,
no transfer takes place (from the remote machine to submit machine), and the name of the file
is given by theerror command. The default value isTrue .

transfer_input = <True | False> For jobs submitted to the grid universe only. IfTrue , then the
job input (stdin) is transferred from the machine where the job was submittedto the remote
machine. The name of the file that is transferred is given by the input command. IfFalse ,
then the job’s input is taken from a pre-staged file on the remote machine, and the name of the
file is given by theinput command. The default value isTrue .

For transferring files other thanstdin , seetransfer_input_files.

transfer_output = <True | False> For jobs submitted to the grid universe only. IfTrue , then the
output (fromstdout) from the job is transferred from the remote machine back to the submit
machine. The name of the file after transfer is given by theoutput command. IfFalse , no
transfer takes place (from the remote machine to submit machine), and the name of the file is
given by theoutput command. The default value isTrue .

For transferring files other thanstdout , seetransfer_output_files.

x509userproxy =<full-pathname> Used to override the default path name for X.509 user cer-
tificates. The default location for X.509 proxies is the/tmp directory, which is generally a
local file system. Setting this value would allow Condor to access the proxy in a shared file
system (for example, AFS). Condor will use the proxy specified in the submit description file
first. If nothing is specified in the submit description file, it will use the environment variable
X509_USER_CERT. If that variable is not present, it will search in the default location.

x509userproxyis relevant when theuniverse is vanilla, or when theuniverse is grid and
the type of grid system is one ofgt2, gt5, or nordugrid . Defining a value causes the proxy
to be delegated to the execute machine. Further, VOMS attributes defined in the proxy will
appear in the job ClassAd. See the unnumbered subsection labeled Job ClassAd Attributes on
page 956 for all job attribute descriptions.

COMMANDS FOR PARALLEL, JAVA, and SCHEDULER UNIVERSES

hold_kill_sig = <signal-number> For the scheduler universe only,signal-number is the signal
delivered to the job when the job is put on hold withcondor_hold. signal-number may be
either the platform-specific name or value of the signal. If this command is not present, the
value ofkill_sig is used.

jar_files = <file_list> Specifies a list of additional JAR files to include when using the Java uni-
verse. JAR files will be transferred along with the executable and automatically added to the
classpath.

java_vm_args =<argument_list> Specifies a list of additional arguments to the Java VM itself,
When Condor runs the Java program, these are the arguments that go before the class name.
This can be used to set VM-specific arguments like stack size,garbage-collector arguments
and initial property values.

Condor Version 7.7.6, Command Reference

condor_submit(1) 897

machine_count =<max> For the parallel universe, a single value (max) is required. It is neither
a maximum or minimum, but the number of machines to be dedicated toward running the job.

remove_kill_sig =<signal-number> For the scheduler universe only,signal-number is the sig-
nal delivered to the job when the job is removed withcondor_rm. signal-number may be
either the platform-specific name or value of the signal. This example shows it both ways for
a Linux signal:

remove_kill_sig = SIGUSR1
remove_kill_sig = 10

If this command is not present, the value ofkill_sig is used.

COMMANDS FOR THE VM UNIVERSE

vm_disk = file1:device1:permission1, file2:device2:permission2:format2,. . . A list of comma
separated disk files. Each disk file is specified by 4 colon separated fields. The first field
is the path and file name of the disk file. The second field specifies the device. The third field
specifies permissions, and the optional fourth field specifies the image format.
An example that specifies two disk files:

vm_disk = /myxen/diskfile.img:sda1:w,/myxen/swap.img: sda2:w

vm_checkpoint =<True | False> A boolean value specifying whether or not to take checkpoints.
If not specified, the default value isFalse . In the current implementation, setting both
vm_checkpointandvm_networking to True does not yet work in all cases. Networking
cannot be used if a vm universe job uses a checkpoint in order to continue execution after
migration to another machine.

vm_macaddr =<MACAddr > Defines that MAC address that the virtual machine’s network in-
terface should have, in the standard format of six groups of two hexadecimal digits separated
by colons.

vm_memory =<MBytes-of-memory> The amount of memory in MBytes that a vm universe job
requires.

vm_networking = <True | False> Specifies whether to use networking or not. In the current im-
plementation, setting bothvm_checkpointandvm_networking to True does not yet work
in all cases. Networking cannot be used if a vm universe job uses a checkpoint in order to
continue execution after migration to another machine.

vm_networking_type =<nat | bridge > When vm_networking is True , this definition aug-
ments the job’s requirements to match only machines with thespecified networking. If not
specified, then either networking type matches.

vm_no_output_vm =<True | False> When True , prevents Condor from transferring output
files back to the machine from which the vm universe job was submitted. If not specified,
the default value isFalse .

Condor Version 7.7.6, Command Reference

condor_submit(1) 898

vm_type =<vmware | xen | kvm> Specifies the underlying virtual machine software that this
job expects.

vmware_dir = <pathname> The complete path and name of the directory where VMware-
specific files and applications such as the VMDK (Virtual Machine Disk Format) and VMX
(Virtual Machine Configuration) reside. This command is optional; when not specified, all
relevant VMware image files are to be listed usingtransfer_input_files.

vmware_should_transfer_files =<True | False> Specifies whether Condor will transfer
VMware-specific files located as specified byvmware_dir to the execute machine (True)
or rely on access through a shared file system (False). Omission of this required command
(for VMware vm universe jobs) results in an error message from condor_submit, and the job
will not be submitted.

vmware_snapshot_disk =<True | False> When True , causes Condor to utilize a VMware
snapshot disk for new or modified files. If not specified, the default value isTrue .

xen_initrd = <image-file> Whenxen_kernelgives a path and file name for the kernel image to
use, this optional command may specify a path to and ramdisk (initrd) image file.

xen_kernel =<included | path-to-kernel> A value of included specifies that the kernel is in-
cluded in the disk file. If not one of these values, then the value is a path and file name of the
kernel to be used.

xen_kernel_params =<string> A string that is appended to the Xen kernel command line.

xen_root =<string> A string that is appended to the Xen kernel command line to specify the root
device. This string is required whenxen_kernelgives a path to a kernel. Omission for this
required case results in an error message during submission.

ADVANCED COMMANDS

concurrency_limits = <string-list> A list of resources that this job needs. The resources are pre-
sumed to have concurrency limits placed upon them, thereby limiting the number of concur-
rent jobs in execution which need the named resource. Commasand space characters delimit
the items in the list. Each item in the list may specify a numerical value identifying the integer
number of resources required for the job. The syntax followsthe resource name by a colon
character (:) and the numerical value. See section 3.12.14 for details onconcurrency limits.

copy_to_spool =<True | False> If copy_to_spoolis True , thencondor_submitcopies the ex-
ecutable to the local spool directory before running it on a remote host. As copying can be
quite time consuming and unnecessary, the default value isFalse for all job universes other
than the standard universe. WhenFalse , condor_submitdoes not copy the executable to a
local spool directory. The default isTrue in standard universe, because resuming execution
from a checkpoint can only be guaranteed to work using precisely the same executable that
created the checkpoint.

Condor Version 7.7.6, Command Reference

condor_submit(1) 899

coresize =<size> Should the user’s program abort and produce a core file,coresizespecifies the
maximum size in bytes of the core file which the user wishes to keep. If coresizeis not
specified in the command file, the system’s user resource limit coredumpsize is used. A
value of -1 results in no limits being applied to the core file size.

cron_day_of_month =<Cron-evaluated Day> The set of days of the month for which a deferral
time applies. See section 2.12.2 for further details and examples.

cron_day_of_week =<Cron-evaluated Day> The set of days of the week for which a deferral
time applies. See section 2.12.2 for details, semantics, and examples.

cron_hour = <Cron-evaluated Hour> The set of hours of the day for which a deferral time ap-
plies. See section 2.12.2 for details, semantics, and examples.

cron_minute = <Cron-evaluated Minute> The set of minutes within an hour for which a deferral
time applies. See section 2.12.2 for details, semantics, and examples.

cron_month = <Cron-evaluated Month> The set of months within a year for which a deferral
time applies. See section 2.12.2 for details, semantics, and examples.

cron_prep_time =<ClassAd Integer Expression> Analogous to deferral_prep_time. The
number of seconds prior to a job’s deferral time that the job may be matched and sent to
an execution machine.

cron_window = <ClassAd Integer Expression> Analogous to the submit commanddefer-
ral_window. It allows cron jobs that miss their deferral time to begin execution.

See section 2.12.1 for further details and examples.

deferral_prep_time = <ClassAd Integer Expression> The number of seconds prior to a job’s
deferral time that the job may be matched and sent to an execution machine.

See section 2.12.1 for further details.

deferral_time = <ClassAd Integer Expression> Allows a job to specify the time at which its
execution is to begin, instead of beginning execution as soon as it arrives at the execution
machine. The deferral time is an expression that evaluates to a Unix Epoch timestamp (the
number of seconds elapsed since 00:00:00 on January 1, 1970,Coordinated Universal Time).
Deferral time is evaluated with respect to the execution machine. This option delays the start
of execution, but not the matching and claiming of a machine for the job. If the job is not
available and ready to begin execution at the deferral time,it has missed its deferral time. A
job that misses its deferral time will be put on hold in the queue.

See section 2.12.1 for further details and examples.

Due to implementation details, a deferral time may not be used for scheduler universe jobs.

deferral_window = <ClassAd Integer Expression> The deferral window is used in conjunction
with thedeferral_time command to allow jobs that miss their deferral time to begin execution.

See section 2.12.1 for further details and examples.

Condor Version 7.7.6, Command Reference

condor_submit(1) 900

email_attributes = <list-of-job-ad-attributes> A comma-separated list of attributes from the job
ClassAd. These attributes and their values will be includedin the e-mail notification of job
completion.

image_size =<size> Advice to Condor specifying the maximum virtual image size to which the
job will grow during its execution. Condor will then executethe job only on machines which
have enough resources, (such as virtual memory), to supportexecuting the job. If not specified,
Condor will automatically make a (reasonably accurate) estimate about the job’s size and
adjust this estimate as the program runs. If specified and underestimated, the job may crash
due to the inability to acquire more address space; for example, if malloc() fails. If the
image size is overestimated, Condor may have difficulty finding machines which have the
required resources.sizeis specified in Kbytes. For example, for an image size of 8 Megabytes,
sizeshould be 8000.

initialdir = <directory-path> Used to give jobs a directory with respect to file input and output.
Also provides a directory (on the machine from which the job is submitted) for the user log,
when a full path is not specified.

For vanilla universe jobs where there is a shared file system,it is the current working directory
on the machine where the job is executed.

For vanilla or grid universe jobs where file transfer mechanisms are utilized (there isnot a
shared file system), it is the directory on the machine from which the job is submitted where
the input files come from, and where the job’s output files go to.

For standard universe jobs, it is the directory on the machine from which the job is submitted
where thecondor_shadowdaemon runs; the current working directory for file input andoutput
accomplished through remote system calls.

For scheduler universe jobs, it is the directory on the machine from which the job is submitted
where the job runs; the current working directory for file input and output with respect to
relative path names.

Note that the path to the executable isnot relative toinitialdir ; if it is a relative path, it is
relative to the directory in which thecondor_submitcommand is run.

job_ad_information_attrs = <attribute-list > A comma-separated list of job ClassAd attribute
names. The named attributes and their values are written to the user log whenever any event
is being written to the log. This implements the same thing asthe configuration variable
EVENT_LOG_INFORMATION_ATTRS(see page 182), but it applies to the user log, instead
of the system event log.

job_lease_duration =<number-of-seconds> For vanilla and java universe jobs only, the duration
(in seconds) of a job lease. The default value is twenty minutes for universes that support it. If
a job lease is not desired, the value can be explicitly set to 0to disable the job lease semantics.
See section 2.14.4 for details of job leases.

job_machine_attrs =<attr1, attr2, . . .> A comma and/or space separated list of ma-
chine attribute names that should be recorded in the job ClassAd in addition to
the ones specified by thecondor_schedddaemon’s system configuration variable
SYSTEM_JOB_MACHINE_ATTRS. When there are multiple run attempts, history of

Condor Version 7.7.6, Command Reference

condor_submit(1) 901

machine attributes from previous run attempts may be kept. The number of run attempts
to store may be extended beyond the system-specified historylength by using the submit
file commandjob_machine_attrs_history_length. A machine attribute namedX will be
inserted into the job ClassAd as an attribute namedMachineAttrX0 . The previous
value of this attribute will be namedMachineAttrX1 , the previous to that will be named
MachineAttrX2 , and so on, up to the specified history length. A history of length 1 means
that onlyMachineAttrX0 will be recorded. The value recorded in the job ClassAd is the
evaluation of the machine attribute in the context of the jobClassAd when thecondor_schedd
daemon initiates the start up of the job. If the evaluation results in anUndefined or Error
result, the value recorded in the job ad will beUndefined or Error , respectively.

want_graceful_removal =<boolean expression> WhenTrue , this causes a graceful shutdown
of the job when the job is removed or put on hold, giving it timeto clean up or save state.
Otherwise, the job is abruptly killed. The default isfalse .

kill_sig = <signal-number> When Condor needs to kick a job off of a machine, it will send the
job the signal specified bysignal-number. signal-number needs to be an integer which rep-
resents a valid signal on the execution machine. For jobs submitted to the standard universe,
the default value is the number forSIGTSTP which tells the Condor libraries to initiate a
checkpoint of the process. For jobs submitted to other universes, the default value, when not
defined, isSIGTERM, which is the standard way to terminate a program in Unix.

kill_sig_timeout = <seconds> This submit command should no longer be used as of Condor ver-
sion 7.7.3; usejob_max_vacate_timeinstead. Ifjob_max_vacate_timeis not defined, this
defines the number of seconds that Condor should wait following the sending of the kill signal
defined bykill_sig and forcibly killing the job. The actual amount of time between sending the
signal and forcibly killing the job is the smallest of this value and the configuration variable
KILLING_TIMEOUT , as defined on the execute machine.

load_profile = <True | False> When True , loads the account profile of the dedicated run ac-
count for Windows jobs. May not be used withrun_as_owner.

match_list_length =<integer value> Defaults to the value zero (0). Whenmatch_list_length is
defined with an integer value greater than zero (0), attributes are inserted into the job ClassAd.
The maximum number of attributes defined is given by the integer value. The job ClassAds
introduced are given as

LastMatchName0 = "most-recent-Name"
LastMatchName1 = "next-most-recent-Name"

The value for each introduced ClassAd is given by the value ofthe Nameattribute from
the machine ClassAd of a previous execution (match). As a jobis matched, the defini-
tions for these attributes will roll, withLastMatchName1 becomingLastMatchName2 ,
LastMatchName0 becomingLastMatchName1 , andLastMatchName0 being set by
the most recent value of theNameattribute.

An intended use of these job attributes is in the requirements expression. The requirements
can allow a job to prefer a match with either the same or a different resource than a previous
match.

Condor Version 7.7.6, Command Reference

condor_submit(1) 902

job_max_vacate_time =<integer expression> An integer-valued expression (in seconds) that
may be used to adjust the time given to an evicted job for gracefully shutting down. If the
job’s setting is less than the machine’s, the job’s is used. If the job’s setting is larger than the
machine’s, the result depends on whether the job has any excess retirement time. If the job
has more retirement time left than the machine’s max vacate time setting, then retirement time
will be converted into vacating time, up to the amount requested by the job.

Setting this expression does not affect the job’s resource requirements or preferences. For a job
to only run on a machine with a minimumMachineMaxVacateTime , or to preferentially
run on such machines, explicitly specify this in the requirements and/or rank expressions.

max_job_retirement_time =<integer expression> An integer-valued expression (in seconds)
that does nothing unless the machine that runs the job has been configured to provide re-
tirement time (see section 3.5.8). Retirement time is a grace period given to a job to finish
when a resource claim is about to be preempted. The default behavior in many cases is to take
as much retirement time as the machine offers, so this command will rarely appear in a submit
description file.

When a resource claim is to be preempted, this expression in the submit file specifies the
maximum run time of the job (in seconds, since the job started). This expression has no
effect, if it is greater than the maximum retirement time provided by the machine policy.
If the resource claim isnot preempted, this expression and the machine retirement policy
are irrelevant. If the resource claimis preempted the job will be allowed to run until the
retirement time expires, at which point it is hard-killed. The job will be soft-killed when it
is getting close to the end of retirement in order to give it time to gracefully shut down. The
amount of lead-time for soft-killing is determined by the maximum vacating time granted to
the job.

Standard universe jobs and any jobs running withnice_user priority have a default
max_job_retirement_time of 0, so no retirement time is utilized by default. In all other
cases, no default value is provided, so the maximum amount ofretirement time is utilized by
default.

Setting this expression does not affect the job’s resource requirements or preferences. For a job
to only run on a machine with a minimumMaxJobRetirementTime , or to preferentially
run on such machines, explicitly specify this in the requirements and/or rank expressions.

nice_user =<True | False> Normally, when a machine becomes available to Condor, Condor
decides which job to run based upon user and job priorities. Settingnice_userequal toTrue
tells Condor not to use your regular user priority, but that this job should have last priority
among all users and all jobs. So jobs submitted in this fashion run only on machines which no
other non-nice_user job wants — a true “bottom-feeder” job!This is very handy if a user has
some jobs they wish to run, but do not wish to use resources that could instead be used to run
other people’s Condor jobs. Jobs submitted in this fashion have “nice-user.” pre-appended in
front of the owner name when viewed fromcondor_qor condor_userprio. The default value
is False.

noop_job =<ClassAd Boolean Expression> When this boolean expression isTrue , the job is
immediately removed from the queue, and Condor makes no attempt at running the job. The

Condor Version 7.7.6, Command Reference

condor_submit(1) 903

log file for the job will show a job submitted event and a job terminated event, along with an
exit code of 0, unless the user specifies a different signal orexit code.

noop_job_exit_code =<return value> Whennoop_job is in the submit description file and eval-
uates toTrue , this command allows the job to specify the return value as shown in the job’s
log file job terminated event. If not specified, the job will show as having terminated with
status 0. This overrides any value specified withnoop_job_exit_signal.

noop_job_exit_signal =<signal number> Whennoop_job is in the submit description file and
evaluates toTrue , this command allows the job to specify the signal number that the job’s
log event will show the job having terminated with.

remote_initialdir = <directory-path> The path specifies the directory in which the job is to be
executed on the remote machine. This is currently supportedin all universes except for the
standard universe.

rendezvousdir =<directory-path> Used to specify the shared file system directory to be used
for file system authentication when submitting to a remote scheduler. Should be a path to a
preexisting directory.

run_as_owner =<True | False> A boolean value that causes the job to be run under the login
of the submitter, if supported by the joint configuration of the submit and execute machines.
On Unix platforms, this defaults toTrue , and on Windows platforms, it defaults toFalse .
May not be used withload_profile. See section 6.2.4 for administrative details on configur-
ing Windows to support this option, as well as section 3.3.7 on page 191 for a definition of
STARTER_ALLOW_RUNAS_OWNER.

stack_size =<size in bytes> This command applies only to Linux platform jobs that are notstan-
dard universe jobs. An integer number of bytes, representing the amount of stack space to
be allocated for the job. This value replaces the default allocation of stack space, which is
unlimited in size.

submit_event_notes =<note> A string that is appended to the submit event in the job’s log file.
For DAGMan jobs, the stringDAG Node: and the node’s name is automatically defined for
submit_event_notes, causing the logged submit event to identify the DAG node jobsubmit-
ted.

+<attribute > = <value> A line which begins with a ’+’ (plus) character instructscondor_submit
to insert the followingattribute into the job ClassAd with the givenvalue.

PRE AND POST SCRIPTS IMPLEMENTED WITH SPECIALLY-NAMED ATTRIBUTES

+PreCmd = <executable> A vanilla universe job may specify that a script is to be run onthe
execute machine before the job, and this is called a prescript. Definition of this specifically-
named attribute causes the script, identified by path and filename to be executed. The prescript
could prepare or initialize the job. Note that this definition of a prescript is different from the
PRE script described in DAGMan. The prescript is not automatically transferred with the job,
as the main executable is, so it must be entered into thetransfer_input_files list, when file
transfer is enabled.

Condor Version 7.7.6, Command Reference

condor_submit(1) 904

+PostCmd =<executable> A vanilla universe job may specify that a script is to be run onthe ex-
ecute machine after the job exits, and this is called a postscript. Definition of this specifically-
named attribute causes the script, identified by path and filename to be executed. The
postscript is run if the job exits, but not if the job is evicted. Note that this definition of a
postscript is different from the POST script described in DAGMan. The postscript is not au-
tomatically transferred with the job, as the main executable is, so it must be entered into the
transfer_input_files list, when file transfer is enabled.

In addition to commands, the submit description file can contain macros and comments:

Macros Parameterless macros in the form of$(macro_name) may be inserted anywhere in Con-
dor submit description files. Macros can be defined by lines inthe form of

<macro_name> = <string>

Three pre-defined macros are supplied by the submit description file parser. The third of
the pre-defined macros is only relevant to MPI applications under the parallel universe. The
$(Cluster) macro supplies the value of theClusterId job ClassAd attribute, and the
$(Process) macro supplies the value of theProcId job ClassAd attribute. These macros
are intended to aid in the specification of input/output files, arguments, etc., for clusters with
lots of jobs, and/or could be used to supply a Condor process with its own cluster and process
numbers on the command line. The$(Node) macro is defined for MPI applications run as
parallel universe jobs. It is a unique value assigned for theduration of the job that essentially
identifies the machine on which a program is executing.

To use the dollar sign character ($) as a literal, without macro expansion, use

$(DOLLAR)

In addition to the normal macro, there is also a special kind of macro called asubstitution
macrothat allows the substitution of a ClassAd attribute value defined on the resource machine
itself (gotten after a match to the machine has been made) into specific commands within the
submit description file. The substitution macro is of the form:

$$(attribute)

A common use of this macro is for the heterogeneous submission of an executable:

executable = povray.$$(opsys).$$(arch)

Values for theopsys andarch attributes are substituted at match time for any given re-
source. This allows Condor to automatically choose the correct executable for the matched
machine.

An extension to the syntax of the substitution macro provides an alternative string to use if the
machine attribute within the substitution macro is undefined. The syntax appears as:

Condor Version 7.7.6, Command Reference

condor_submit(1) 905

$$(attribute:string_if_attribute_undefined)

An example using this extended syntax provides a path name toa required input file. Since
the file can be placed in different locations on different machines, the file’s path name is given
as an argument to the program.

argument = $$(input_file_path:/usr/foo)

On the machine, if the attributeinput_file_path is not defined, then the path
/usr/foo is used instead.

A further extension to the syntax of the substitution macro allows the evaluation of a ClassAd
expression to define the value. As all substitution macros, the expression is evaluated after a
match has been made. Therefore, the expression may refer to machine attributes by prefac-
ing them with the scope resolution prefixTARGET., as specified in section 4.1.3. To place
a ClassAd expression into the substitution macro, square brackets are added to delimit the
expression. The syntax appears as:

$$([ClassAd expression])

An example of a job that uses this syntax may be one that wants to know how much memory it
can use. The application cannot detect this itself, as it would potentially use all of the memory
on a multi-slot machine. So the job determines the memory perslot, reducing it by 10%
to account for miscellaneous overhead, and passes this as a command line argument to the
application. In the submit description file will be

arguments=--memory $$([TARGET.Memory * 0.9])

To insert two dollar sign characters ($$) as literals into a ClassAd string, use

$$(DOLLARDOLLAR)

The environment macro, $ENV, allows the evaluation of an environment variable to be used
in setting a submit description file command. The syntax usedis

$ENV(variable)

An example submit description file command that uses this functionality evaluates the sub-
mitter’s home directory in order to set the path and file name of a log file:

log = $ENV(HOME)/jobs/logfile

The environment variable is evaluated when the submit description file is processed.

The $RANDOM_CHOICE macro allows a random choice to be made from a given list of
parameters at submission time. For an expression, if some randomness needs to be generated,
the macro may appear as

$RANDOM_CHOICE(0,1,2,3,4,5,6)

When evaluated, one of the parameters values will be chosen.

Comments Blank lines and lines beginning with a pound sign (’#’) character are ignored by the
submit description file parser.

Condor Version 7.7.6, Command Reference

condor_submit(1) 906

Exit Status

condor_submitwill exit with a status value of 0 (zero) upon success, and a non-zero value upon
failure.

Examples

• Submit Description File Example 1: This example queues three jobs for execution by Condor.
The first will be given command line arguments of15and2000, and it will write its standard
output tofoo.out1 . The second will be given command line arguments of30 and2000,
and it will write its standard output tofoo.out2 . Similarly the third will have arguments of
45and6000, and it will usefoo.out3 for its standard output. Standard error output (if any)
from all three programs will appear infoo.error .

####################
#
submit description file
Example 1: queuing multiple jobs with differing
command line arguments and output files.
#
####################

Executable = foo
Universe = standard

Arguments = 15 2000
Output = foo.out1
Error = foo.err1
Queue

Arguments = 30 2000
Output = foo.out2
Error = foo.err2
Queue

Arguments = 45 6000
Output = foo.out3
Error = foo.err3
Queue

• Submit Description File Example 2: This submit description file example queues 150 runs of
programfoo which must have been compiled and linked for an Intel x86 processor running
RHEL 3. Condor will not attempt to run the processes on machines which have less than
32 Megabytes of physical memory, and it will run them on machines which have at least
64 Megabytes, if such machines are available. Stdin, stdout, and stderr will refer toin.0 ,
out.0 , anderr.0 for the first run of this program (process 0). Stdin, stdout, and stderr will
refer to in.1 , out.1 , anderr.1 for process 1, and so forth. A log file containing entries
about where and when Condor runs, takes checkpoints, and migrates processes in this cluster
will be written into file foo.log .

Condor Version 7.7.6, Command Reference

condor_submit(1) 907

####################
#
Example 2: Show off some fancy features including
use of pre-defined macros and logging.
#
####################

Executable = foo
Universe = standard
Requirements = OpSys == "LINUX" && Arch =="INTEL"
Rank = Memory >= 64
Request_Memory = 32 Mb
Image_Size = 28 Mb

Error = err.$(Process)
Input = in.$(Process)
Output = out.$(Process)
Log = foo.log
Queue 150

• Submit Description File Example 3: This example targets the /bin/sleepprogram to run only
on a platform running a RHEL 6 operating system. The example presumes that the pool
contains machines running more than one version of Linux, and this job needs the particular
operating system to run correctly.

####################
#
Example 3: Run on a RedHat 6 machine
#
####################
Universe = vanilla
Executable = /bin/sleep
Arguments = 30
Requirements = (OpSysAndVer == "RedHat6")

Error = err.$(Process)
Input = in.$(Process)
Output = out.$(Process)
Log = sleep.log
Queue

• Command Line example: The following command uses the-appendoption to add two com-
mands before the job(s) is queued. A log file and an error log file are specified. The submit
description file is unchanged.

condor_submit -a "log = out.log" -a "error = error.log" mysu bmitfile

Note that each of the added commands is contained within quote marks because there are
space characters within the command.

• periodic_remove example: A job should be removed from the queue, if the total suspen-
sion time of the job is more than half of the run time of the job.
Including the command

Condor Version 7.7.6, Command Reference

condor_submit(1) 908

periodic_remove = CumulativeSuspensionTime >
((RemoteWallClockTime - CumulativeSuspensionTime) / 2.0)

in the submit description file causes this to happen.

General Remarks

• For security reasons, Condor will refuse to run any jobs submitted by user root (UID = 0) or
by a user whose default group is group wheel (GID = 0). Jobs submitted by user root or a user
with a default group of wheel will appear to sit forever in thequeue in an idle state.

• All path names specified in the submit description file must be less than 256 characters in
length, and command line arguments must be less than 4096 characters in length; otherwise,
condor_submitgives a warning message but the jobs will not execute properly.

• Somewhat understandably, behavior gets bizarre if the user makes the mistake of requesting
multiple Condor jobs to write to the same file, and/or if the user alters any files that need to be
accessed by a Condor job which is still in the queue. For example, the compressing of data or
output files before a Condor job has completed is a common mistake.

• To disable checkpointing for Standard Universe jobs, include the line:

+WantCheckpoint = False

in the submit description file before the queue command(s).

See Also

Condor User Manual

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_submit_dag(1) 909

condor_submit_dag

Manage and queue jobs within a specified DAG for execution on remote machines

Synopsis

condor_submit_dag[-help | -version]

condor_submit_dag [-no_submit] [-verbose] [-force] [-maxidle NumberOfJobs]
[-maxjobs NumberOfJobs] [-dagman DagmanExecutable] [-maxpre NumberOfPREscripts]
[-maxpost NumberOfPOSTscripts] [-notification value] [-noeventchecks]
[-allowlogerror] [-r schedd_name] [-debug level] [-usedagdir] [-outfile_dir directory]
[-config ConfigFileName] [-insert_sub_file FileName] [-append Command] [-autorescue 0|1]
[-dorescuefrom number] [-allowversionmismatch] [-no_recurse] [-do_recurse]
[-update_submit] [-import_env] [-DumpRescue] [-valgrind] [-DontAlwaysRunPost]
DAGInputFile1 [DAGInputFile2. . .DAGInputFileN] [-schedd-daemon-ad-fileFileName]
[-schedd-address-fileFileName]

Description

condor_submit_dagis the program for submitting a DAG (directed acyclic graph)of jobs for
execution under Condor. The program enforces the job dependencies defined in one or more
DAGInputFiles. EachDAGInputFilecontains commands to direct the submission of jobs implied by
the nodes of a DAG to Condor. See the Condor User Manual, section 2.10 for a complete description.

Options

-help Display usage information.

-version Display version information.

-no_submit Produce the Condor submit description file for DAGMan, but donot submit DAGMan
as a Condor job.

-verbose Causecondor_submit_dagto give verbose error messages.

-force Requirecondor_submit_dagto overwrite the files that it produces, if the files already exist.
Note thatdagman.out will be appended to, not overwritten. If new-style rescue DAG
mode is in effect, and any new-style rescue DAGs exist, the-force flag will cause them to

Condor Version 7.7.6, Command Reference

condor_submit_dag(1) 910

be renamed, and the original DAG will be run. If old-style rescue DAG mode is in effect,
any existing old-style rescue DAGs will be deleted, and the original DAG will be run.
Section 2.10.8 details rescue DAGs.

-maxidle NumberOfJobsSets the maximum number of idle jobs allowed beforecondor_dagman
stops submitting more jobs. Once idle jobs start to run,condor_dagmanwill resume
submitting jobs.NumberOfJobsis a positive integer. If the option is omitted, the number of
idle jobs is unlimited. Note that for this argument, each individual process within a cluster
counts as a job, which is inconsistent with-maxjobs .

-maxjobsNumberOfJobsSets the maximum number of jobs within the DAG that will be submit-
ted to Condor at one time.NumberOfJobsis a positive integer. If the option is omitted, the
default number of jobs is unlimited. Note that for this argument, each cluster counts as one
job, no matter how many individual processes are in the cluster.

-dagmanDagmanExecutableAllows the specification of an alternatecondor_dagmanexecutable
to be used instead of the one found in the user’s path. This must be a fully qualified path.

-maxpre NumberOfPREscriptsSets the maximum number of PRE scripts within the DAG that
may be running at one time.NumberOfPREScriptsis a positive integer. If this option is
omitted, the default number of PRE scripts is unlimited.

-maxpostNumberOfPOSTscriptsSets the maximum number of POST scripts within the DAG
that may be running at one time.NumberOfPOSTScriptsis a positive integer. If this option is
omitted, the default number of POST scripts is unlimited.

-notification value Sets the e-mail notification for DAGMan itself. This information will be
used within the Condor submit description file for DAGMan. This file is produced by
condor_submit_dag. Seenotification within the section of submit description file commands
in thecondor_submitmanual page on page 873 for specification ofvalue.

-noeventchecksThis argument is no longer used; it is now ignored. Its functionality is now
implemented by theDAGMAN_ALLOW_EVENTSconfiguration macro (see section 3.3.25).

-allowlogerror This optional argument hascondor_dagmantry to run the specified DAG, even in
the case of detected errors in the user log specification. As of version 7.3.2, this argument has
an effect only on DAGs containing Stork job nodes.

-r schedd_nameSubmit condor_dagmanto a remote machine, specifically thecondor_schedd
daemon on that machine. Thecondor_dagmanjob will not run on the localcondor_schedd

Condor Version 7.7.6, Command Reference

condor_submit_dag(1) 911

(the submit machine), but on the specified one. This is implemented using the-remote
option to condor_submit. Note that this option does not currently specify input filesfor
condor_dagman, nor the individual nodes to be taken along! It is assumed that any necessary
files will be present on the remote computer, possibly via a shared file system between the
local computer and the remote computer. It is also necessarythat the user has appropriate
permissions to submit a job to the remote machine; the permissions are the same as those
required to usecondor_submit’s -remote option. If other options are desired, including
transfer of other input files, consider using the-no_submit option, modifying the resulting
submit file for specific needs, and then usingcondor_submiton that.

-debug level Passes the thelevelof debugging output desired tocondor_dagman. levelis an integer,
with values of 0-7 inclusive, where 7 is the most verbose output. See thecondor_dagman
manual page on page 771 for detailed descriptions of these values. If not specified, no
-debugvalue is passed tocondor_dagman.

-usedagdir This optional argument causescondor_dagmanto run each specified DAG as if
condor_submit_daghad been run in the directory containing that DAG file. This option
is most useful when running multiple DAGs in a singlecondor_dagman. Note that the
-usedagdirflag must not be used when running an old-style rescue DAG (seesection 2.10.8).

-outfile_dir directory Specifies the directory in which the.dagman.out file will be written. The
directorymay be specified relative to the current working directory ascondor_submit_dagis
executed, or specified with an absolute path. Without this option, the.dagman.out file is
placed in the same directory as the first DAG input file listed on the command line.

-configConfigFileName Specifies a configuration file to be used for this DAGMan run. Note
that the options specified in the configuration file apply to all DAGs if multiple DAGs are
specified. Further note that it is a fatal error if the configuration file specified by this option
conflicts with a configuration file specified in any of the DAG files, if they specify one. For
more information about howcondor_dagmanconfiguration files work, see section 2.10.7.

-insert_sub_fileFileName Specifies a file to insert into the.condor.sub file created bycon-
dor_submit_dag. The specified file must contain only legal submit file commands. Only one
file can be inserted. (If both the DAGMAN_INSERT_SUB_FILE configuration variable and
-insert_sub_fileare specified,-insert_sub_fileoverrides DAGMAN_INSERT_SUB_FILE.)
The specified file is inserted into the.condor.sub file before the Queue command and
before any commands specified with the-appendoption.

-appendCommand Specifies a command to append to the.condor.sub file created by
condor_submit_dag. The specified command is appended to the.condor.sub file
immediately before the Queue command. Multiple commands are specified by using the
-appendoption multiple times. Each new command is given in a separate -appendoption.

Condor Version 7.7.6, Command Reference

condor_submit_dag(1) 912

Commands with spaces in them must be enclosed in double quotes. Commands specified
with the -append option are appended to the.condor.sub file after commands inserted
from a file specified by the-insert_sub_fileoption or the DAGMAN_INSERT_SUB_FILE
configuration variable, so the-appendcommand(s) will override commands from the inserted
file if the commands conflict.

-autorescue0|1 Whether to automatically run the newest rescue DAG for the given DAG file, if
one exists (0 =false , 1 = true).

-dorescuefromnumber Forcescondor_dagmanto run the specified rescue DAG number for the
given DAG. A value of 0 is the same as not specifying this option. Specifying a non-existent
rescue DAG is a fatal error.

-allowversionmismatch This optional argument causescondor_dagmanto allow a version
mismatch betweencondor_dagmanitself and the.condor.sub file produced bycon-
dor_submit_dag(or, in other words, betweencondor_submit_dagand condor_dagman).
WARNING! This option should be used only if absolutely necessary. Allowing version
mismatches can cause subtle problems when running DAGs. (Note that, starting with
version 7.4.0,condor_dagmanno longer requires an exact version match between itself
and the.condor.sub file. Instead, a "minimum compatible version" is defined, andany
.condor.sub file of that version or newer is accepted.)

-no_recurse This optional argument causescondor_submit_dagto not run itself recursively
on nested DAGs (this is now the default; this flag has been keptmainly for backwards
compatibility).

-do_recurse This optional argument causescondor_submit_dagto run itself recursively on nested
DAGs (the default is now that it doesnot run itself recursively; instead the.condor.sub
files for nested DAGs are generated "lazily" bycondor_dagmanitself). (DAG nodes specified
with theSUBDAG EXTERNALkeyword or with submit file names ending in.condor.sub
are considered nested DAGs.) (See also theDAGMAN_GENERATE_SUBDAG_SUBMITS
configuration variable in section 3.3.25 for more information.)

-update_submit This optional argument causes an existing.condor.sub file to not be treated
as an error; rather, the.condor.sub file will be overwritten, but the existing values of
-maxjobs, -maxidle, -maxpre, and-maxpostwill be preserved.

-import_env This optional argument causescondor_submit_dagto import the current environment
into theenvironment command of the.condor.sub file it generates.

Condor Version 7.7.6, Command Reference

condor_submit_dag(1) 913

-DumpRescueThis optional argument tellscondor_dagmanto immediately dump a rescue DAG
and then exit, as opposed to actually running the DAG. This feature is mainly intended for
testing. The Rescue DAG file is produced whether or not there are parse errors reading the
original DAG input file. The name of the file differs if there was a parse error.

-valgrind This optional argument causes the submit description file generated for the submission
of condor_dagmanto be modified. The executable becomesvalgrind run oncondor_dagman,
with a specific set of arguments intended for testingcondor_dagman. Note that this argument
is intended for testing purposes only. Using the-valgrind option without the necessary
valgrind software installed will cause the DAG to fail. If the DAG doesrun, it will run much
more slowly than usual.

-DontAlwaysRunPost This option causes the submit description file generated forthe submission
of condor_dagmanto be modified. It causes the-DontAlwaysRunPostoption to be in the
arguments tocondor_dagmanin the submit description file, which causescondor_dagmanto
use the return value from a PRE script to determine whether ornot a POST script will run.
By default,condor_dagmanruns the POST script regardless of the return value of the PRE
script. Versions ofcondor_dagmanprior to 7.7.2 did not ignore the return value and would
not run the POST script if the PRE script failed.

-schedd-daemon-ad-fileFileName Specifies a full path to a daemon ad file dropped by acon-
dor_schedd. Therefore this allows submission to a specific scheduler ifseveral are available
without repeatedly querying thecondor_collector. The value for this argument defaults to the
configuration attributeSCHEDD_DAEMON_AD_FILE.

-schedd-address-fileFileName Specifies a full path to an address file dropped by acon-
dor_schedd. Therefore this allows submission to a specific scheduler ifseveral are available
without repeatedly querying thecondor_collector. The value for this argument defaults to the
configuration attributeSCHEDD_ADDRESS_FILE.

See Also

Condor User Manual

Exit Status

condor_submit_dagwill exit with a status value of 0 (zero) upon success, and it will exit with the
value 1 (one) upon failure.

Condor Version 7.7.6, Command Reference

condor_submit_dag(1) 914

Examples

To run a single DAG:

% condor_submit_dag diamond.dag

To run a DAG when it has already been run and the output files exist:

% condor_submit_dag -force diamond.dag

To run a DAG, limiting the number of idle node jobs in the DAG toa maximum of five:

% condor_submit_dag -maxidle 5 diamond.dag

To run a DAG, limiting the number of concurrent PRE scripts to10 and the number of concurrent
POST scripts to five:

% condor_submit_dag -maxpre 10 -maxpost 5 diamond.dag

To run two DAGs, each of which is set up to run in its own directory:

% condor_submit_dag -usedagdir dag1/diamond1.dag dag2/d iamond2.dag

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_suspend(1) 915

condor_suspend

suspend jobs from the Condor queue

Synopsis

condor_suspend[-help | -version]

condor_suspend[-debug] [-pool centralmanagerhostname[:portnumber]| -namescheddname]|
[-addr "<a.b.c.d:port>"] cluster| cluster.process| user| -constraintexpression| -all

Description

condor_suspendsuspends one or more jobs from the Condor job queue. If the-name option is
specified, the namedcondor_scheddis targeted for processing. Otherwise, the localcondor_schedd
is targeted. The job(s) to be suspended are identified by one of the job identifiers, as described
below. For any given job, only the owner of the job or one of thequeue super users (defined by the
QUEUE_SUPER_USERSmacro) can suspend the job.

Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

-namescheddnameSend the command to a machine identified byscheddname

-addr " <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOL_DEBUG

cluster Suspend all jobs in the specified cluster

Condor Version 7.7.6, Command Reference

condor_suspend(1) 916

cluster.processSuspend the specific job in the cluster

user Suspend jobs belonging to specified user

-constraint expressionSuspend all jobs which match the job ClassAd expression constraint

-all Suspend all the jobs in the queue

Exit Status

condor_suspendwill exit with a status value of 0 (zero) upon success, and it will exit with the value
1 (one) upon failure.

Examples

To suspend all jobs except for a specific user:

% condor_suspend -constraint 'Owner =!= "foo"'

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_transfer_data(1) 917

condor_transfer_data

transfer spooled data

Synopsis

condor_transfer_data[-help | -version]

condor_transfer_data [-pool centralmanagerhostname[:portnumber]| -namescheddname]|
[-addr "<a.b.c.d:port>"] cluster. . .| cluster.process. . .| user. . . | -constraint expression. . .

condor_transfer_data [-pool centralmanagerhostname[:portnumber]| -namescheddname]|
[-addr "<a.b.c.d:port>"] -all

Description

condor_transfer_datacauses Condor to transfer spooled data. It is meant to be usedin conjunction
with the-spooloption ofcondor_submit, as in

condor_submit -spool mysubmitfile

Submission of a job with the-spooloption causes Condor to spool all input files, the user log, and
any proxy across a connection to the machine where thecondor_schedddaemon is running. After
spooling these files, the machine from which the job is submitted may disconnect from the network
or modify its local copies of the spooled files.

When the job finishes, the job hasJobStatus = 4, meaning that the job has completed. The output
of the job is spooled, andcondor_transfer_dataretrieves the output of the completed job.

Options

-help Display usage information

-version Display version information

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

-namescheddnameSend the command to a machine identified byscheddname

Condor Version 7.7.6, Command Reference

condor_transfer_data(1) 918

-addr " <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

cluster Transfer spooled data belonging to the specified cluster

cluster.processTransfer spooled data belonging to a specific job in the cluster

user Transfer spooled data belonging to the specified user

-constraint expressionTransfer spooled data for jobs which match the job ClassAd expression
constraint

-all Transfer all spooled data

Exit Status

condor_transfer_datawill exit with a status value of 0 (zero) upon success, and it will exit with the
value 1 (one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_updates_stats(1) 919

condor_updates_stats

Display output fromcondor_status

Synopsis

condor_updates_stats[-- help | - h] | [-- version]

condor_updates_stats[-- long | - l] [-- history=<min>-<max>] [-- interval=<seconds>]
[-- notime] [-- time] [-- summary | - s]

Description

condor_updates_statsparses the output fromcondor_status, and it displays the information relating
to update statistics in a useful format. The statistics are displayed with the most recent update first;
the most recent update is numbered with the smallest value.

The number of historic points that represent updates is configurable on a per-source basis. See
COLLECTOR_DAEMON_HISTORY_SIZEin section 3.3.16.

Options

—help Display usage information and exit.

-h Same as—help.

—version Display Condor version information and exit.

—long All update statistics are displayed. Without this option, the statistics are condensed.

-l Same as—long.

—history=<min>-<max> Sets the range of update numbers that are printed. By default, the
entire history is displayed. To limit the range, the minimumand/or maximum number may be
specified. If a minimum is not specified, values from 0 to the maximum are displayed. If the
maximum is not specified, all values after the minimum are displayed. When both minimum
and maximum are specified, the range to be displayed includesthe endpoints as well as all
values in between. If no= sign is given, command-line parsing fails, and usage information
is displayed. If an= sign is given, with no minimum or maximum values, the defaultof the

Condor Version 7.7.6, Command Reference

condor_updates_stats(1) 920

entire history is displayed.

—interval=<seconds> The assumed update interval, in seconds. Assumed times for the the
updates are displayed, making the use of the—time option together with the—interval
option redundant.

—notime Do not display assumed times for the the updates. If more thanone of the options
—notime and—time are provided, the final one within the command line parsed determines
the display.

—time Display assumed times for the the updates. If more than one ofthe options—notime
and—time are provided, the final one within the command line parsed determines the display.

—summary Display only summary information, not the entire history for each machine.

-s Same as—summary.

Exit Status

condor_updates_statswill exit with a status value of 0 (zero) upon success, and it will exit with a
nonzero value upon failure.

Examples

Assuming the default of 128 updates kept, and assuming that the update interval is 5 minutes,con-
dor_updates_statsdisplays:

$ condor_status -l host1 | condor_updates_stats --interva l=300
(Reading from stdin)
*** Name/Machine = 'HOST1.cs.wisc.edu' MyType = 'Machine' ***

Type: Main
Stats: Total=2277, Seq=2276, Lost=3 (0.13%)

0 @ Mon Feb 16 12:55:38 2004: Ok
...

28 @ Mon Feb 16 10:35:38 2004: Missed
29 @ Mon Feb 16 10:30:38 2004: Ok

...
127 @ Mon Feb 16 02:20:38 2004: Ok

Within this display, update numbered 27, which occurs laterin time than the missed update num-
bered 28, is Ok. Each change in state, in reverse time order, displays in this condensed version.

Condor Version 7.7.6, Command Reference

condor_updates_stats(1) 921

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_userlog(1) 922

condor_userlog

Display and summarize job statistics from job log files.

Synopsis

condor_userlog [-help] [-total | -raw] [-debug] [-evict] [-j cluster| cluster.proc] [-all]
[-hostname] logfile . . .

Description

condor_userlogparses the information in job log files and displays summaries for each workstation
allocation and for each job. See the manual page forcondor_submiton page 873 for instructions for
specifying that Condor write a log file for your jobs.

If -total is not specified,condor_userlogwill first display a record for each workstation allocation,
which includes the following information:

Job The cluster/process id of the Condor job.

Host The host where the job ran. By default, the host’s IP address is displayed. If-hostnameis
specified, the host name will be displayed instead.

Start Time The time (month/day hour:minute) when the job began runningon the host.

Evict Time The time (month/day hour:minute) when the job was evicted from the host.

Wall Time The time (days+hours:minutes) for which this workstation was allocated to the job.

Good Time The allocated time (days+hours:min) which contributed to the completion of this job.
If the job exited during the allocation, then this value willequal “Wall Time.” If the job
performed a checkpoint, then the value equals the work savedin the checkpoint during this
allocation. If the job did not exit or perform a checkpoint during this allocation, the value
will be 0+00:00. This value can be greater than 0 and less than“Wall Time” if the application
completed a periodic checkpoint during the allocation but failed to checkpoint when evicted.

CPU UsageThe CPU time (days+hours:min) which contributed to the completion of this job.

condor_userlogwill then display summary statistics per host:

Host/Job The IP address or host name for the host.

Wall Time The workstation time (days+hours:minutes) allocated by this host to the jobs specified
in the query. By default, all jobs in the log are included in the query.

Condor Version 7.7.6, Command Reference

condor_userlog(1) 923

Good Time The time (days+hours:minutes) allocated on this host whichcontributed to the comple-
tion of the jobs specified in the query.

CPU UsageThe CPU time (days+hours:minutes) obtained from this host which contributed to the
completion of the jobs specified in the query.

Avg Alloc The average length of an allocation on this host (days+hours:minutes).

Avg Lost The average amount of work lost (days+hours:minutes) when ajob was evicted from this
host without successfully performing a checkpoint.

Goodput This percentage is computed as Good Time divided by Wall Time.

Util. This percentage is computed as CPU Usage divided by Good Time.

condor_userlogwill then display summary statistics per job:

Host/Job The cluster/process id of the Condor job.

Wall Time The total workstation time (days+hours:minutes) allocated to this job.

Good Time The total time (days+hours:minutes) allocated to this job which contributed to the job’s
completion.

CPU UsageThe total CPU time (days+hours:minutes) which contributedto this job’s completion.

Avg Alloc The average length of a workstation allocation obtained by this job in minutes
(days+hours:minutes).

Avg Lost The average amount of work lost (days+hours:minutes) when this job was evicted from a
host without successfully performing a checkpoint.

Goodput This percentage is computed as Good Time divided by Wall Time.

Util. This percentage is computed as CPU Usage divided by Good Time.

Finally, condor_userlogwill display a summary for all hosts and jobs.

Options

-help Get a brief description of the supported options

-total Only display job totals

-raw Display raw data only

Condor Version 7.7.6, Command Reference

condor_userlog(1) 924

-debug Debug mode

-j Select a specific cluster or cluster.proc

-evict Select only allocations which ended due to eviction

-all Select all clusters and all allocations

-hostname Display host name instead of IP address

General Remarks

Since the Condor job log file format does not contain a year field in the timestamp, all entries are
assumed to occur in the current year. Allocations which begin in one year and end in the next will
be silently ignored.

Exit Status

condor_userlogwill exit with a status value of 0 (zero) upon success, and it will exit with the value
1 (one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_userprio(1) 925

condor_userprio

Manage user priorities

Synopsis

condor_userprio [-pool centralmanagerhostname[:portnumber]] [Edit option] |
[Display options]

Description

condor_userprioeither modifies priority-related information or displays priority-related informa-
tion. Which fields are displayed changes based on command line arguments.condor_userpriowith
no arguments, lists the active users along with their priorities, in increasing priority order. The-all
option can be used to display more detailed information about each user, resulting in a rather wide
display, and includes the following columns:

Effective Priority The effective priority value of the user, which is used to calculate the user’s
share when allocating resources. A lower value means a higher priority, and the minimum
value (highest priority) is 0.5. The effective priority is calculated by multiplying the real
priority by the priority factor.

Real Priority The value of the real priority of the user. This value followsthe user’s resource usage.

Priority Factor The system administrator can set this value for each user, thus controlling a user’s
effective priority relative to other users. This can be usedto create different classes of users.

Res UsedThe number of resources currently used.

Accumulated UsageThe accumulated number of resource-hours used by the user since the usage
start time.

Usage Start Time The time since when usage has been recorded for the user. Thistime is set when
a user job runs for the first time. It is reset to the present time when the usage for the user is
reset.

Last Usage Time The most recent time a resource usage has been recorded for the user.

By default only users for whom usage was recorded in the last 24 hours, or whose priority is greater
than the minimum are listed.

The-pool option can be used to contact a different central manager than the local one (the default).

For security purposes of authentication and authorization, specifying an Edit Option requires an
administrator’s level of access. See section 3.6.1 on page 326 for further explanation.

Condor Version 7.7.6, Command Reference

condor_userprio(1) 926

Options

-pool centralmanagerhostname[:portnumber]Contact the specifiedcentralmanagerhostname
with an optional port number, instead of the local central manager. This can be used to check
other pools. NOTE: The host name (and optional port) specified refer to the host name (and
port) of thecondor_negotiatorto query for user priorities. This is slightly different than most
Condor tools that support a-pool option, and instead expect the host name (and port) of the
condor_collector.

-deleteusername (Edit option) Remove the specifiedusernamefrom Condor’s accounting.

-resetall (Edit option) Reset the accumulated usage of all the users tozero.

-resetusageusername (Edit option) Reset the accumulated usage of the user specified byusername
to zero.

-setaccumusername value(Edit option) Set the accumulated usage of the user specifiedby
usernameto the specified floating pointvalue.

-setbeginusername value(Edit option) Set the begin usage time of the user specified byusername
to the specifiedvalue.

-setfactorusername value(Edit option) Set the priority factor of the user specified byusername
to the specifiedvalue.

-setlastusername value(Edit option) Set the last usage time of the user specified byusernameto
the specifiedvalue.

-setprio username value(Edit option) Set the real priority of the user specified byusernameto the
specifiedvalue.

-activefrom month day year(Display option) Display information for users who have some
recorded accumulated usage since the specified date.

-all (Display option) Display all available fields about each group or user.

-allusers (Display option) Display information for all the users who have some recorded accumu-
lated usage.

Condor Version 7.7.6, Command Reference

condor_userprio(1) 927

-flat (Display option) Display information such that users within hierarchical groups arenot listed
with their group.

-getreslistusername (Display option) Display all the resources currently allocated to the user
specified byusername.

-grouporder (Display option) Display submitter information with accounting group entries at the
top of the list, and in breadth-first order within the group hierarchy tree.

-grouprollup (Display option) For hierarchical groups, the display shows sums as computed for
groups, and these sums include sub groups.

-hierarchical (Display option) Display information such that users within hierarchical groups are
listed with their group.

-long (Display option) A verbose output which displays entire ClassAds.

-most (Display option) Display fields considered to be the most useful. This is the default set of
fields displayed.

-priority (Display option) Display fields with user priority information.

-quotas (Display option) Display fields relevant to hierarchical group quotas.

-usage (Display option) Display usage information for each group or user.

Examples

Example 1Since the output varies due to command line arguments, here is an example of the default
output for a pool that does not use Hierarchical Group Quotas. This default output is the same as
given with the-mostDisplay option.

Last Priority Update: 1/19 13:14
Effective Priority Res Total Usage Time Since

User Name Priority Factor In Use (wghted-hrs) Last Usage
---------------------- ------------ --------- ------ -- ---------- ----------
www-cndr@cs.wisc.edu 0.56 1.00 0 591998.44 0+16:30
joey@cs.wisc.edu 1.00 1.00 1 990.15 <now>
suzy@cs.wisc.edu 1.53 1.00 0 261.78 0+09:31
leon@cs.wisc.edu 1.63 1.00 2 12597.82 <now>

Condor Version 7.7.6, Command Reference

condor_userprio(1) 928

raj@cs.wisc.edu 3.34 1.00 0 8049.48 0+01:39
jose@cs.wisc.edu 3.62 1.00 4 58137.63 <now>
betsy@cs.wisc.edu 13.47 1.00 0 1475.31 0+22:46
petra@cs.wisc.edu 266.02 500.00 1 288082.03 <now>
carmen@cs.wisc.edu 329.87 10.00 634 2685305.25 <now>
carlos@cs.wisc.edu 687.36 10.00 0 76555.13 0+14:31
ali@proj1.wisc.edu 5000.00 10000.00 0 1315.56 0+03:33
apu@nnland.edu 5000.00 10000.00 0 482.63 0+09:56
pop@proj1.wisc.edu 26688.11 10000.00 1 49560.88 <now>
franz@cs.wisc.edu 29352.06 500.00 109 600277.88 <now>
martha@nnland.edu 58030.94 10000.00 0 48212.79 0+12:32
izzi@nnland.edu 62106.40 10000.00 0 6569.75 0+02:26
marta@cs.wisc.edu 62577.84 500.00 29 193706.30 <now>
kris@proj1.wisc.edu 100597.94 10000.00 0 20814.24 0+04:2 6
boss@proj1.wisc.edu 318229.25 10000.00 3 324680.47 <now>
---------------------- ------------ --------- ------ -- ---------- ----------
Number of users: 19 784 4969073.00 0+23:59

Example 2This is an example of the default output for a pool that uses hierarchical groups, and the
groups accept surplus. This leads to a very wide display.

% condor_userprio -pool crane.cs.wisc.edu -allusers
Last Priority Update: 1/19 13:18
Group Config Use Effective Priority Res Total Usage Time Since

User Name Quota Surplus Priority Factor In Use (wghted-hrs) Last Usag e
------------------------------------ --------- ------ - ------------ --------- ------ ------------ ----------
<none> 0.00 yes 1.00 0 6.78 9+03:52

johnsm@crane.cs.wisc.edu 0.50 1.00 0 6.62 9+19:42
John.Smith@crane.cs.wisc.edu 0.50 1.00 0 0.02 9+03:52
Sedge@crane.cs.wisc.edu 0.50 1.00 0 0.05 13+03:03
Duck@crane.cs.wisc.edu 0.50 1.00 0 0.02 31+00:28
other@crane.cs.wisc.edu 0.50 1.00 0 0.04 16+03:42

Duck 2.00 no 1.00 0 0.02 13+02:57
goose@crane.cs.wisc.edu 0.50 1.00 0 0.02 13+02:57

Sedge 4.00 no 1.00 0 0.17 9+03:07
johnsm@crane.cs.wisc.edu 0.50 1.00 0 0.13 9+03:08
Half@crane.cs.wisc.edu 0.50 1.00 0 0.02 31+00:02
John.Smith@crane.cs.wisc.edu 0.50 1.00 0 0.05 9+03:07
other@crane.cs.wisc.edu 0.50 1.00 0 0.01 28+19:34

------------------------------------ --------- ------ - ------------ --------- ------ ------------ ----------
Number of users: 10 ByQuota 0 6.97

Exit Status

condor_userpriowill exit with a status value of 0 (zero) upon success, and it will exit with the value
1 (one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Condor Version 7.7.6, Command Reference

condor_userprio(1) 929

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_vacate(1) 930

condor_vacate

Vacate jobs that are running on the specified hosts

Synopsis

condor_vacate[-help | -version]

condor_vacate[-graceful | -fast] [-debug] [-pool centralmanagerhostname[:portnumber]]
[-namehostname| hostname| -addr "<a.b.c.d:port>" | "<a.b.c.d:port>" | -constraint expression
| -all]

Description

condor_vacatecauses Condor to checkpoint any running jobs on a set of machines and force the
jobs to vacate the machine. The job(s) remains in the submitting machine’s job queue.

Given the (default)-graceful option, a job running under the standard universe will first produce a
checkpoint and then the job will be killed. Condor will then restart the job somewhere else, using
the checkpoint to continue from where it left off. A job running under the vanilla universe is killed,
and Condor restarts the job from the beginning somewhere else. condor_vacatehas no effect on a
machine with no Condor job currently running.

There is generally no need for the user or administrator to explicitly run condor_vacate. Condor
takes care of jobs in this way automatically following the policies given in configuration files.

Options

-help Display usage information

-version Display version information

-graceful Inform the job to checkpoint, then soft-kill it.

-fast Hard-kill jobs instead of checkpointing them

-debug Causes debugging information to be sent tostderr , based on the value of the configura-
tion variableTOOL_DEBUG

Condor Version 7.7.6, Command Reference

condor_vacate(1) 931

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

-namehostnameSend the command to a machine identified byhostname

hostnameSend the command to a machine identified byhostname

-addr " <a.b.c.d:port>" Send the command to a machine’s master located at"<a.b.c.d:port>"

" <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

-constraint expressionApply this command only to machines matching the given ClassAd
expression

-all Send the command to all machines in the pool

Exit Status

condor_vacatewill exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Examples

To send acondor_vacatecommand to two named machines:

% condor_vacate robin cardinal

To send thecondor_vacatecommand to a machine within a pool of machines other than the local
pool, use the-pool option. The argument is the name of the central manager for the pool. Note
that one or more machines within the pool must be specified as the targets for the command. This
command sends the command to a the single machine namedcae17within the pool of machines that
hascondor.cae.wisc.eduas its central manager:

% condor_vacate -pool condor.cae.wisc.edu -name cae17

Author

Condor Team, University of Wisconsin–Madison

Condor Version 7.7.6, Command Reference

condor_vacate(1) 932

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_vacate_job(1) 933

condor_vacate_job

vacate jobs in the Condor queue from the hosts where they are running

Synopsis

condor_vacate_job[-help | -version]

condor_vacate_job [-pool centralmanagerhostname[:portnumber]| -namescheddname]|
[-addr "<a.b.c.d:port>"] [-fast] cluster. . .| cluster.process. . .| user. . . | -constraint expression
. . .

condor_vacate_job [-pool centralmanagerhostname[:portnumber]| -namescheddname]|
[-addr "<a.b.c.d:port>"] [-fast] -all

Description

condor_vacate_jobfinds one or more jobs from the Condor job queue and vacates them from the
host(s) where they are currently running. The jobs remain inthe job queue and return to the idle
state.

A job running under the standard universe will first produce acheckpoint and then the job will
be killed. Condor will then restart the job somewhere else, using the checkpoint to continue from
where it left off. A job running under any other universe willbe sent a soft kill signal (SIGTERM by
default, or whatever is defined as theSoftKillSig in the job ClassAd), and Condor will restart
the job from the beginning somewhere else.

If the -fast option is used, the job(s) will be immediately killed, meaning that standard universe jobs
will not be allowed to checkpoint, and the job will have to revert to the last checkpoint or start over
from the beginning.

If the -nameoption is specified, the namedcondor_scheddis targeted for processing. If the-addr
option is used, thecondor_scheddat the given address is targeted for processing. Otherwise,the
localcondor_scheddis targeted. The jobs to be vacated are identified by one or more job identifiers,
as described below. For any given job, only the owner of the job or one of the queue super users
(defined by theQUEUE_SUPER_USERSmacro) can vacate the job.

Usingcondor_vacate_jobon jobs which are not currently running has no effect.

Options

-help Display usage information

Condor Version 7.7.6, Command Reference

condor_vacate_job(1) 934

-version Display version information

-pool centralmanagerhostname[:portnumber]Specify a pool by giving the central manager’s host
name and an optional port number

-namescheddnameSend the command to a machine identified byscheddname

-addr " <a.b.c.d:port>" Send the command to a machine located at"<a.b.c.d:port>"

cluster Vacate all jobs in the specified cluster

cluster.processVacate the specific job in the cluster

user Vacate jobs belonging to specified user

-constraint expressionVacate all jobs which match the job ClassAd expression constraint

-all Vacate all the jobs in the queue

-fast Perform a fast vacate and hard kill the jobs

General Remarks

Do not confusecondor_vacate_jobwith condor_vacate. condor_vacateis given a list of hosts to
vacate, regardless of what jobs happen to be running on them.Only machine owners and adminis-
trators have permission to usecondor_vacateto evict jobs from a given host.condor_vacate_jobis
given a list of job to vacate, regardless of which hosts they happen to be running on. Only the owner
of the jobs or queue super users have permission to usecondor_vacate_job.

Examples

To vacate job 23.0:

% condor_vacate_job 23.0

To vacate all jobs of a user named Mary:

Condor Version 7.7.6, Command Reference

condor_vacate_job(1) 935

% condor_vacate_job mary

To vacate all standard universe jobs owned by Mary:

% condor_vacate_job -constraint 'JobUniverse == 1 && Owner == "mary"'

Note that the entire constraint, including the quotation marks, must be enclosed in single quote
marks for most shells.

Exit Status

condor_vacate_jobwill exit with a status value of 0 (zero) upon success, and it will exit with the
value 1 (one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_version(1) 936

condor_version

print Condor version and platform information

Synopsis

condor_version[-help]

condor_version[-arch] [-opsys] [-syscall]

Description

With no arguments,condor_versionprints the currently installed Condor version number and plat-
form information. The version number includes a build identification number, as well as the date
built.

Options

help Print usage information

arch Print this machine’s ClassAd value forArch

opsys Print this machine’s ClassAd value forOpSys

syscall Get any requested version and/or platform information fromthelibcondorsyscall.a
that this Condor pool is configured to use, instead of using the values that are compiled into
the tool itself. This option may be used in combination with any other options to modify
where the information is coming from.

Exit Status

condor_versionwill exit with a status value of 0 (zero) upon success, and it should never exit with a
failing value.

Author

Condor Team, University of Wisconsin–Madison

Condor Version 7.7.6, Command Reference

condor_version(1) 937

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

condor_wait(1) 938

condor_wait

Wait for jobs to finish

Synopsis

condor_wait [-help | -version]

condor_wait[-debug] [-wait seconds] [-num number-of-jobs] log-file [job ID]

Description

condor_waitwatches a user log file (created with thelog command within a submit description file)
and returns when one or more jobs from the log have completed or aborted.

Becausecondor_waitexpects to find at least one job submitted event in the log file,at least one job
must have been successfully submitted withcondor_submitbeforecondor_waitis executed.

condor_waitwill wait forever for jobs to finish, unless a shorter wait time is specified.

Options

-help Display usage information

-version Display version information

-debug Show extra debugging information.

-wait secondsWait no more than the integer number ofseconds. The default is unlimited time.

-num number-of-jobsWait for the integernumber-of-jobsjobs to end. The default is all jobs in the
log file.

log file The name of the log file to watch for information about the job.

job ID A specific job or set of jobs to watch. If thejob ID is only the job ClassAd attribute
ClusterId , thencondor_waitwaits for all jobs with the givenClusterId . If the job ID
is a pair of the job ClassAd attributes, given byClusterId .ProcId , thencondor_wait
waits for the specific job with thisjob ID . If this option is not specified, all jobs that exist in

Condor Version 7.7.6, Command Reference

condor_wait(1) 939

the log file whencondor_waitis invoked will be watched.

General Remarks

condor_waitis an inexpensive way to test or wait for the completion of a job or a whole cluster, if
you are trying to get a process outside of Condor to synchronize with a job or set of jobs.

It can also be used to wait for the completion of a limited subset of jobs, via the-num option.

Examples

condor_wait logfile

This command waits for all jobs that exist inlogfile to complete.

condor_wait logfile 40

This command waits for all jobs that exist inlogfile with a job ClassAd attributeClusterId
of 40 to complete.

condor_wait -num 2 logfile

This command waits for any two jobs that exist inlogfile to complete.

condor_wait logfile 40.1

This command waits for job 40.1 that exists inlogfile to complete.

condor_wait -wait 3600 logfile 40.1

This waits for job 40.1 to complete by watchinglogfile , but it will not wait more than one hour
(3600 seconds).

Exit Status

condor_waitexits with 0 if and only if the specified job or jobs have completed or aborted.con-
dor_waitreturns 1 if unrecoverable errors occur, such as a missing log file, if the job does not exist
in the log file, or the user-specified waiting time has expired.

Condor Version 7.7.6, Command Reference

condor_wait(1) 940

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

filelock_midwife(1) 941

filelock_midwife

create an artifact of the creation of a process

Synopsis

filelock_midwife-help

filelock_midwife[–file filename] program[programargs]

Description

filelock_midwifestarts a givenprogram, while creating an artifact of the program’s birth. At a
later time thefilelock_undertakercan examine the artifact to determine whether the program isstill
running, or whether the program has exited.filelock_midwifeaccomplishes this by obtaining a file
lock on the given artifact file before starting the program.

Warning:filelock_midwifewill not work on NFS unless the separate file lock server is running.

Options

–file filename Thefilenameto use for the artifact file. The filelock.file is the default file used
when this option is not specified.

program[programargs] Forks a process and executesprogramwith programargsas command-line
arguments (when specified).

Exit Status

filelock_midwifewill exit with a status of 0 (zero) upon success, and non-zerootherwise.

See Also

uniq_pid_midwife(on page 951),filelock_undertaker(on page 943).

Condor Version 7.7.6, Command Reference

filelock_midwife(1) 942

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

filelock_undertaker(1) 943

filelock_undertaker

determine whether a process has exited

Synopsis

filelock_undertaker-help

filelock_undertaker[–file filename] [–block]

Description

filelock_undertakercan examine an artifact file created byfilelock_midwifeand determine whether
the program started by themidwifehas exited. It does this by attempting to acquire a file lock.

Be warned that this will not work on NFS unless the separate file lock server is running.

Options

–block If the process has not exited, block until it does.

–file filename The name of the artifact file. created byfilelock_midwife. The file lock.file is
the default file used when this option is not specified.

Exit Status

filelock_undertakerwill exit with a status of 0 (zero) if the monitored process has exited, with a
status of 1 (one) if the monitored process has definitely not exited, with a status of 2 if it is uncertain
whether the process has exited (this is generally due to a failure by thefilelock_midwife), or with
any other value for program failure.

See Also

uniq_pid_undertaker(on page 953),filelock_midwife(on page 941).

Condor Version 7.7.6, Command Reference

filelock_undertaker(1) 944

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

gidd_alloc (1) 945

gidd_alloc

find a GID within the specified range which is not used by any process

Synopsis

gidd_allocmin-gid max-gid

Description

This program will scan the alive PIDs, looking for which GID is unused in the supplied, inclusive
range specified by the required argumentsmin-gid andmax-gid. Upon finding one, it will add the
GID to its own supplementary group list, and then scan the PIDs again expecting to find only itself
using the GID. If no collision has occurred, the program exits, otherwise it retries.

General Remarks

This is a program only available for the Linux ports of Condor.

Exit Status

gidd_allocwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1
(one) upon failure.

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

install_release(1) 946

install_release

install an arbitrary software release into a named directory

Synopsis

install_release[-help]

install_release [-f] [-basedir directory] [-log filename] [-wget] [-globuslocation directory]
[-o otherfile1. . .] package

Description

install_releaseinstalls an arbitrary software release into a named directory. In addition it creates a
log of the installed files for easy uninstallation. This program can install packages of type tar, gzip,
or gzip’ed tar. The installation package can be located on a mounted file system, an http server, an
ftp server, or a grid ftp server.

Options

-basedirdirectory The directory where the package should be installed. When not specified, the
directory defaults to the current working directory.

-f Forcefully overwrite files if they exist.

-globuslocationdirectory This program does not come prepackaged withglobus-url-copyor the
supporting libraries. If globus is not installed in the/opt/globus directory, the user must
specify the installation location of globus using this option.

-help Display brief usage information and exit.

-log filename The file name for the installation log.

-o otherfile1. . . A space-separated list of files that will be installed along with the installation
package. The files will only be copied. No extraction or decompression will be performed on
these files. These files will be logged in the installation log.

Condor Version 7.7.6, Command Reference

install_release(1) 947

packageThe full path to the installation package. Locations on file systems can be specified
without the file: prefix, but other locations must prefix with the appropriate protocol
(http: , ftp: , or gsiftp:).

-wget This program defaults to usingglobus-url-copyto fetch the installation package. This option
specifies that this program should usewgetfor http and ftp requests and Perl’s copy function
for file system requests.wgetmust be installed on the machine and must be in the user’s path.

Exit Status

install_releasewill exit with a status value of 0 (zero) upon success, and non-zero otherwise.

See Also

cleanup_release(on page 731)

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

procd_ctl (1) 948

procd_ctl

command line interface to thecondor_procd

Synopsis

procd_ctl -h

procd_ctl -A address-file[command]

Description

This is a programmatic interface to thecondor_procddaemon. It may be used to cause thecon-
dor_procdto do anything that thecondor_procdis capable of doing, such as tracking and managing
process families.

This is a program only available for the Linux ports of Condor.

procd_ctlhonors the discovery algorithm for Condor’s configuration files, which specify debugging
information. As such, if Condor is not installed or the configuration files are unavailable, then set the
environment variableCONDOR_CONFIGto /dev/null to be utilized by the discovery algorithm.

The -h option prints out usage information and exits. Theaddress-filespecification within the-A
argument specifies the path and file name of the address file which the named pipe clients must use
to speak with thecondor_procd.

One command is given to thecondor_procd. The choices for the command are defined by the
Options.

Options

TRACK_BY_ASSOCIATED_GID GID [PID] Use the specifiedGID to track the specified
family rooted atPID. If the optionalPID is not specified, then the PID used is the one given
or assumed bycondor_procd.

GET_USAGE [PID] Get the total usage information about the PID family atPID. If the optional
PID is not specified, then the PID used is the one given or assumed by condor_procd.

DUMP [PID] Print out information about both the rootPID being watched and the tree of
processes under this rootPID. If the optionalPID is not specified, then the PID used is the
one given or assumed bycondor_procd.

Condor Version 7.7.6, Command Reference

procd_ctl (1) 949

LIST [PID] With no PID given, print out information about all the watched processes. If the
optionalPID is specified, print out information about the process specified byPID and all its
child processes.

SIGNAL_PROCESSsignal [PID] Send thesignalto the process specified byPID. If the optional
PID is not specified, then the PID used is the one given or assumed by condor_procd.

SUSPEND_FAMILY PID Suspend the process family rooted atPID.

CONTINUE_FAMILY PID Continue execution of the process family rooted atPID.

KILL_FAMILY PID Kill the process family rooted atPID.

UNREGISTER_FAMILY PID Stop tracking the process family rooted atPID.

SNAPSHOT Perform a snapshot of the tracked family tree.

QUIT Disconnect from thecondor_procdand exit.

General Remarks

This program may be used in a standalone mode, independent ofCondor, to track process fami-
lies. The programsprocd_ctlandgidd_allocare used with thecondor_procdin standalone mode
to interact with the daemon and inquire about certain state of running processes on the machine,
respectively.

Exit Status

procd_ctlwill exit with a status value of 0 (zero) upon success, and it will exit with the value 1 (one)
upon failure.

Author

Condor Team, University of Wisconsin–Madison

Condor Version 7.7.6, Command Reference

procd_ctl (1) 950

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

uniq_pid_midwife(1) 951

uniq_pid_midwife

create an artifact of the creation of a process

Synopsis

uniq_pid_midwife[- -noblock] [- -file filename] [- -precision seconds] program[programargs]

Description

uniq_pid_midwifestarts a given program, while creating an artifact of the program’s birth. At a
later time theuniq_pid_undertakercan examine the artifact to determine whether the program is
still running or whether it has exited.uniq_pid_midwifeaccomplishes this by recording an enforced
unique process identifier to the artifact.

Options

- -file filename Thefilenameto use for the artifact file. Defaults topid.file .

- -precisionsecondsThe precision the operating system is expected to have in regards to process
creation times. Defaults to an operating system specific value. The default is the best choice
in most cases.

- -noblock Exit after the program has been confirmed, typically 3 times the precision. Defaults to
block until the program exits.

program[programargs] Forks a process and executesprogramwith programargsas command-line
arguments (when specified).

Exit Status

uniq_pid_midwifewill exit with a status of 0 (zero) upon success, and non-zerootherwise.

See Also

uniq_pid_undertaker(on page 953),filelock_midwife(on page 941).

Condor Version 7.7.6, Command Reference

uniq_pid_midwife(1) 952

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6, Command Reference

http://www.condorproject.org/license

uniq_pid_undertaker(1) 953

uniq_pid_undertaker

determine whether a process has exited

Synopsis

uniq_pid_undertaker[- -block] [- -file file] [- -precision seconds]

Description

uniq_pid_undertakercan examine an artifact file created byuniq_pid_midwifeand determine
whether the program started by themidwifehas exited.

Options

- -block If the process has not exited, block until it does.

- -file file The name of theuniq_pid_midwifecreated artifact file. Defaults topid.file .

- -precisionsecondsUsessecondsas the precision range within which the operating system will
provide a process’s birthday. Defaults to an operating system specific value. Only use this
option if the samesecondsvalue was provided touniq_pid_midwife.

Exit Status

uniq_pid_undertakerwill exit with a status of 0 (zero) if the monitored process has exited, with a
status of 1 (one) if the monitored process has definitely not exited, with a status of 2 if it is uncertain
whether the process has exited (this is generally due to a failure by theuniq_pid_midwife), or with
any other value for program failure.

See Also

uniq_pid_midwife(on page 951),filelock_undertaker(on page 943).

Condor Version 7.7.6, Command Reference

954

Author

Condor Team, University of Wisconsin–Madison

Copyright

Copyright © 1990-2012 Condor Team, Computer Sciences Department, University of Wisconsin-
Madison, Madison, WI. All Rights Reserved. Licensed under the Apache License, Version 2.0.

See theCondor Version 7.7.6 Manualor http://www.condorproject.org/license for additionalno-
tices.

Condor Version 7.7.6 Reference Manual

http://www.condorproject.org/license

CHAPTER

ELEVEN

Appendix A: ClassAd Attributes

ClassAd Types

ClassAd attributes vary, depending on the entity producingthe ClassAd. Therefore, each ClassAd
has an attribute namedMyType, which describes the type of ClassAd. In addition, thecon-
dor_collector appends attributes to any daemon’s ClassAd, whenever thecondor_collectoris
queried. These additional attributes are listed in the unnumbered subsection labeled ClassAd At-
tributes Added by thecondor_collectoron page 996.

Here is a list of defined values forMyType, as well as a reference to a list attributes relevant to
that type.

Job Each submitted job describes its state, for use by thecondor_negotiatordaemon in finding a
machine upon which to run the job. ClassAd attributes that appear in a job ClassAd are listed
and described in the unnumbered subsection labeled Job ClassAd Attributes on page 956.

Machine Each machine in the pool (and hence, thecondor_startddaemon running on that ma-
chine) describes its state. ClassAd attributes that appearin a machine ClassAd are listed and
described in the unnumbered subsection labeled Machine ClassAd Attributes on page 969.

DaemonMaster Eachcondor_masterdaemon describes its state. ClassAd attributes that appear
in a DaemonMaster ClassAd are listed and described in the unnumbered subsection labeled
DaemonMaster ClassAd Attributes on page 980.

Scheduler Eachcondor_schedddaemon describes its state. ClassAd attributes that appearin a
Scheduler ClassAd are listed and described in the unnumbered subsection labeled Scheduler
ClassAd Attributes on page 981.

Negotiator Eachcondor_negotiatordaemon describes its state. ClassAd attributes that appear

955

956

in a Negotiator ClassAd are listed and described in the unnumbered subsection labeled Nego-
tiator ClassAd Attributes on page 989.

Submitter Each submitter is described by a ClassAd. ClassAd attributes that appear in a Submit-
ter ClassAd are listed and described in the unnumbered subsection labeled Submitter ClassAd
Attributes on page 992.

Defrag Eachcondor_defragdaemon describes its state. ClassAd attributes that appearin a De-
frag ClassAd are listed and described in the unnumbered subsection labeled Defrag ClassAd
Attributes on page 993.

Collector Eachcondor_collectordaemon describes its state. ClassAd attributes that appearin
a Collector ClassAd are listed and described in the unnumbered subsection labeled Collector
ClassAd Attributes on page 994.

Query This section has not yet been written

In addition, statistics are published for each DaemonCore daemon. These attributes are listed
and described in the unnumbered subsection labeled DaemonCore Statistics Attributes on page 996.

Job ClassAd Attributes

AllRemoteHosts: String containing a comma-separated list of all the remote machines running
a parallel or mpi universe job.

Args: String representing the arguments passed to the job.

CkptArch: String describing the architecture of the machine this job executed on at the time
it last produced a checkpoint. If the job has never produced acheckpoint, this attribute is
undefined .

CkptOpSys: String describing the operating system of the machine this job executed on at the
time it last produced a checkpoint. If the job has never produced a checkpoint, this attribute is
undefined .

ClusterId: Integer cluster identifier for this job. A cluster is a group of jobs that were submitted
together. Each job has its own unique job identifier within the cluster, but shares a common
cluster identifier. The value changes each time a job or set ofjobs are queued for execution
under Condor.

Cmd: The path to and the file name of the job to be executed.

ConcurrencyLimits: A string list, delimited by commas and space characters. Theitems in
the list identify named resources that the job requires.

CommittedTime: The number of seconds of wall clock time that the job has been allocated a
machine, excluding the time spent on run attempts that were evicted without a checkpoint.
Like RemoteWallClockTime , this includes time the job spent in a suspended state, so the
total committed wall time spent running is

Condor Version 7.7.6 Reference Manual

957

CommittedTime - CommittedSuspensionTime

CommittedSlotTime: This attribute is identical toCommittedTime except that the time
is multiplied by theSlotWeight of the machine(s) that ran the job. This relies on
SlotWeight being listed inSYSTEM_JOB_MACHINE_ATTRS.

CumulativeSlotTime: This attribute is identical toRemoteWallClockTime except that
the time is multiplied by theSlotWeight of the machine(s) that ran the job. This relies on
SlotWeight being listed inSYSTEM_JOB_MACHINE_ATTRS.

CompletionDate: The time when the job completed, or the value 0 if the job has not yet com-
pleted. Measured in the number of seconds since the epoch (00:00:00 UTC, Jan 1, 1970).

CommittedSuspensionTime: A running total of the number of seconds the job has spent in
suspension during time in which the job was not evicted without a checkpoint. This number
is updated when the job is checkpointed and when it exits.

CumulativeSuspensionTime: A running total of the number of seconds the job has spent in
suspension for the life of the job.

CurrentHosts: The number of hosts in the claimed state, due to this job.

DAGManJobId: For a DAGMan node job only, theClusterId job ClassAd attribute of the
condor_dagmanjob which is the parent of this node job. It is only one layer deep for nested
DAGs.

DAGParentNodeNames: For a DAGMan node job only, a comma separated list of eachJobName
which is a parent node of this job’s node. This attribute is passed through to the job
via the condor_submitcommand line, if it does not exceed the line length defined with
_POSIX_ARG_MAX. For example, if a node job has two parents withJobNames B and C,
thecondor_submitcommand line will contain

-append +DAGParentNodeNames=B,C

DeltacloudAvailableActions: Used for grid-type deltacloud jobs. For a running job, Con-
dor sets this string to contain a comma-separated list of actions that can be performed on a
Deltacloud instance, as given by the selected service.

DeltacloudHardwareProfile: String taken from the submit description file command
deltacloud_hardware_profile. Specifies the hardware configuration to be used for a grid-
type deltacloud job.

DeltacloudHardwareProfileCpu: String taken from the submit description file command
deltacloud_hardware_profile_cpu. Specifies CPU details in the hardware configuration to
be used for a grid-type deltacloud job.

DeltacloudHardwareProfileMemory: String taken from the submit description file com-
manddeltacloud_hardware_profile_memory. Specifies memory (RAM) details in the hard-
ware configuration to be used for a grid-type deltacloud job.

Condor Version 7.7.6 Reference Manual

958

DeltacloudHardwareProfileStorage: String taken from the submit description file com-
manddeltacloud_hardware_profile_storage. Specifies memory (disk) details in the hard-
ware configuration to be used for a grid-type deltacloud job.

DeltacloudImageId: String taken from the submit description file commanddelta-
cloud_image_id. Specifies the virtual machine image to use for a grid-type deltacloud job.

DeltacloudKeyname: String taken from the submit description file commanddelta-
cloud_keyname. Specifies the SSH key pair to use for a grid-type deltacloud job.

DeltacloudPasswordFile: String taken from the submit description file commanddelta-
cloud_password_file. Specifies a file containing the secret key to be used to authenticate
with the Deltacloud service for a grid-type deltacloud job.

DeltacloudPrivateNetworkAddresses: For a running Deltacloud instance, Condor re-
ceives and sets this comma-separated list of the private IP addresses allocated to the running
virtual machine.

DeltacloudPublicNetworkAddresses: For a running Deltacloud instance, Condor re-
ceives and sets this comma-separated list of the public IP addresses allocated to the running
virtual machine.

DeltacloudRealmId: String taken from the submit description file commanddelta-
cloud_ream_id. Specifies the realm to be used for a grid-type deltacloud job.

DeltacloudUserData: String taken from the submit description file commanddelta-
cloud_user_data. Specifies a block of data to be provided to the instance for a grid-type
deltacloud job.

DeltacloudUsername: String taken from the submit description file commanddelta-
cloud_username. Specifies the user name to be used to authenticate with the Deltacloud
service for a grid-type deltacloud job.

DiskUsage: Amount of disk space (Kbytes) in the Condor execute directory on the execute ma-
chine that this job has used. An initial value may be set at thejob’s request, placing into the
job’s submit description file a setting such as

1 megabyte initial value
+DiskUsage = 1024

vm universe jobs will default to an initial value of the disk image size. If not initialized by the
job, non-vm universe jobs will default to an initial value of the sum of the job’s executable
and all input files.

EC2AccessKeyId: Used for grid type ec2 jobs; a string taken from the definitionof the sub-
mit description file commandec2_access_key_id. Defines the path and file name of the file
containing the EC2 Query API’s access key.

EC2AmiID: Used for grid type ec2 jobs; a string taken from the definitionof the submit description
file commandec2_ami_id. Identifies the machine image of the instance.

Condor Version 7.7.6 Reference Manual

959

EC2ElasticIp: Used for grid type ec2 jobs; a string taken from the definitionof the submit
description file commandec2_elastic_ip. Specifies an Elastic IP address to associate with the
instance.

EC2InstanceName: Used for grid type ec2 jobs; a string set for the job once the instance starts
running, as assigned by the EC2 service, that represents theunique ID assigned to the instance
by the EC2 service.

EC2InstanceType: Used for grid type ec2 jobs; a string taken from the definitionof the submit
description file commandec2_instance_type. Specifies a service-specific instance type.

EC2KeyPair: Used for grid type ec2 jobs; a string taken from the definitionof the submit de-
scription file commandec2_key_pair. Defines the key pair associated with the EC2 instance.

EC2TagNames: Used for grid type ec2 jobs; a string taken from the definitionof the submit de-
scription file commandec2_tag_names. Defines the set, and case, of tags associated with the
EC2 instance.

EC2RemoteVirtualMachineName: Used for grid type ec2 jobs; a string set for the job once
the instance starts running, as assigned by the EC2 service,that represents the host name upon
which the instance runs, such that the user can communicate with the running instance.

EC2SecretAccessKey: Used for grid type ec2 jobs; a string taken from the definitionof the
submit description file commandec2_secret_access_key. Defines that path and file name of
the file containing the EC2 Query API’s secret access key.

EC2SecurityGroups: Used for grid type ec2 jobs; a string taken from the definitionof the sub-
mit description file commandec2_security_groups. Defines the list of EC2 security groups
which should be associated with the job.

EC2UserData: Used for grid type ec2 jobs; a string taken from the definitionof the submit de-
scription file commandec2_user_data. Defines a block of data that can be accessed by the
virtual machine.

EC2UserDataFile: Used for grid type ec2 jobs; a string taken from the definitionof the sub-
mit description file commandec2_user_data_file. Specifies a path and file name of a file
containing data that can be accessed by the virtual machine.

EmailAttributes: A string containing a comma-separated list of job ClassAd attributes. For
each attribute name in the list, its value will be included inthe e-mail notification upon job
completion.

EnteredCurrentStatus: An integer containing the epoch time of when the job entered into
its current status So for example, if the job is on hold, the ClassAd expression

CurrentTime - EnteredCurrentStatus

will equal the number of seconds that the job has been on hold.

ExecutableSize: Size of the executable in Kbytes.

Condor Version 7.7.6 Reference Manual

960

ExitBySignal: An attribute that isTrue when a user job exits via a signal andFalse oth-
erwise. For some grid universe jobs, how the job exited is unavailable. In this case,
ExitBySignal is set toFalse .

ExitCode: When a user job exits by means other than a signal, this is the exit return code of
the user job. For some grid universe jobs, how the job exited is unavailable. In this case,
ExitCode is set to 0.

ExitSignal: When a user job exits by means of an unhandled signal, this attribute takes on the
numeric value of the signal. For some grid universe jobs, howthe job exited is unavailable. In
this case,ExitSignal will be undefined.

ExitStatus: The way that Condor previously dealt with a job’s exit status. This attribute should
no longer be used. It is not always accurate in heterogeneouspools, or if the job exited with a
signal. Instead, see the attributes:ExitBySignal , ExitCode , andExitSignal .

GridJobStatus: A string containing the job’s status as reported by the remote job management
system.

GridResource: A string defined by the right hand side of the the submit description file com-
mandgrid_resource. It specifies the target grid type, plus additional parameters specific to
the grid type.

HoldKillSig: Currently only for scheduler and local universe jobs, a string containing a name
of a signal to be sent to the job if the job is put on hold.

HoldReason: A string containing a human-readable message about why a jobis on hold. This is
the message that will be displayed in response to the commandcondor_q -hold . It can
be used to determine if a job should be released or not.

HoldReasonCode: An integer value that represents the reason that a job was puton hold.

HoldReasonSubCode: An integer value that represents further information to go along with the
HoldReasonCode , for some values ofHoldReasonCode . SeeHoldReasonCode for
the values.

HookKeyword: A string that uniquely identifies a set of job hooks, and addedto the ClassAd once
a job is fetched.

ImageSize: Maximum observed memory image size (i.e. virtual memory) ofthe job in Kbytes.
The initial value is equal to the size of the executable for non-vm universe jobs, and 0
for vm universe jobs. When the job writes a checkpoint, theImageSize attribute is
set to the size of the checkpoint file (since the checkpoint file contains the job’s mem-
ory image). A vanilla universe job’sImageSize is recomputed internally every 15 sec-
onds. How quickly this updated information becomes visibleto condor_qis controlled by
SHADOW_QUEUE_UPDATE_INTERVALandSTARTER_UPDATE_INTERVAL.

Condor Version 7.7.6 Reference Manual

961

Integer Code Reason for Hold HoldReasonSubCode

1 The user put the job on hold withcondor_hold.
2 Globus middleware reported an error. The GRAM error number.
3 ThePERIODIC_HOLDexpression evaluated toTrue .
4 The credentials for the job are invalid.
5 A job policy expression evaluated toUndefined .
6 Thecondor_starterfailed to start the executable. The Unix error number.
7 The standard output file for the job could not be opened. The Unix error number.
8 The standard input file for the job could not be opened. The Unix error number.
9 The standard output stream for the job could not be opened. The Unix error number.
10 The standard input stream for the job could not be opened. The Unix error number.
11 An internal Condor protocol error was encountered when trans-

ferring files.
12 Thecondor_starterfailed to download input files. The Unix error number.
13 Thecondor_starterfailed to upload output files. The Unix error number.
14 The initial working directory of the job cannot be accessed. The Unix error number.
15 The user requested the job be submitted on hold.
16 Input files are being spooled.
17 A standard universe job is not compatible with thecon-

dor_shadowversion available on the submitting machine.
18 An internal Condor protocol error was encountered when trans-

ferring files.
19 <Keyword>_HOOK_PREPARE_JOBwas defined but could

not be executed or returned failure.
20 The job missed its deferred execution time and therefore failed

to run.
21 The job was put on hold becauseWANT_HOLDin the machine

policy was true.
22 Unable to initialize user log.
23 Failed to access user account.
24 No compatible shadow.
25 Invalid cron settings.
26 SYSTEM_PERIODIC_HOLDevaluated to true.
27 The system periodic job policy evaluated to undefined.

Under Linux,ProportionalSetSize is a better indicator of memory usage for jobs with
significant sharing of memory between processes, becauseImageSize is simply the sum of
virtual memory sizes across all of the processes in the job, which may count the same memory
pages more than once.

IwdFlushNFSCache: A boolean expression that controls whether or not Condor attempts to
flush a submit machine’s NFS cache, in order to refresh a Condor job’s initial working direc-
tory. The value will beTrue , unless a job explicitly adds this attribute, setting it toFalse .

JobAdInformationAttrs: A comma-separated list of attribute names. The named attributes

Condor Version 7.7.6 Reference Manual

962

and their values are written in the user log whenever any event is being written to the log.
This is the same as the configuration settingEVENT_LOG_INFORMATION_ATTRS(see
page 182) but it applies to the user log instead of the system event log.

JobLeaseDuration: The number of seconds set for a job lease, the amount of time that a job
may continue running on a remote resource, despite its submitting machine’s lack of response.
See section 2.14.4 for details on job leases.

JobMaxVacateTime: An integer expression that specifies the time in seconds requested by the
job for being allowed to gracefully shut down.

JobPrio: Integer priority for this job, set bycondor_submitor condor_prio. The default value is
0. The higher the number, the greater (better) the priority.

JobRunCount: This attribute is retained for backwards compatibility. Itmay go away in the
future. It is equivalent toNumShadowStarts for all universes exceptscheduler. For the
scheduleruniverse, this attribute is equivalent toNumJobStarts .

JobStartDate: Time at which the job first began running. Measured in the number of seconds
since the epoch (00:00:00 UTC, Jan 1, 1970).

JobStatus: Integer which indicates the current status of the job.

Value Status

1 Idle
2 Running
3 Removed
4 Completed
5 Held
6 Transferring Output

JobUniverse: Integer which indicates the job universe.

Value Universe

1 standard
5 vanilla
7 scheduler
8 MPI
9 grid
10 java
11 parallel
12 local
13 vm

Condor Version 7.7.6 Reference Manual

963

KeepClaimIdle: An integer value that represents the number of seconds that thecondor_schedd
will continue to keep a claim, in the Claimed Idle state, after the job with this attribute defined
completes, and there are no other jobs ready to run from this user. This attribute may improve
the performance of linear DAGs, in the case when a dependent job can not be scheduled until
its parent has completed. Extending the claim on the machinemay permit the dependent job
to be scheduled with less delay than with waiting for thecondor_negotiatorto match with a
new machine.

KillSig: The Unix signal number that the job wishes to be sent before being forcibly killed. It is
relevant only for jobs running on Unix machines.

KillSigTimeout: This attribute is replaced by the functionality inJobMaxVacateTime as of
Condor version 7.7.3. The number of seconds that the job (other than the standard universe)
requests thecondor_starterwait after sending the signal defined asKillSig and before
forcibly removing the job. The actual amount of time will be the minimum of this value and
the execute machine’s configuration variableKILLING_TIMEOUT .

LastCheckpointPlatform: An opaque string which is theCheckpointPlatform iden-
tifier from the last machine where this standard universe jobhad successfully produced a
checkpoint.

LastCkptServer: Host name of the last checkpoint server used by this job. Whena pool is
using multiple checkpoint servers, this tells the job whereto find its checkpoint file.

LastCkptTime: Time at which the job last performed a successful checkpoint. Measured in the
number of seconds since the epoch (00:00:00 UTC, Jan 1, 1970).

LastMatchTime: An integer containing the epoch time when the job was last successfully
matched with a resource (gatekeeper) Ad.

LastRejMatchReason: If, at any point in the past, this job failed to match with a resource ad,
this attribute will contain a string with a human-readable message about why the match failed.

LastRejMatchTime: An integer containing the epoch time when Condor-G last tried to find a
match for the job, but failed to do so.

LastSuspensionTime: Time at which the job last performed a successful suspension. Mea-
sured in the number of seconds since the epoch (00:00:00 UTC,Jan 1, 1970).

LastVacateTime: Time at which the job was last evicted from a remote workstation. Measured
in the number of seconds since the epoch (00:00:00 UTC, Jan 1,1970).

LeaveJobInQueue: A boolean expression that defaults toFalse , causing the job to be re-
moved from the queue upon completion. An exception is if the job is submitted using
condor_submit -spool . For this case, the default expression causes the job to be kept
in the queue for 10 days after completion.

LocalSysCpu: An accumulated number of seconds of system CPU time that the job caused to
the machine upon which the job was submitted.

Condor Version 7.7.6 Reference Manual

964

LocalUserCpu: An accumulated number of seconds of user CPU time that the jobcaused to the
machine upon which the job was submitted.

MachineAttr<X><N>: Machine attribute of name<X> that is placed into this job ClassAd, as
specified by the configuration variableSYSTEM_JOB_MACHINE_ATTRS. With the potential
for multiple run attempts,<N> represents an integer value providing historical values ofthis
machine attribute for multiple runs. The most recent run will have a value of<N> equal to0.
The next most recent run will have a value of<N> equal to1.

MaxHosts: The maximum number of hosts that this job would like to claim.As long as
CurrentHosts is the same asMaxHosts , no more hosts are negotiated for.

MaxJobRetirementTime: Maximum time in seconds to let this job run uninterrupted before
kicking it off when it is being preempted. This can only decrease the amount of time from
what the corresponding startd expression allows.

MemoryUsage: An integer expression in units of Mbytes that represents thepeak memory us-
age for the job. Its purpose is to be compared with the value defined by a job with there-
quest_memorysubmit command, for purposes of policy evaluation.

MinHosts: The minimum number of hosts that must be in the claimed state for this job, before
the job may enter the running state.

NextJobStartDelay: An integer number of seconds delay time after this job startsun-
til the next job is started. The value is limited by the configuration variable
MAX_NEXT_JOB_START_DELAY.

NiceUser: Boolean value which whenTrue indicates that this job is anice job, raising its user
priority value, thus causing it to run on a machine only when no other Condor jobs want the
machine.

NTDomain: A string that identifies the NT domain under which a job’s owner authenticates on a
platform running Windows.

NumCkpts: A count of the number of checkpoints written by this job during its lifetime.

NumGlobusSubmits: An integer that is incremented each time thecondor_gridmanagerre-
ceives confirmation of a successful job submission into Globus.

NumJobMatches: An integer that is incremented by thecondor_scheddeach time the job is
matched with a resource ad by the negotiator.

NumJobStarts: An integer count of the number of times the job started executing. This is not
(yet) defined forstandard universe jobs.

NumJobReconnects: An integer count of the number of times a job successfully reconnected
after being disconnected. This occurs when thecondor_shadowandcondor_starterlose con-
tact, for example because of transient network failures or acondor_shadowor condor_schedd
restart. This attribute is only defined for jobs that can reconnected: those in thevanilla and
java universes.

Condor Version 7.7.6 Reference Manual

965

NumPids: A count of the number of child processes that this job has.

NumRestarts: A count of the number of restarts from a checkpoint attemptedby this job during
its lifetime.

NumShadowExceptions: An integer count of the number of times thecondor_shadowdaemon
had a fatal error for a given job.

NumShadowStarts: An integer count of the number of times acondor_shadowdaemon was
started for a given job. This attribute is not defined forscheduleruniverse jobs, since they do
not have acondor_shadowdaemon associated with them. Forlocaluniverse jobs, this attribute
is defined, even though the process that manages the job is technically acondor_starterrather
than acondor_shadow. This keeps the management of the local universe and other universes
as similar as possible.

NumSystemHolds: An integer that is incremented each time Condor-G places a job on hold due
to some sort of error condition. This counter is useful, since Condor-G will always place a job
on hold when it gives up on some error condition. Note that if the user places the job on hold
using thecondor_holdcommand, this attribute is not incremented.

OtherJobRemoveRequirements: A string that defines a list of jobs. When the job with this
attribute defined is removed, all other jobs defined by the list are also removed. The string is
an expression that defines a constraint equivalent to the oneimplied by the command

condor_rm -constraint <constraint>

This attribute is used for jobs managed withcondor_dagmanto ensure that node jobs of the
DAG are removed when thecondor_dagmanjob itself is removed. Note that the list of jobs
defined by this attribute must not form a cyclic removal of jobs, or thecondor_scheddwill go
into an infinite loop when any of the jobs is removed.

Owner: String describing the user who submitted this job.

ParallelShutdownPolicy: A string that is only relevant to parallel universe jobs. Without
this attribute defined, the default policy applied to parallel universe jobs is to consider the
whole job completed when the first node exits, killing processes running on all remaining
nodes. If defined to the following strings, Condor’s behavior changes:

"WAIT_FOR_ALL"Condor will wait until every node in the parallel job has completed to
consider the job finished.

PreserveRelativeExecutable: WhenTrue , thecondor_starterwill not prependIwd to
Cmd, whenCmdis a relative path name andTransferExecutable is False . The default
value isFalse . This attribute is primarily of interest for users ofUSER_JOB_WRAPPERfor
the purpose of allowing an executable’s location to be resolved by the user’s path in the job
wrapper.

ProcId: Integer process identifier for this job. Within a cluster of many jobs, each job has the same
ClusterId , but will have a uniqueProcId . Within a cluster, assignment of aProcId
value will start with the value 0. The job (process) identifier described here is unrelated to
operating system PIDs.

Condor Version 7.7.6 Reference Manual

966

ProportionalSetSizeKb: On Linux execute machines with kernel version more recent than
2.6.27, this is the maximum observed proportional set size (PSS) in Kbytes, summed across
all processes in the job. If the execute machine does not support monitoring of PSS or PSS
has not yet been measured, this attribute will be undefined. PSS differs fromImageSize
in how memory shared between processes is accounted. The PSSfor one process is the sum
of that process’ memory pages divided by the number of processes sharing each of the pages.
ImageSize is the same, except there is no division by the number of processes sharing the
pages.

QDate: Time at which the job was submitted to the job queue. Measuredin the number of seconds
since the epoch (00:00:00 UTC, Jan 1, 1970).

ReleaseReason: A string containing a human-readable message about why the job was released
from hold.

RemoteIwd: The path to the directory in which a job is to be executed on a remote machine.

RemoteSysCpu: The total number of seconds of system CPU time (the time spentat system calls)
the job used on remote machines. This does not count time spent on run attempts that were
evicted without a checkpoint.

RemoteUserCpu: The total number of seconds of user CPU time the job used on remote ma-
chines. This does not count time spent on run attempts that were evicted without a checkpoint.

RemoteWallClockTime: Cumulative number of seconds the job has been allocated a machine.
This also includes time spent in suspension (if any), so the total real time spent running is

RemoteWallClockTime - CumulativeSuspensionTime

Note that this number does not get reset to zero when a job is forced to migrate
from one machine to another. CommittedTime , on the other hand, is just like
RemoteWallClockTime except it does get reset to 0 whenever the job is evicted with-
out a checkpoint.

RemoveKillSig: Currently only for scheduler universe jobs, a string containing a name of a
signal to be sent to the job if the job is removed.

RequestCpus: The number of CPUs requested for this job. If dynamiccondor_startdprovision-
ing is enabled, it is the minimum number of CPUs that are needed in the created dynamic
slot.

RequestDisk: The amount of disk space in Kbytes requested for this job. If dynamic con-
dor_startdprovisioning is enabled, it is the minimum amount of disk space needed in the
created dynamic slot.

RequestedChroot: A full path to the directory that the job requests thecondor_starteruse as
an argument tochroot() .

Condor Version 7.7.6 Reference Manual

967

RequestMemory: The amount of memory space in Mbytes requested for this job. If dynamic
condor_startdprovisioning is enabled, it is the minimum amount of memory needed in the
created dynamic slot. If not set by the job, its definition is specified by configuration variable
JOB_DEFAULT_REQUESTMEMORY.

ResidentSetSize: Maximum observed physical memory in use by the job in Kbytes while
running.

StackSize: Utilized for Linux jobs only, the number of bytes allocated for stack space for this
job. This number of bytes replaces the default allocation of512 Mbytes.

StageOutFinish: An attribute representing a Unix epoch time that is defined for a job that is
spooled to a remote site usingcondor_submit -spool or Condor-C and causes Condor
to hold the output in the spool while the job waits in the queuein theCompleted state. This
attribute is defined when retrieval of the output finishes.

StageOutStart: An attribute representing a Unix epoch time that is defined for a job that is
spooled to a remote site usingcondor_submit -spool or Condor-C and causes Condor
to hold the output in the spool while the job waits in the queuein theCompleted state. This
attribute is defined when retrieval of the output begins.

StreamErr: An attribute utilized only for grid universe jobs. The default value is True . If
True , andTransferErr is True , then standard error is streamed back to the submit ma-
chine, instead of doing the transfer (as a whole) after the job completes. IfFalse , then
standard error is transferred back to the submit machine (asa whole) after the job completes.
If TransferErr is False , then this job attribute is ignored.

StreamOut: An attribute utilized only for grid universe jobs. The default value isTrue . If True ,
andTransferOut is True , then job output is streamed back to the submit machine, instead
of doing the transfer (as a whole) after the job completes. IfFalse , then job output is trans-
ferred back to the submit machine (as a whole) after the job completes. IfTransferOut is
False , then this job attribute is ignored.

SubmitterAutoregroup: A boolean attribute defined by thecondor_negotiatorwhen it makes
a match. It will beTrue if the resource was claimed via negotiation when the configuration
variableGROUP_AUTOREGROUPwasTrue . It will be False otherwise.

SubmitterGroup: The accounting group name defined by thecondor_negotiatorwhen it makes
a match.

SubmitterNegotiatingGroup: The accounting group name under which the resource nego-
tiated when it was claimed, as set by thecondor_negotiator.

TotalSuspensions: A count of the number of times this job has been suspended during its
lifetime.

TransferErr: An attribute utilized only for grid universe jobs. The default value isTrue . If
True , then the error output from the job is transferred from the remote machine back to the
submit machine. The name of the file after transfer is the file referred to by job attributeErr .
If False , no transfer takes place (remote to submit machine), and thename of the file is the
file referred to by job attributeErr .

Condor Version 7.7.6 Reference Manual

968

TransferExecutable: An attribute utilized only for grid universe jobs. The default value is
True . If True , then the job executable is transferred from the submit machine to the remote
machine. The name of the file (on the submit machine) that is transferred is given by the job
attributeCmd. If False , no transfer takes place, and the name of the file used (on the remote
machine) will be as given in the job attributeCmd.

TransferIn: An attribute utilized only for grid universe jobs. The default value isTrue . If
True , then the job input is transferred from the submit machine tothe remote machine. The
name of the file that is transferred is given by the job attribute In . If False , then the job’s
input is taken from a file on the remote machine (pre-staged),and the name of the file is given
by the job attributeIn .

TransferOut: An attribute utilized only for grid universe jobs. The default value isTrue . If
True , then the output from the job is transferred from the remote machine back to the submit
machine. The name of the file after transfer is the file referred to by job attributeOut . If
False , no transfer takes place (remote to submit machine), and thename of the file is the file
referred to by job attributeOut .

WantGracefulRemoval: A boolean expression that, whenTrue , specifies that a graceful shut-
down of the job should be done when the job is removed or put on hold.

WindowsBuildNumber: An integer, extracted from the platform type of the machine upon
which this job is submitted, representing a build number fora Windows operating system.
This attribute only exists for jobs submitted from Windows machines.

WindowsMajorVersion: An integer, extracted from the platform type of the machine upon
which this job is submitted, representing a major version number (currently 5 or 6) for a Win-
dows operating system. This attribute only exists for jobs submitted from Windows machines.

WindowsMinorVersion: An integer, extracted from the platform type of the machine upon
which this job is submitted, representing a minor version number (currently 0, 1, or 2) for
a Windows operating system. This attribute only exists for jobs submitted from Windows
machines.

X509UserProxy: The full path and file name of the file containing the X.509 userproxy.

X509UserProxyExpiration: For a job that defines the submit description file command
x509userproxy, this is the time at which the indicated X.509 proxy credential will expire,
measured in the number of seconds since the epoch (00:00:00 UTC, Jan 1, 1970).

X509UserProxyEmail:

For a job with an X.509 proxy credential, this is the email address extracted from the proxy.

X509UserProxyFirstFQAN: For a vanilla or grid universe job that defines the submit descrip-
tion file commandx509userproxy, this is the VOMS Fully Qualified Attribute Name (FQAN)
of the primary role of the credential. A credential may have multiple roles defined, but by con-
vention the one listed first is the primary role.

Condor Version 7.7.6 Reference Manual

969

X509UserProxyFQAN: For a vanilla or grid universe job that defines the submit description file
commandx509userproxy, this is a serialized list of the DN and all FQAN. A comma is used
as a separator, and any existing commas in the DN or FQAN are replaced with the string
,. Likewise, any ampersands in the DN or FQAN are replaced with& .

X509UserProxySubject: For a vanilla or grid universe job that defines the submit description
file commandx509userproxy, this attribute contains the Distinguished Name (DN) of the
credential used to submit the job.

X509UserProxyVOName: For a vanilla or grid universe job that defines the submit description
file commandx509userproxy, this is the name of the VOMS virtual organization (VO) that
the user’s credential is part of.

DelegateJobGSICredentialsLifetime: An integer that specifies the maximum number
of seconds for which delegated proxies should be valid. The default behavior is determined
by the configuration settingDELEGATE_JOB_GSI_CREDENTIALS_LIFETIME, which
defaults to one day. A value of 0 indicates that the delegatedproxy should be valid for as long
as allowed by the credential used to create the proxy. This setting currently only applies to
proxies delegated for non-grid jobs and Condor-C jobs. It does not currently apply to globus
grid jobs, which always behave as though this setting were 0.This setting has no effect if the
configuration settingDELEGATE_JOB_GSI_CREDENTIALSis false, because in that case
the job proxy is copied rather than delegated.

The following job ClassAd attributes are relevant only forvm universe jobs.

VM_MACAddr: The MAC address of the virtual machine’s network interface,in the standard format
of six groups of two hexadecimal digits separated by colons.This attribute is currently limited
to apply only to Xen virtual machines.

Machine ClassAd Attributes

Activity: String which describes Condor job activity on the machine. Can have one of the
following values:

"Idle": There is no job activity

"Busy": A job is busy running

"Suspended": A job is currently suspended

"Vacating": A job is currently checkpointing

"Killing": A job is currently being killed

"Benchmarking": The startd is running benchmarks

"Retiring": Waiting for a job to finish or for the maximum retirement time to expire

Arch: String with the architecture of the machine. Currently supported architectures have the
following string definitions:

Condor Version 7.7.6 Reference Manual

970

"INTEL": Intel x86 CPU (Pentium, Xeon, etc).

"X86_64": AMD/Intel 64-bit X86

These strings show definitions for architectures no longer supported:

"IA64": Intel Itanium

"SUN4u": Sun UltraSparc CPU

"SUN4x": A Sun Sparc CPU other than an UltraSparc, i.e. sun4m or sun4c CPU found in
older Sparc workstations such as the Sparc 10, Sparc 20, IPC,IPX, etc.

"PPC": 32-bit PowerPC

"PPC64": 64-bit PowerPC

CheckpointPlatform: A string which opaquely encodes various aspects about a machine’s
operating system, hardware, and kernel attributes. It is used to identify systems where previ-
ously taken checkpoints for the standard universe may resume.

ClockDay: The day of the week, where 0 = Sunday, 1 = Monday,. . ., and 6 = Saturday.

ClockMin: The number of minutes passed since midnight.

CondorLoadAvg: The portion of the load average generated by Condor, either from remote jobs
or running benchmarks.

ConsoleIdle: The number of seconds since activity on the system console keyboard or console
mouse has last been detected.

Cpus: The number of CPUs in this slot. It is 1 for a single CPU slot, 2 for a dual CPU slot, etc.

CurrentRank: A float which represents this machine owner’s affinity for running the Condor job
which it is currently hosting. If not currently hosting a Condor job,CurrentRank is 0.0.
When a machine is claimed, the attribute’s value is computedby evaluating the machine’s
Rank expression with respect to the current job’s ClassAd.

Disk: The amount of disk space on this machine available for the jobin Kbytes (e.g. 23000 = 23
megabytes). Specifically, this is the amount of disk space available in the directory specified
in the Condor configuration files by theEXECUTEmacro, minus any space reserved with the
RESERVED_DISKmacro.

Draining: This attribute isTrue when the slot is draining and undefined if not.

DrainingRequestId: This attribute contains a string that is the request id of thedraining re-
quest that put this slot in a draining state. It is undefined ifthe slot is not draining.

DotNetVersions: The .NET framework versions currently installed on this computer. Default
format is a comma delimited list. Current definitions:

"1.1": for .Net Framework 1.1

"2.0": for .Net Framework 2.0

Condor Version 7.7.6 Reference Manual

971

"3.0": for .Net Framework 3.0

"3.5": for .Net Framework 3.5

"4.0Client": for .Net Framework 4.0 Client install

"4.0Full": for .Net Framework 4.0 Full install

DynamicSlot: For SMP machines that allow dynamic partitioning of a slot, this boolean value
identifies that this dynamic slot may be partitioned.

EnteredCurrentActivity: Time at which the machine entered the current Activity (see
Activity entry above). On all platforms (including NT), this is measured in the number of
integer seconds since the Unix epoch (00:00:00 UTC, Jan 1, 1970).

ExpectedMachineGracefulDrainingBadput: The job runtime in cpu-seconds that
would be lost if graceful draining were initiated at the timethis ad was published. This
calculation assumes that jobs will run for the full retirement time and then be evicted without
saving a checkpoint.

ExpectedMachineGracefulDrainingCompletion: Time at which graceful draining of
the machine could complete if it were initiated at the time this ad was published. This is
measured in the number of integer seconds since the Unix epoch (00:00:00 UTC, Jan 1, 1970).
This value is computed with the assumption that the machine policy will not suspend jobs
during draining while the machine is waiting for the job to use up its retirement time. If
suspension happens, the upper bound on how long draining could take is unlimited. To avoid
suspension during draining, theSUSPENDandCONTINUEexpressions could be configured
to pay attention to theDraining attribute.

ExpectedMachineGracefulQuickBadput: The job runtime in cpu-seconds that would be
lost if quick draining were initiated at the time this ad was published. This calculation assumes
that all evicted jobs will not save a checkpoint.

ExpectedMachineQuickDrainingCompletion: Time at which quick draining of the ma-
chine could complete if it were initiated at the time this ad was published. This is measured
in the number of integer seconds since the Unix epoch (00:00:00 UTC, Jan 1, 1970).

FileSystemDomain: A domain name configured by the Condor administrator which describes
a cluster of machines which all access the same, uniformly-mounted, networked file systems
usually via NFS or AFS. This is useful for Vanilla universe jobs which require remote file
access.

HasVM: A boolean value added to the machine ClassAd when the configuration triggers the detec-
tion of virtual machine software.

JobVM_VCPUS: An attribute defined if a vm universe job is running on this slot. Defined by the
number of virtualized CPUs in the virtual machine.

KeyboardIdle: The number of seconds since activity on any keyboard or mouseassociated
with this machine has last been detected. UnlikeConsoleIdle , KeyboardIdle also
takes activity on pseudo-terminals into account (i.e. virtual “keyboard” activity from telnet
and rlogin sessions as well). Note thatKeyboardIdle will always be equal to or less than
ConsoleIdle .

Condor Version 7.7.6 Reference Manual

972

KFlops: Relative floating point performance as determined via a Linpack benchmark.

LastDrainStartTime: Time when draining of thiscondor_startdwas last initiated (e.g. due
to condor_defragor condor_drain).

LastHeardFrom: Time when the Condor central manager last received a status update from this
machine. Expressed as the number of integer seconds since the Unix epoch (00:00:00 UTC,
Jan 1, 1970). Note: This attribute is only inserted by the central manager once it receives the
ClassAd. It is not present in thecondor_startdcopy of the ClassAd. Therefore, you could not
use this attribute in definingcondor_startdexpressions (and you would not want to).

LoadAvg: A floating point number with the machine’s current load average.

Machine: A string with the machine’s fully qualified host name.

MachineMaxVacateTime: An integer expression that specifies the time in seconds the machine
will allow the job to gracefully shut down.

Memory: The amount of RAM in megabytes.

Mips: Relative integer performance as determined via a Dhrystonebenchmark.

MonitorSelfAge: The number of seconds that this daemon has been running.

MonitorSelfCPUUsage: The fraction of recent CPU time utilized by this daemon.

MonitorSelfImageSize: The amount of virtual memory consumed by this daemon in Kbytes.

MonitorSelfRegisteredSocketCount: The current number of sockets registered by this
daemon.

MonitorSelfResidentSetSize: The amount of resident memory used by this daemon in
Kbytes.

MonitorSelfSecuritySessions: The number of open (cached) security sessions for this
daemon.

MonitorSelfTime: The time, represented as the number of second elapsed since the Unix epoch
(00:00:00 UTC, Jan 1, 1970), at which this daemon last checked and set the attributes with
names that begin with the stringMonitorSelf .

MyAddress: String with the IP and port address of thecondor_startddaemon which is publishing
this machine ClassAd. When using CCB,condor_shared_port, and/or an additional private
network interface, that information will be included here as well.

MyType: The ClassAd type; always set to the literal string"Machine" .

Name: The name of this resource; typically the same value as theMachine attribute, but could
be customized by the site administrator. On SMP machines, the condor_startdwill divide
the CPUs up into separate slots, each with with a unique name.These names will be of the
form “slot#@full.hostname”, for example, “slot1@vulture.cs.wisc.edu”, which signifies slot
number 1 from vulture.cs.wisc.edu.

Condor Version 7.7.6 Reference Manual

973

OpSys: String describing the operating system running on this machine. Currently supported op-
erating systems have the following string definitions:

"LINUX": for LINUX 2.0.x, LINUX 2.2.x, LINUX 2.4.x, or LINUX 2.6.x kernel systems

"OSX": for Darwin

"FREEBSD7": for FreeBSD 7

"FREEBSD8": for FreeBSD 8

"WINDOWS": for all versions of Windows

"SOLARIS5.10": for Solaris 2.10 or 5.10

"SOLARIS5.11": for Solaris 2.11 or 5.11

These strings show definitions for operating systems no longer supported:

"SOLARIS28": for Solaris 2.8 or 5.8

"SOLARIS29": for Solaris 2.9 or 5.9

OpSysAndVer: A string indicating an operating system and a version number.

For Linux operating systems, it is the value of theOpSysNameattribute concatenated with
the string version of theOpSysMajorVersion attribute:

"RedHat5": for RedHat Linux version 5

"RedHat6": for RedHat Linux version 6

"Fedora16": for Fedora Linux version 16

"Debian5": for Debian Linux version 5

"Debian6": for Debian Linux version 6

For MacOS operating systems, it is the value of theOpSysShortName attribute concate-
nated with the string version of theOpSysVer attribute:

"MacOSX605": for MacOS version 10.6.5 (Snow Leopard)

"MacOSX703": for MacOS version 10.7.3 (Lion)

For BSD operating systems, it is the value of theOpSysNameattribute concatenated with the
string version of theOpSysMajorVersion attribute:

"FREEBSD7": for FreeBSD version 7

"FREEBSD8": for FreeBSD version 8

For Solaris Unix operating systems, it is the same value as the OpSys attribute:

"SOLARIS5.10": for Solaris 2.10 or 5.10

"SOLARIS5.11": for Solaris 2.11 or 5.11

For Windows operating systems, it is the value of theOpSys attribute concatenated with the
string version of theOpSysMajorVersion attribute:

Condor Version 7.7.6 Reference Manual

974

"WINDOWS500": for Windows 2000

"WINDOWS501": for Windows XP

"WINDOWS502": for Windows Server 2003

"WINDOWS600": for Windows Vista

"WINDOWS601": for Windows 7

OpSysLegacy: A string that holds the long-standing values for theOpSys attribute. Currently
supported operating systems have the following string definitions:

"LINUX": for LINUX 2.0.x, LINUX 2.2.x, LINUX 2.4.x, or LINUX 2.6.x kernel systems

"OSX": for Darwin

"FREEBSD7": for FreeBSD version 7

"FREEBSD8": for FreeBSD version 8

"SOLARIS5.10": for Solaris 2.10 or 5.10

"SOLARIS5.11": for Solaris 2.11 or 5.11

"WINDOWS": for all versions of Windows

OpSysLongName: A string giving a full description of the operating system.

"Red Hat Enterprise Linux Server release 5.7 (Tikanga)": for Red-
Hat Linux version 5

"Red Hat Enterprise Linux Server release 6.2 (Santiago)": for
RedHat Linux version 6

"Fedora release 16 (Verne)": for Fedora Linux version 16

"MacOSX 6.5": for MacOS version 10.6.5 (Snow Leopard)

"MacOSX 7.3": for MacOS version 10.7.3 (Lion)

"FreeBSD8.2-RELEASE-p3": for FreeBSD version 8

"SOLARIS5.10": for Solaris 2.10 or 5.10

"SOLARIS5.11": for Solaris 2.11 or 5.11

"Windows XP SP3": for Windows XP

"Windows 7 SP2": for Windows 7

OpSysMajorVersion: An integer value representing the major version of the operating system.

5: for RedHat Linux version 5

6: for RedHat Linux version 6

16: for Fedora Linux version 16

6: for MacOS version 10.6.5 (Snow Leopard)

7: for MacOS version 10.7.3 (Lion)

7: for FreeBSD version 7

Condor Version 7.7.6 Reference Manual

975

8: for FreeBSD version 8

5: for Solaris 2.10, 5.10, 2.11, or 5.11

501: for Windows XP

600: for Windows Vista

601: for Windows 7

OpSysName: A string containing a terse description of the operating system.

"RedHat": for RedHat Linux version 6

"Fedora": for Fedora Linux version 16

"SnowLeopard": for MacOS version 10.6.5 (Snow Leopard)

"Lion": for MacOS version 10.7.3 (Lion)

"FREEBSD": for FreeBSD version 7 or 8

"SOLARIS5.10": for Solaris 2.10 or 5.10

"SOLARIS5.11": for Solaris 2.11 or 5.11

"WindowsXP": for Windows XP

"WindowsVista": for Windows Vista

"Windows7": for Windows 7

OpSysShortName: A string containing a short name for the operating system.

"RedHat": for RedHat Linux version 5 or 6

"Fedora": for Fedora Linux version 16

"Debian": for Debian Linux version 5 or 6

"MacOSX": for MacOS version 10.6.5 (Snow Leopard) or for MacOS version10.7.3 (Lion)

"FreeBSD": for FreeBSD version 7 or 8

"SOLARIS5.10": for Solaris 2.10 or 5.10

"SOLARIS5.11": for Solaris 2.11 or 5.11

"XP": for Windows XP

"Vista": for Windows Vista

"7": for Windows 7

OpSysVer: An integer value representing the operating system versionnumber.

602: for RedHat Linux version 6.2

1600: for Fedora Linux version 16.0

704: for FreeBSD version 7.4

802: for FreeBSD version 8.2

605: for MacOS version 10.6.5 (Snow Leopard)

Condor Version 7.7.6 Reference Manual

976

703: for MacOS version 10.7.3 (Lion)

500: for Windows 2000

501: for Windows XP

502: for Windows Server 2003

600: for Windows Vista or Windows Server 2008

601: for Windows 7 or Windows Server 2008

Requirements: A boolean, which when evaluated within the context of the machine ClassAd
and a job ClassAd, must evaluate to TRUE before Condor will allow the job to use this ma-
chine.

MaxJobRetirementTime: An expression giving the maximum time in seconds that the startd
will wait for the job to finish before kicking it off if it needsto do so. This is evaluated in the
context of the job ClassAd, so it may refer to job attributes as well as machine attributes.

PartitionableSlot: For SMP machines, a boolean value identifying that this slotmay be
partitioned.

SlotID: For SMP machines, the integer that identifies the slot. The value will be X for the slot
with

name="slotX@full.hostname"

For non-SMP machines with one slot, the value will be 1. NOTE: This attribute was added in
Condor version 6.9.3. For older versions of Condor, seeVirtualMachineID below.

SlotWeight: This specifies the weight of the slot when calculating usage,computing fair shares,
and enforcing group quotas. For example, claiming a slot with SlotWeight = 2 is equiv-
alent to claiming twoSlotWeight = 1 slots. See the description ofSlotWeight on
page 206.

StartdIpAddr: String with the IP and port address of thecondor_startddaemon which is pub-
lishing this machine ClassAd. When using CCB,condor_shared_port, and/or an additional
private network interface, that information will be included here as well.

State: String which publishes the machine’s Condor state. Can be:

"Owner": The machine owner is using the machine, and it is unavailableto Condor.

"Unclaimed": The machine is available to run Condor jobs, but a good match is either not
available or not yet found.

"Matched": The Condor central manager has found a good match for this resource, but a
Condor scheduler has not yet claimed it.

"Claimed": The machine is claimed by a remotecondor_scheddand is probably running
a job.

"Preempting": A Condor job is being preempted (possibly via checkpointing) in order to
clear the machine for either a higher priority job or becausethe machine owner wants
the machine back.

Condor Version 7.7.6 Reference Manual

977

"Drained": This slot is not accepting jobs, because the machine is beingdrained.

TargetType: Describes what type of ClassAd to match with. Always set to the string literal
"Job" , because machine ClassAds always want to be matched with jobs, and vice-versa.

TotalCpus: The number of CPUs that are on the machine. This is in contrastwith Cpus, which
is the number of CPUs in the slot.

TotalMachineDrainingBadput: The total job runtime in cpu-seconds that has been lost due
to job evictions caused by draining since thiscondor_startdbegan executing. In this calcula-
tion, it is assumed that jobs are evicted without checkpointing.

TotalMachineDrainingUnclaimedTime: The total machine-wide time in cpu-seconds
that has not been used (i.e. not matched to a job submitter) due to draining since thiscon-
dor_startdbegan executing.

TotalTimeBackfillBusy: The number of seconds that this machine (slot) has accumulated
within the backfill busy state and activity pair since thecondor_startdbegan executing. This
attribute will only be defined if it has a value greater than 0.

TotalTimeBackfillIdle: The number of seconds that this machine (slot) has accumulated
within the backfill idle state and activity pair since thecondor_startdbegan executing. This
attribute will only be defined if it has a value greater than 0.

TotalTimeBackfillKilling: The number of seconds that this machine (slot) has accumu-
lated within the backfill killing state and activity pair since thecondor_startdbegan executing.
This attribute will only be defined if it has a value greater than 0.

TotalTimeClaimedBusy: The number of seconds that this machine (slot) has accumulated
within the claimed busy state and activity pair since thecondor_startdbegan executing. This
attribute will only be defined if it has a value greater than 0.

TotalTimeClaimedIdle: The number of seconds that this machine (slot) has accumulated
within the claimed idle state and activity pair since thecondor_startdbegan executing. This
attribute will only be defined if it has a value greater than 0.

TotalTimeClaimedRetiring: The number of seconds that this machine (slot) has accumu-
lated within the claimed retiring state and activity pair since thecondor_startdbegan execut-
ing. This attribute will only be defined if it has a value greater than 0.

TotalTimeClaimedSuspended: The number of seconds that this machine (slot) has accu-
mulated within the claimed suspended state and activity pair since thecondor_startdbegan
executing. This attribute will only be defined if it has a value greater than 0.

TotalTimeMatchedIdle: The number of seconds that this machine (slot) has accumulated
within the matched idle state and activity pair since thecondor_startdbegan executing. This
attribute will only be defined if it has a value greater than 0.

TotalTimeOwnerIdle: The number of seconds that this machine (slot) has accumulated within
the owner idle state and activity pair since thecondor_startdbegan executing. This attribute
will only be defined if it has a value greater than 0.

Condor Version 7.7.6 Reference Manual

978

TotalTimePreemptingKilling: The number of seconds that this machine (slot) has accu-
mulated within the preempting killing state and activity pair since thecondor_startdbegan
executing. This attribute will only be defined if it has a value greater than 0.

TotalTimePreemptingVacating: The number of seconds that this machine (slot) has accu-
mulated within the preempting vacating state and activity pair since thecondor_startdbegan
executing. This attribute will only be defined if it has a value greater than 0.

TotalTimeUnclaimedBenchmarking: The number of seconds that this machine (slot) has
accumulated within the unclaimed benchmarking state and activity pair since thecon-
dor_startdbegan executing. This attribute will only be defined if it hasa value greater than 0.

TotalTimeUnclaimedIdle: The number of seconds that this machine (slot) has accumulated
within the unclaimed idle state and activity pair since thecondor_startdbegan executing. This
attribute will only be defined if it has a value greater than 0.

UidDomain: a domain name configured by the Condor administrator which describes a cluster of
machines which all have the samepasswd file entries, and therefore all have the same logins.

VirtualMachineID: Starting with Condor version 6.9.3, this attribute is now longer used. In-
stead, useSlotID , as described above. This will only be present ifALLOW_VM_CRUFTis
TRUE.

VirtualMemory: The amount of currently available virtual memory (swap space) expressed in
Kbytes. On Linux platforms, it is the sum of paging space and physical memory, which more
accurately represents the virtual memory size of the machine.

VM_AvailNum: The maximum number of vm universe jobs that can be started on this machine.
This maximum is set by the configuration variableVM_MAX_NUMBER.

VM_Guest_Mem: An attribute defined if a vm universe job is running on this slot. Defined by the
amount of memory in use by the virtual machine, given in Mbytes.

VM_Memory: Gives the amount of memory available for starting additional VM jobs on this ma-
chine, given in Mbytes. The maximum value is set by the configuration variableVM_MEMORY
.

VM_Networking: A boolean value indicating whether networking is allowed for virtual machines
on this machine.

VM_Type: The type of virtual machine software that can run on this machine. The value is set by
the configuration variableVM_TYPE.

WindowsBuildNumber: An integer, extracted from the platform type, representinga build num-
ber for a Windows operating system. This attribute only exists on Windows machines.

WindowsMajorVersion: An integer, extracted from the platform type, representinga major
version number (currently 5 or 6) for a Windows operating system. This attribute only exists
on Windows machines.

Condor Version 7.7.6 Reference Manual

979

WindowsMinorVersion: An integer, extracted from the platform type, representinga minor
version number (currently 0, 1, or 2) for a Windows operatingsystem. This attribute only
exists on Windows machines.

In addition, there are a few attributes that are automatically inserted into the machine ClassAd
whenever a resource is in the Claimed state:

ClientMachine: The host name of the machine that has claimed this resource

RemoteAutoregroup: A boolean attribute which isTrue if this resource was claimed via ne-
gotiation when the configuration variableGROUP_AUTOREGROUPis True . It is False
otherwise.

RemoteGroup: The accounting group name corresponding to the submitter that claimed this re-
source.

RemoteNegotiatingGroup: The accounting group name under which this resource negotiated
when it was claimed. This attribute will frequently be the same as attributeRemoteGroup ,
but it may differ in cases such as when configuration variableGROUP_AUTOREGROUPis
True , in which case it will have the name of the root group, identified as<none> .

RemoteOwner: The name of the user who originally claimed this resource.

RemoteUser: The name of the user who is currently using this resource. In general, this will al-
ways be the same as theRemoteOwner , but in some cases, a resource can be claimed by one
entity that hands off the resource to another entity which uses it. In that case,RemoteUser
would hold the name of the entity currently using the resource, whileRemoteOwner would
hold the name of the entity that claimed the resource.

PreemptingOwner: The name of the user who is preempting the job that is currently running on
this resource.

PreemptingUser: The name of the user who is preempting the job that is currently running on
this resource. The relationship betweenPreemptingUser andPreemptingOwner is
the same as the relationship betweenRemoteUser andRemoteOwner .

PreemptingRank: A float which represents this machine owner’s affinity for running the Condor
job which is waiting for the current job to finish or be preempted. If not currently hosting
a Condor job,PreemptingRank is undefined. When a machine is claimed and there is
already a job running, the attribute’s value is computed by evaluating the machine’sRank
expression with respect to the preempting job’s ClassAd.

TotalClaimRunTime: A running total of the amount of time (in seconds) that all jobs (under
the same claim) ran (have spent in the Claimed/Busy state).

TotalClaimSuspendTime: A running total of the amount of time (in seconds) that all jobs
(under the same claim) have been suspended (in the Claimed/Suspended state).

TotalJobRunTime: A running total of the amount of time (in seconds) that a single job ran (has
spent in the Claimed/Busy state).

Condor Version 7.7.6 Reference Manual

980

TotalJobSuspendTime: A running total of the amount of time (in seconds) that a single job
has been suspended (in the Claimed/Suspended state).

There are a few attributes that are only inserted into the machine ClassAd if a job is currently
executing. If the resource is claimed but no job are running,none of these attributes will be defined.

JobId: The job’s identifier (for example,152.3), as seen fromcondor_qon the submitting ma-
chine.

JobStart: The time stamp in integer seconds of when the job began executing, since the Unix
epoch (00:00:00 UTC, Jan 1, 1970). For idle machines, the value isUNDEFINED.

LastPeriodicCheckpoint: If the job has performed a periodic checkpoint, this attribute
will be defined and will hold the time stamp of when the last periodic checkpoint was be-
gun. If the job has yet to perform a periodic checkpoint, or cannot checkpoint at all, the
LastPeriodicCheckpoint attribute will not be defined.

There are a few attributes that are applicable to machines that are offline, that is, hibernating.

MachineLastMatchTime: The Unix epoch time when this offline ClassAd would have been
matched to a job, if the machine were online. In addition, theslot1 ClassAd of a multi-slot
machine will haveslot<X>_MachineLastMatchTime defined, where<X> is replaced
by the slot id of each of the slots withMachineLastMatchTime defined.

Offline: A boolean value, that whenTrue , indicates this machine is in an offline state in the
condor_collector. Such ClassAds are stored persistently, such that they willcontinue to exist
after thecondor_collectorrestarts.

Unhibernate: A boolean expression that specifies when a hibernating machine should be woken
up, for example, bycondor_rooster.

Finally, the single attribute,CurrentTime , is defined by the ClassAd environment.

CurrentTime: Evaluates to the the number of integer seconds since the Unixepoch (00:00:00
UTC, Jan 1, 1970).

DaemonMaster ClassAd Attributes

CkptServer: A string with with the fully qualified host name of the machinerunning a check-
point server.

DaemonStartTime: The time that this daemon was started, represented as the number of second
elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970).

Machine: A string with the machine’s fully qualified host name.

Condor Version 7.7.6 Reference Manual

981

MasterIpAddr: String with the IP and port address of thecondor_masterdaemon which is pub-
lishing this DaemonMaster ClassAd.

MonitorSelfAge: The number of seconds that this daemon has been running.

MonitorSelfCPUUsage: The fraction of recent CPU time utilized by this daemon.

MonitorSelfImageSize: The amount of virtual memory consumed by this daemon in Kbytes.

MonitorSelfRegisteredSocketCount: The current number of sockets registered by this
daemon.

MonitorSelfResidentSetSize: The amount of resident memory used by this daemon in
Kbytes.

MonitorSelfSecuritySessions: The number of open (cached) security sessions for this
daemon.

MonitorSelfTime: The time, represented as the number of second elapsed since the Unix epoch
(00:00:00 UTC, Jan 1, 1970), at which this daemon last checked and set the attributes with
names that begin with the stringMonitorSelf .

MyAddress: Description is not yet written.

MyCurrentTime: The time, represented as the number of second elapsed since the Unix epoch
(00:00:00 UTC, Jan 1, 1970), at which thecondor_masterdaemon last sent a ClassAd update
to thecondor_collector.

Name: The name of this resource; typically the same value as theMachine attribute, but could
be customized by the site administrator. On SMP machines, the condor_startdwill divide
the CPUs up into separate slots, each with with a unique name.These names will be of the
form “slot#@full.hostname”, for example, “slot1@vulture.cs.wisc.edu”, which signifies slot
number 1 from vulture.cs.wisc.edu.

PublicNetworkIpAddr: Description is not yet written.

RealUid: The UID under which thecondor_masteris started.

UpdateSequenceNumber: An integer, starting at zero, and incremented with each ClassAd
update sent to thecondor_collector. The condor_collectoruses this value to sequence the
updates it receives.

Scheduler ClassAd Attributes

DaemonCoreDutyCycle: A Statistics attribute defining the ratio of the time spent handling mes-
sages and events to the elapsed time for the time period defined byStatsLifetime of this
condor_schedd. A value near 0.0 indicates an idle daemon, while a value near1.0 indicates a
daemon running at or above capacity.

Condor Version 7.7.6 Reference Manual

982

DaemonStartTime: The time that this daemon was started, represented as the number of second
elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970).

DetectedCpus: The number of detected machine CPUs/cores.

DetectedMemory: The amount of detected machine RAM in MBytes.

JobQueueBirthdate: Description is not yet written.

JobsAccumBadputTime: A Statistics attribute defining the sum of the all of the time jobs which
did not complete successfully have spent running over the lifetime of thiscondor_schedd.

JobsAccumRunningTime: A Statistics attribute defining the sum of the all of the time jobs have
spent running in the time interval defined by attributeStatsLifetime .

JobsAccumTimeToStart: A Statistics attribute defining the sum of all the time jobs have spent
waiting to start in the time interval defined by attributeStatsLifetime .

JobsBadputRuntimes: A Statistics attribute defining a histogram count of jobs that did
not complete successfully, as classified by time spent running, over the lifetime of
this condor_schedd. Counts within the histogram are separated by a comma and
a space, where the time interval classification is defined in the ClassAd attribute
JobsRuntimesHistogramBuckets .

JobsBadputSizes: A Statistics attribute defining a histogram count of jobs that did not com-
plete successfully, as classified by image size, over the lifetime of thiscondor_schedd. Counts
within the histogram are separated by a comma and a space, where the size classification is
defined in the ClassAd attributeJobsSizesHistogramBuckets .

JobsCheckpointed: A Statistics attribute defining the number of times jobs thathave exited
with a condor_shadowexit code ofJOB_CKPTEDin the time interval defined by attribute
StatsLifetime .

JobsCompleted: A Statistics attribute defining the number of jobs successfully completed in the
time interval defined by attributeStatsLifetime .

JobsCompletedRuntimes: A Statistics attribute defining a histogram count of jobs that
completed successfully as classified by time spent running,over the lifetime of
this condor_schedd. Counts within the histogram are separated by a comma and
a space, where the time interval classification is defined in the ClassAd attribute
JobsRuntimesHistogramBuckets .

JobsCompletedSizes: A Statistics attribute defining a histogram count of jobs that completed
successfully as classified by image size, over the lifetime of this condor_schedd. Counts
within the histogram are separated by a comma and a space, where the size classification is
defined in the ClassAd attributeJobsSizesHistogramBuckets .

JobsCoredumped: A Statistics attribute defining the number of times that jobshave exited with
a condor_shadowexit code ofJOB_COREDUMPEDin the time interval defined by attribute
StatsLifetime .

Condor Version 7.7.6 Reference Manual

983

JobsDebugLogError: A Statistics attribute defining the number of times that jobshave exited
with acondor_shadowexit code ofDPRINTF_ERRORin the time interval defined by attribute
StatsLifetime .

JobsExecFailed: A Statistics attribute defining the number of times that jobshave exited with
a condor_shadowexit code ofJOB_EXEC_FAILEDin the time interval defined by attribute
StatsLifetime .

JobsExited: A Statistics attribute defining the number of times that jobsthat exited (successfully
or not) in the time interval defined by attributeStatsLifetime .

JobsExitedAndClaimClosing: A Statistics attribute defining the number of times jobs have
exited with acondor_shadowexit code ofJOB_EXITED_AND_CLAIM_CLOSINGin the
time interval defined by attributeStatsLifetime .

JobsExitedNormally: A Statistics attribute defining the number of times that jobs
have exited with acondor_shadowexit code of JOB_EXITED or with an exit code
of JOB_EXITED_AND_CLAIM_CLOSINGin the time interval defined by attribute
StatsLifetime .

JobsExitException: A Statistics attribute defining the number of times that jobshave exited
with acondor_shadowexit code ofJOB_EXCEPTIONor with an unknown status in the time
interval defined by attributeStatsLifetime .

JobsKilled: A Statistics attribute defining the number of times that jobshave exited with
a condor_shadowexit code of JOB_KILLED in the time interval defined by attribute
StatsLifetime .

JobsMissedDeferralTime: A Statistics attribute defining the number of times that jobshave
exited with acondor_shadowexit code ofJOB_MISSED_DEFERRAL_TIMEin the time
interval defined by attributeStatsLifetime .

JobsNotStarted: A Statistics attribute defining the number of times that jobshave exited with
a condor_shadowexit code ofJOB_NOT_STARTEDin the time interval defined by attribute
StatsLifetime .

JobsRunningRuntimes: A Statistics attribute defining a histogram count of jobs currently
running, as classified by elapsed runtime. Counts within thehistogram are separated by a
comma and a space, where the time interval classification is defined in the ClassAd attribute
JobsRuntimesHistogramBuckets .

JobsRunningSizes: A Statistics attribute defining a histogram count of jobs currently run-
ning, as classified by image size. Counts within the histogram are separated by a
comma and a space, where the size classification is defined in the ClassAd attribute
JobsSizesHistogramBuckets .

JobsRuntimesHistogramBuckets: A Statistics attribute defining the predefined bucket
boundaries for histogram statistics that classify run times. Defined as

JobsRuntimesHistogramBuckets = "30Sec, 1Min, 3Min, 10Min , 30Min, 1Hr, 3Hr,
6Hr, 12Hr, 1Day, 2Day, 4Day, 8Day, 16Day"

Condor Version 7.7.6 Reference Manual

984

JobsShadowNoMemory: A Statistics attribute defining the number of times that jobshave exited
because there was not enough memory to start thecondor_shadowin the time interval defined
by attributeStatsLifetime .

JobsShouldHold: A Statistics attribute defining the number of times that jobshave exited with
a condor_shadowexit code ofJOB_SHOULD_HOLDin the time interval defined by attribute
StatsLifetime .

JobsShouldRemove: A Statistics attribute defining the number of times that jobshave exited
with a condor_shadowexit code ofJOB_SHOULD_REMOVEin the time interval defined by
attributeStatsLifetime .

JobsShouldRequeue: A Statistics attribute defining the number of times that jobshave exited
with acondor_shadowexit code ofJOB_SHOULD_REQUEUEin the time interval defined by
attributeStatsLifetime .

JobsSizesHistogramBuckets: A Statistics attribute defining the predefined bucket bound-
aries for histogram statistics that classify image sizes. Defined as

JobsSizesHistogramBuckets = "64Kb, 256Kb, 1Mb, 4Mb, 16Mb, 64Mb, 256Mb,
1Gb, 4Gb, 16Gb, 64Gb, 256Gb"

JobsStarted: A Statistics attribute defining the number of jobs started inthe time interval de-
fined by attributeStatsLifetime .

JobsSubmitted: A Statistics attribute defining the number of jobs submittedin the time interval
defined by attributeStatsLifetime .

Machine: A string with the machine’s fully qualified host name.

MaxJobsRunning: The same integer value as set by the evaluation of the configuration variable
MAX_JOBS_RUNNING. See the definition at section 3.3.11 on page 217.

MonitorSelfAge: The number of seconds that this daemon has been running.

MonitorSelfCPUUsage: The fraction of recent CPU time utilized by this daemon.

MonitorSelfImageSize: The amount of virtual memory consumed by this daemon in Kbytes.

MonitorSelfRegisteredSocketCount: The current number of sockets registered by this
daemon.

MonitorSelfResidentSetSize: The amount of resident memory used by this daemon in
Kbytes.

MonitorSelfSecuritySessions: The number of open (cached) security sessions for this
daemon.

MonitorSelfTime: The time, represented as the number of second elapsed since the Unix epoch
(00:00:00 UTC, Jan 1, 1970), at which this daemon last checked and set the attributes with
names that begin with the stringMonitorSelf .

Condor Version 7.7.6 Reference Manual

985

MyAddress: Description is not yet written.

MyCurrentTime: The time, represented as the number of second elapsed since the Unix epoch
(00:00:00 UTC, Jan 1, 1970), at which thecondor_schedddaemon last sent a ClassAd update
to thecondor_collector.

Name: The name of this resource; typically the same value as theMachine attribute, but could
be customized by the site administrator. On SMP machines, the condor_startdwill divide
the CPUs up into separate slots, each with with a unique name.These names will be of the
form “slot#@full.hostname”, for example, “slot1@vulture.cs.wisc.edu”, which signifies slot
number 1 from vulture.cs.wisc.edu.

NumUsers: The integer number of distinct users with jobs in thiscondor_schedd’s queue.

PublicNetworkIpAddr: Description is not yet written.

QuillEnabled: The same boolean value as set in the configuration variableQUILL_ENABLED
. See the definition at section 8.3.1 on page 614.

RecentDaemonCoreDutyCycle: A Statistics attribute defining the ratio of the time spent han-
dling messages and events to the elapsed time in the previoustime interval defined by attribute
RecentStatsLifetime .

RecentJobsAccumBadputTime: A Statistics attribute defining the sum of the all of the time
that jobs which did not complete successfully have spent running in the previous time interval
defined by attributeRecentStatsLifetime .

RecentJobsAccumRunningTime: A Statistics attribute defining the sum of the all of
the time jobs which have exited in the previous time intervaldefined by attribute
RecentStatsLifetime spent running.

RecentJobsAccumTimeToStart: A Statistics attribute defining the sum of all the
time jobs which have exited in the previous time interval defined by attribute
RecentStatsLifetime had spent waiting to start.

RecentJobsBadputRuntimes: A Statistics attribute defining a histogram count of jobs that
did not complete successfully, as classified by time spent running, in the previous time interval
defined by attributeRecentStatsLifetime . Counts within the histogram are separated
by a comma and a space, where the time interval classificationis defined in the ClassAd
attributeJobsRuntimesHistogramBuckets .

RecentJobsBadputSizes: A Statistics attribute defining a histogram count of jobs that did
not complete successfully, as classified by image size, in the previous time interval de-
fined by attributeRecentStatsLifetime . Counts within the histogram are separated
by a comma and a space, where the size classification is definedin the ClassAd attribute
JobsSizesHistogramBuckets .

RecentJobsCheckpointed: A Statistics attribute defining the number of times jobs thathave
exited with acondor_shadowexit code ofJOB_CKPTEDin the previous time interval defined
by attributeRecentStatsLifetime .

Condor Version 7.7.6 Reference Manual

986

RecentJobsCompleted: A Statistics attribute defining the number of jobs successfully com-
pleted in the previous time interval defined by attributeRecentStatsLifetime .

RecentJobsCompletedRuntimes: A Statistics attribute defining a histogram count of jobs
that completed successfully, as classified by time spent running, in the previous time interval
defined by attributeRecentStatsLifetime . Counts within the histogram are separated
by a comma and a space, where the time interval classificationis defined in the ClassAd
attributeJobsRuntimesHistogramBuckets .

RecentJobsCompletedSizes: A Statistics attribute defining a histogram count of jobs that
completed successfully, as classified by image size, in the previous time interval defined
by attributeRecentStatsLifetime . Counts within the histogram are separated by
a comma and a space, where the size classification is defined inthe ClassAd attribute
JobsSizesHistogramBuckets .

RecentJobsCoredumped: A Statistics attribute defining the number of times that jobshave
exited with acondor_shadowexit code ofJOB_COREDUMPEDin the previous time interval
defined by attributeRecentStatsLifetime .

RecentJobsDebugLogError: A Statistics attribute defining the number of times that jobs
have exited with acondor_shadowexit code ofDPRINTF_ERRORin the previous time inter-
val defined by attributeRecentStatsLifetime .

RecentJobsExecFailed: A Statistics attribute defining the number of times that jobshave
exited with acondor_shadowexit code ofJOB_EXEC_FAILEDin the previous time interval
defined by attributeRecentStatsLifetime .

RecentJobsExited: A Statistics attribute defining the number of times that jobshave exited
normally in the previous time interval defined by attributeRecentStatsLifetime .

RecentJobsExitedAndClaimClosing: A Statistics attribute defining the num-
ber of times that jobs have exited with acondor_shadow exit code of
JOB_EXITED_AND_CLAIM_CLOSINGin the previous time interval defined by attribute
RecentStatsLifetime .

RecentJobsExitedNormally: A Statistics attribute defining the number of times that jobs
have exited with acondor_shadowexit code ofJOB_EXITED or with an exit code of
JOB_EXITED_AND_CLAIM_CLOSINGin the previous time interval defined by attribute
RecentStatsLifetime .

RecentJobsExitException: A Statistics attribute defining the number of times that jobs
have exited with acondor_shadowexit code ofJOB_EXCEPTIONor with an unknown status
in the previous time interval defined by attributeRecentStatsLifetime .

RecentJobsKilled: A Statistics attribute defining the number of times that jobshave exited
with a condor_shadowexit code ofJOB_KILLED in the previous time interval defined by
attributeRecentStatsLifetime .

RecentJobsMissedDeferralTime: A Statistics attribute defining the number of times that
jobs have exited with acondor_shadowexit code ofJOB_MISSED_DEFERRAL_TIMEin
the previous time interval defined by attributeRecentStatsLifetime .

Condor Version 7.7.6 Reference Manual

987

RecentJobsNotStarted: A Statistics attribute defining the number of times that jobshave
exited with acondor_shadowexit code ofJOB_NOT_STARTEDin the previous time interval
defined by attributeRecentStatsLifetime .

RecentJobsShadowNoMemory: A Statistics attribute defining the number of times that jobs
have exited because there was not enough memory to start thecondor_shadowin the previous
time interval defined by attributeRecentStatsLifetime .

RecentJobsShouldHold: A Statistics attribute defining the number of times that jobshave
exited with acondor_shadowexit code ofJOB_SHOULD_HOLDin the previous time interval
defined by attributeRecentStatsLifetime .

RecentJobsShouldRemove: A Statistics attribute defining the number of times that jobshave
exited with acondor_shadowexit code ofJOB_SHOULD_REMOVEin the previous time in-
terval defined by attributeRecentStatsLifetime .

RecentJobsShouldRequeue: A Statistics attribute defining the number of times that jobs
have exited with acondor_shadowexit code ofJOB_SHOULD_REQUEUEin the previous
time interval defined by attributeRecentStatsLifetime .

RecentJobsStarted: A Statistics attribute defining the number of jobs started inthe previous
time interval defined by attributeRecentStatsLifetime .

RecentJobsSubmitted: A Statistics attribute defining the number of jobs submittedin the
previous time interval defined by attributeRecentStatsLifetime .

RecentShadowsReconnections: A Statistics attribute defining the number of times thatcon-
dor_shadowdaemons lost connection to theircondor_starterdaemons and successfully re-
connected in the previous time interval defined by attributeRecentStatsLifetime . This
statistic only appears in the Scheduler ClassAd if the levelof verbosity set by the configuration
variableSTATISTICS_TO_PUBLISH is set to 2 or higher.

RecentShadowsRecycled: A Statistics attribute defining the number of timescondor_shadow
processes have been recycled for use with a new job in the previous time interval defined by
attributeRecentStatsLifetime . This statistic only appears in the Scheduler ClassAd if
the level of verbosity set by the configuration variableSTATISTICS_TO_PUBLISH is set
to 2 or higher.

RecentShadowsStarted: A Statistics attribute defining the number ofcondor_shadowdae-
mons started in the previous time interval defined by attributeRecentStatsLifetime .

RecentStatsLifetime: A Statistics attribute defining the time in seconds over which statis-
tics values have been collected for attributes with names that begin withRecent . This
value starts at 0, and it may grow to a value as large as the value defined for attribute
RecentWindowMax .

RecentStatsTickTime: A Statistics attribute defining the time that attributes with names that
begin withRecent were last updated, represented as the number of seconds elapsed since the
Unix epoch (00:00:00 UTC, Jan 1, 1970). This statistic only appears in the Scheduler ClassAd
if the level of verbosity set by the configuration variableSTATISTICS_TO_PUBLISH is set
to 2 or higher.

Condor Version 7.7.6 Reference Manual

988

RecentWindowMax: A Statistics attribute defining the maximum time in seconds over which
attributes with names that begin withRecent are collected. The value is set by the config-
uration variableSTATISTICS_WINDOW_SECONDS, which defaults to 1200 seconds (20
minutes). This statistic only appears in the Scheduler ClassAd if the level of verbosity set by
the configuration variableSTATISTICS_TO_PUBLISH is set to 2 or higher.

ScheddIpAddr: String with the IP and port address of thecondor_schedddaemon which is pub-
lishing this Scheduler ClassAd.

ServerTime: Description is not yet written.

ShadowsReconnections: A Statistics attribute defining the number of timescondor_shadows
lost connection to theircondor_starters and successfully reconnected in the previous
StatsLifetime seconds. This statistic only appears in the Scheduler ClassAd if the level
of verbosity set by the configuration variableSTATISTICS_TO_PUBLISH is set to 2 or
higher.

ShadowsRecycled: A Statistics attribute defining the number of timescondor_shadowpro-
cesses have been recycled for use with a new job in the previous StatsLifetime sec-
onds. This statistic only appears in the Scheduler ClassAd if the level of verbosity set by the
configuration variableSTATISTICS_TO_PUBLISH is set to 2 or higher.

ShadowsRunning: A Statistics attribute defining the number ofcondor_shadowdaemons cur-
rently running that are owned by thiscondor_schedd.

ShadowsRunningPeak: A Statistics attribute defining the maximum number ofcondor_shadow
daemons running at one time that were owned by thiscondor_scheddover the lifetime of this
condor_schedd.

ShadowsStarted: A Statistics attribute defining the number ofcondor_shadowdaemons started
in the previous time interval defined by attributeStatsLifetime .

StartLocalUniverse: The same boolean value as set in the configuration variable
START_LOCAL_UNIVERSE. See the definition at section 3.3.11 on page 216.

StartSchedulerUniverse: The same boolean value as set in the configuration variable
START_SCHEDULER_UNIVERSE. See the definition at section 3.3.11 on page 216.

StatsLastUpdateTime: A Statistics attribute defining the time that statistics about jobs were
last updated, represented as the number of seconds elapsed since the Unix epoch (00:00:00
UTC, Jan 1, 1970). This statistic only appears in the Scheduler ClassAd if the level of ver-
bosity set by the configuration variableSTATISTICS_TO_PUBLISH is set to 2 or higher.

StatsLifetime: A Statistics attribute defining the time in seconds over which statistics have
been collected for attributes with names that donot begin withRecent . This statistic only
appears in the Scheduler ClassAd if the level of verbosity set by the configuration variable
STATISTICS_TO_PUBLISH is set to 2 or higher.

TotalFlockedJobs: The total number of jobs from thiscondor_schedddaemon that are cur-
rently flocked to other pools.

Condor Version 7.7.6 Reference Manual

989

TotalHeldJobs: The total number of jobs from thiscondor_schedddaemon that are currently
on hold.

TotalIdleJobs: The total number of jobs from thiscondor_schedddaemon that are currently
idle.

TotalJobAds: The total number of all jobs (in all states) from thiscondor_schedddaemon.

TotalLocalIdleJobs: The total number oflocal universejobs from thiscondor_schedddae-
mon that are currently idle.

TotalLocalRunningJobs: The total number oflocal universejobs from thiscondor_schedd
daemon that are currently running.

TotalRemovedJobs: The current number of all running jobs from thiscondor_schedddaemon
that have remove requests.

TotalRunningJobs: The total number of jobs from thiscondor_schedddaemon that are cur-
rently running.

TotalSchedulerIdleJobs: The total number ofscheduler universejobs from thiscon-
dor_schedddaemon that are currently idle.

TotalSchedulerRunningJobs: The total number ofscheduler universejobs from thiscon-
dor_schedddaemon that are currently running.

UpdateInterval: The interval, in seconds, between publication of thiscondor_scheddClassAd
and the previous publication.

UpdateSequenceNumber: An integer, starting at zero, and incremented with each ClassAd
update sent to thecondor_collector. The condor_collectoruses this value to sequence the
updates it receives.

VirtualMemory: Description is not yet written.

WantResAd: A boolean value that whenTrue causes thecondor_negotiatordaemon to send to
thiscondor_schedddaemon a full machine ClassAd corresponding to a matched job.

Negotiator ClassAd Attributes

DaemonStartTime: The time that this daemon was started, represented as the number of second
elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970).

LastNegotiationCycleActiveSubmitterCount<X>: The integer number of submit-
ters thecondor_negotiatorattempted to negotiate with in the negotiation cycle. The number
<X> appended to the attribute name indicates how many negotiation cycles ago this cycle
happened.

Condor Version 7.7.6 Reference Manual

990

LastNegotiationCycleCandidateSlots<X>: The number of slot ClassAds after filter-
ing byNEGOTIATOR_SLOT_POOLSIZE_CONSTRAINT. This is the number of slots actu-
ally considered for matching. The number<X> appended to the attribute name indicates how
many negotiation cycles ago this cycle happened.

LastNegotiationCycleDuration<X>: The number of seconds that it took to complete the
negotiation cycle. The number<X> appended to the attribute name indicates how many ne-
gotiation cycles ago this cycle happened.

LastNegotiationCycleEnd<X>: The time, represented as the number of seconds since the
Unix epoch, at which the negotiation cycle ended. The number<X> appended to the attribute
name indicates how many negotiation cycles ago this cycle happened.

LastNegotiationCycleMatches<X>: The number of successful matches that were made in
the negotiation cycle. The number<X> appended to the attribute name indicates how many
negotiation cycles ago this cycle happened.

LastNegotiationCycleMatchRate<X>: The number of matched jobs divided by the dura-
tion of this cycle giving jobs per second. The number<X> appended to the attribute name
indicates how many negotiation cycles ago this cycle happened.

LastNegotiationCycleMatchRateSustained<X>: The number of matched jobs di-
vided by the period of this cycle giving jobs per second. The period is the time elapsed
between the end of the previous cycle and the end of this cycle, and so this rate includes the
interval between cycles. The number<X> appended to the attribute name indicates how many
negotiation cycles ago this cycle happened.

LastNegotiationCycleNumIdleJobs<X>: The number of idle jobs considered for match-
making. The number<X> appended to the attribute name indicates how many negotiation
cycles ago this cycle happened.

LastNegotiationCycleNumJobsConsidered<X>: The number of jobs requests returned
from the schedulers for consideration. The number<X> appended to the attribute name indi-
cates how many negotiation cycles ago this cycle happened.

LastNegotiationCycleNumSchedulers<X>: The number of individual schedulers nego-
tiated with during matchmaking. The number<X> appended to the attribute name indicates
how many negotiation cycles ago this cycle happened.

LastNegotiationCyclePeriod<X>: The number of seconds elapsed between the end of
the previous negotiation cycle and the end of this cycle. Thenumber<X> appended to the
attribute name indicates how many negotiation cycles ago this cycle happened.

LastNegotiationCyclePhase1Duration<X>: The duration, in seconds, of Phase 1 of the
negotiation cycle: the process of getting job, submitter and claim ClassAds from thecon-
dor_collector. The number<X> appended to the attribute name indicates how many negotia-
tion cycles ago this cycle happened.

Condor Version 7.7.6 Reference Manual

991

LastNegotiationCyclePhase2Duration<X>: The duration, in seconds, of Phase 2 of the
negotiation cycle: the process of filtering slots and processing accounting group configuration.
The number<X> appended to the attribute name indicates how many negotiation cycles ago
this cycle happened.

LastNegotiationCyclePhase3Duration<X>: The duration, in seconds, of Phase 3 of the
negotiation cycle: sorting submitters by priority. The number<X> appended to the attribute
name indicates how many negotiation cycles ago this cycle happened.

LastNegotiationCyclePhase4Duration<X>: The duration, in seconds, of Phase 4 of the
negotiation cycle: the process of matching slots to jobs in conjunction with the schedulers.
The number<X> appended to the attribute name indicates how many negotiation cycles ago
this cycle happened.

LastNegotiationCycleRejections<X>: The number of rejections that occurred in the
negotiation cycle. The number<X> appended to the attribute name indicates how many ne-
gotiation cycles ago this cycle happened.

LastNegotiationCycleSlotShareIter<X>: The number of iterations performed during
the negotiation cycle. Each iteration includes the reallocation of remaining slots to account-
ing groups, as defined by the implementation of hierarchicalgroup quotas, together with the
negotiation for those slots. The maximum number of iterations is limited by the configuration
variableGROUP_QUOTA_MAX_ALLOCATION_ROUNDS. The number<X> appended to the
attribute name indicates how many negotiation cycles ago this cycle happened.

LastNegotiationCycleSubmittersFailed<X>: A string containing a space and
comma-separated list of the names of all submitters who failed to negotiate in the negotiation
cycle. One possible cause of failure is a communication timeout. This list does not include
submitters who ran out of time due toNEGOTIATOR_MAX_TIME_PER_SUBMITTER.
Those are listed separately inLastNegotiationCycleSubmittersOutOfTime<X> .
The number<X> appended to the attribute name indicates how many negotiation cycles ago
this cycle happened.

LastNegotiationCycleSubmittersOutOfTime<X>: A string containing a space and
comma separated list of the names of all submitters who ran out of time due to
NEGOTIATOR_MAX_TIME_PER_SUBMITTERin the negotiation cycle. The number<X>
appended to the attribute name indicates how many negotiation cycles ago this cycle hap-
pened.

LastNegotiationCycleSubmittersShareLimit: A string containing a space and
comma separated list of names of submitters who encounteredtheir fair-share slot limit during
the negotiation cycle. The number<X> appended to the attribute name indicates how many
negotiation cycles ago this cycle happened.

LastNegotiationCycleTime<X>: The time, represented as the number of second elapsed
since the Unix epoch (00:00:00 UTC, Jan 1, 1970), at which thenegotiation cycle started.
The number<X> appended to the attribute name indicates how many negotiation cycles ago
this cycle happened.

Condor Version 7.7.6 Reference Manual

992

LastNegotiationCycleTotalSlots<X>: The total number of slot ClassAds received by
thecondor_negotiator. The number<X> appended to the attribute name indicates how many
negotiation cycles ago this cycle happened.

LastNegotiationCycleTrimmedSlots<X>: The number of slot ClassAds left after trim-
ming currently claimed slots (when enabled). The number<X> appended to the attribute
name indicates how many negotiation cycles ago this cycle happened.

Machine: A string with the machine’s fully qualified host name.

MyAddress: Description is not yet written.

MyCurrentTime: The time, represented as the number of second elapsed since the Unix epoch
(00:00:00 UTC, Jan 1, 1970), at which thecondor_schedddaemon last sent a ClassAd update
to thecondor_collector.

Name: The name of this resource; typically the same value as theMachine attribute, but could
be customized by the site administrator. On SMP machines, the condor_startdwill divide
the CPUs up into separate slots, each with with a unique name.These names will be of the
form slot#@full.hostname , for example,slot1@vulture.cs.wisc.edu , which
signifies slot number 1 fromvulture.cs.wisc.edu .

NegotiatorIpAddr: String with the IP and port address of thecondor_negotiatordaemon
which is publishing this Negotiator ClassAd.

PublicNetworkIpAddr: Description is not yet written.

UpdateSequenceNumber: An integer, starting at zero, and incremented with each ClassAd
update sent to thecondor_collector. The condor_collectoruses this value to sequence the
updates it receives.

Submitter ClassAd Attributes

FlockedJobs: The number of jobs from this submitter that are running in another pool.

HeldJobs: The number of jobs from this submitter that are in the hold state.

IdleJobs: The number of jobs from this submitter that are now idle.

Name: The fully qualified name of the user or accounting group. It will be of the form
name@submit.domain .

RunningJobs: The number of jobs from this submitter that are running now.

ScheddIpAddr: The IP address associated with thecondor_schedddaemon used by the submit-
ter.

ScheddName: The fully qualified host name of the machine that the submitter submitted from. It
will be of the formsubmit.domain .

Condor Version 7.7.6 Reference Manual

993

SubmitterTag: The fully qualified host name of the central manager of the pool used by the
submitter, if the job flocked to the local pool. Or, it will be the empty string if submitter
submitted from within the local pool.

Defrag ClassAd Attributes

AvgDrainingBadput: Fraction of time CPUs in the pool have spent on jobs that were killed
during draining of the machine. This is calculated in each polling interval by looking at
TotalMachineDrainingBadput . Therefore, it treats evictions of jobs that do and do
not produce checkpoints the same. When thecondor_startdrestarts, its counters start over
from 0, so the average is only over the time since the daemons have been alive.

AvgDrainingUnclaimedTime: Fraction of time CPUs in the pool have spent unclaimed by
a user during draining of the machine. This is calculated in each polling interval by look-
ing atTotalMachineDrainingUnclaimedTime . When thecondor_startdrestarts, its
counters start over from 0, so the average is only over the time since the daemons have been
alive.

DaemonStartTime: The time that this daemon was started, represented as the number of seconds
elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970).

DrainFailures: Total count of failed attempts to initiate draining during the lifetime of this
condor_defragdaemon.

DrainSuccesses: Total count of successful attempts to initiate draining during the lifetime of
thiscondor_defragdaemon.

Machine: A string with the machine’s fully qualified host name.

MachinesDraining: Number of machines that were observed to be draining in the last polling
interval.

MachinesDrainingPeak: Largest number of machines that were ever observed to be draining.

MonitorSelfAge: The number of seconds that this daemon has been running.

MonitorSelfCPUUsage: The fraction of recent CPU time utilized by this daemon.

MonitorSelfImageSize: The amount of virtual memory consumed by this daemon in Kbytes.

MonitorSelfRegisteredSocketCount: The current number of sockets registered by this
daemon.

MonitorSelfResidentSetSize: The amount of resident memory used by this daemon in
Kbytes.

MonitorSelfSecuritySessions: The number of open (cached) security sessions for this
daemon.

Condor Version 7.7.6 Reference Manual

994

MonitorSelfTime: The time, represented as the number of seconds elapsed sincethe Unix
epoch (00:00:00 UTC, Jan 1, 1970), at which this daemon last checked and set the attributes
with names that begin with the stringMonitorSelf .

MyAddress: Description is not yet written.

MyCurrentTime: The time, represented as the number of seconds elapsed sincethe Unix epoch
(00:00:00 UTC, Jan 1, 1970), at which thecondor_defragdaemon last sent a ClassAd update
to thecondor_collector.

Name: The name of this daemon; typically the same value as theMachine attribute, but could be
customized by the site administrator via the configuration variableDEFRAG_NAME.

RecentDrainFailures: Count of failed attempts to initiate draining during the past
RecentStatsLifetime seconds.

RecentDrainSuccesses: Count of successful attempts to initiate draining during the past
RecentStatsLifetime seconds.

RecentStatsLifetime: A Statistics attribute defining the time in seconds over which statistics
values have been collected for attributes with names that begin with Recent .

UpdateSequenceNumber: An integer, starting at zero, and incremented with each ClassAd
update sent to thecondor_collector. The condor_collectoruses this value to sequence the
updates it receives.

WholeMachines: Number of machines that were observed to be defragmented in the last polling
interval.

WholeMachinesPeak: Largest number of machines that were ever observed to be simultane-
ously defragmented.

Collector ClassAd Attributes

CollectorIpAddr: String with the IP and port address of thecondor_collectordaemon which
is publishing this ClassAd.

CurrentJobsRunningAll: An integer value representing the sum of all jobs running under all
universes.

CurrentJobsRunning<universe>: An integer value representing the current number of
jobs running under the universe which forms the attribute name. For example

CurrentJobsRunningVanilla = 567

identifies that thecondor_collector counts 567 vanilla universe jobs currently run-
ning. <universe> is one ofUnknown, Standard , Vanilla , Scheduler , Java ,
Parallel , VM, or Local . There are other universes, but they are not listed here, as they
represent ones that are no longer used in Condor.

Condor Version 7.7.6 Reference Manual

995

DaemonStartTime: The time that this daemon was started, represented as the number of second
elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970).

HostsClaimed: Description is not yet written.

HostsOwner: Description is not yet written.

HostsTotal: Description is not yet written.

HostsUnclaimed: Description is not yet written.

IdleJobs: Description is not yet written.

Machine: A string with the machine’s fully qualified host name.

MaxJobsRunning<universe: An integer value representing the sum of all
MaxJobsRunning<universe> values.

MaxJobsRunning<universe>: An integer value representing largest number of currently run-
ning jobs ever seen under the universe which forms the attribute name, over the life of this
condor_collectorprocess. For example

MaxJobsRunningVanilla = 401

identifies that thecondor_collectorsaw 401 vanilla universe jobs currently running at one
point in time, and that was the largest number it had encountered. <universe> is one of
Unknown, Standard , Vanilla , Scheduler , Java , Parallel , VM, orLocal . There
are other universes, but they are not listed here, as they represent ones that are no longer used
in Condor.

MyAddress: Description is not yet written.

MyCurrentTime: The time, represented as the number of second elapsed since the Unix epoch
(00:00:00 UTC, Jan 1, 1970), at which thecondor_schedddaemon last sent a ClassAd update
to thecondor_collector.

Name: The name of this resource; typically the same value as theMachine attribute, but could
be customized by the site administrator. On SMP machines, the condor_startdwill divide
the CPUs up into separate slots, each with with a unique name.These names will be of the
form “slot#@full.hostname”, for example, “slot1@vulture.cs.wisc.edu”, which signifies slot
number 1 from vulture.cs.wisc.edu.

RunningJobs: Description is not yet written.

UpdateInterval: Description is not yet written.

UpdateSequenceNumber: An integer that begins at 0, and increments by one each time the
same ClassAd is again advertised.

Condor Version 7.7.6 Reference Manual

996

ClassAd Attributes Added by thecondor_collector

AuthenticatedIdentity: The authenticated name assigned by thecondor_collectorto the
daemon that published the ClassAd.

LastHeardFrom: The time inserted into a daemon’s ClassAd representing the time that thiscon-
dor_collectorlast received a message from the daemon. Time is representedas the number of
second elapsed since the Unix epoch (00:00:00 UTC, Jan 1, 1970). This attribute is added if
COLLECTOR_DAEMON_STATSis True .

UpdatesHistory: A bitmap representing the status of the most recent updates received from
the daemon. This attribute is only added ifCOLLECTOR_DAEMON_HISTORY_SIZEis
non-zero. See page 237 for more information on this setting.This attribute is added if
COLLECTOR_DAEMON_STATSis True .

UpdatesLost: An integer count of the number of updates from the daemon thatthe con-
dor_collectorcan definitively determine were lost since thecondor_collectorstarted running.
This attribute is added ifCOLLECTOR_DAEMON_STATSis True .

UpdatesSequenced: An integer count of the number of updates received from the daemon,
for which the condor_collectorcan tell how many were or were not lost, since thecon-
dor_collectorstarted running. This attribute is added ifCOLLECTOR_DAEMON_STATSis
True .

UpdatesTotal: An integer count started when thecondor_collectorstarted running, represent-
ing the sum of the number of updates actually received from the daemon plus the num-
ber of updates that thecondor_collectordetermined were lost. This attribute is added if
COLLECTOR_DAEMON_STATSis True .

DaemonCore Statistics Attributes

DebugOuts: Description not yet written.

PipeMessages: Description not yet written.

PipeRuntime: Description not yet written.

SelectWaittime: Description not yet written.

SignalRuntime: Description not yet written.

Signals: Description not yet written.

SocketRuntime: Description not yet written.

SockMessages: Description not yet written.

TimerRuntime: Description not yet written.

TimersFired: Description not yet written.

Condor Version 7.7.6 Reference Manual

CHAPTER

TWELV

Appendix B: Magic Numbers

997

998

Table 12.1:condor_shadowExit Codes
Value Error Name Description

4 JOB_EXCEPTION the job exited with an exception
44 DPRINTF_ERROR there was a fatal error with dprintf()
100 JOB_EXITED the job exited (not killed)
101 JOB_CKPTED the job did produce a checkpoint
102 JOB_KILLED the job was killed
103 JOB_COREDUMPED the job was killed and a core file was produced
105 JOB_NO_MEM not enough memory to start the condor_shadow
106 JOB_SHADOW_USAGE incorrect arguments to condor_shadow
107 JOB_NOT_CKPTED the job vacated without a checkpoint
107 JOB_SHOULD_REQUEUE same number as JOB_NOT_CKPTED,

to achieve the same behavior.
This exit code implies that we want
the job to be put back in the job queue
and run again.

108 JOB_NOT_STARTED can not connect to thecondor_startdor request refused
109 JOB_BAD_STATUS job status != RUNNING on start up
110 JOB_EXEC_FAILED exec failed for some reason other than ENOMEM
111 JOB_NO_CKPT_FILE there is no checkpoint file (as it was lost)
112 JOB_SHOULD_HOLD the job should be put on hold
113 JOB_SHOULD_REMOVE the job should be removed
114 JOB_MISSED_DEFERRAL_TIME the job goes on hold, because it did not run within the

specified window of time
115 JOB_EXITED_AND_CLAIM_CLOSING the job exited (not killed) but thecondor_startd

is not accepting any more jobs on this claim

Condor Version 7.7.6 Reference Manual

999

Table 12.2: User Log Event Codes
Event Code Description

0 Submit
1 Execute
2 Executable error
3 Checkpointed
4 Job evicted
5 Job terminated
6 Image size
7 Shadow exception
8 Generic
9 Job aborted
10 Job suspended
11 Job unsuspended
12 Job held
13 Job released
14 Node execute
15 Node terminated
16 Post script terminated
17 Globus submit (no longer used)
18 Globus submit failed
19 Globus resource up (no longer used)
20 Globus resource down (no longer used)
21 Remote error
22 Job disconnected
23 Job reconnected
24 Job reconnect failed
25 Grid resource up
26 Grid resource down
27 Grid submit
28 Job ClassAd attribute values added to event log
29 Job status unknown
30 Job status known
31 Unused
32 Unused
33 Attribute update

Condor Version 7.7.6 Reference Manual

1000

Table 12.3: Well-Known Port Numbers
Server Port Number

condor_negotiator 9614 (obsolete, now dynamically allocated)
condor_collector 9618
GT2 gatekeeper 2119
gridftp 2811
GT4 web services 8443

Table 12.4: DaemonCore Commands
Number Name

60000 DC_RAISESIGNAL
60001 DC_PROCESSEXIT
60002 DC_CONFIG_PERSIST
60003 DC_CONFIG_RUNTIME
60004 DC_RECONFIG
60005 DC_OFF_GRACEFUL
60006 DC_OFF_FAST
60007 DC_CONFIG_VAL
60008 DC_CHILDALIVE
60009 DC_SERVICEWAITPIDS
60010 DC_AUTHENTICATE
60011 DC_NOP
60012 DC_RECONFIG_FULL
60013 DC_FETCH_LOG
60014 DC_INVALIDATE_KEY
60015 DC_OFF_PEACEFUL
60016 DC_SET_PEACEFUL_SHUTDOWN
60017 DC_TIME_OFFSET
60018 DC_PURGE_LOG

Table 12.5: DaemonCore Daemon Exit Codes
Exit Code Description

0 Normal exit of daemon
99 DAEMON_SHUTDOWNevaluated toTrue

Condor Version 7.7.6 Reference Manual

INDEX

<DaemonName>_ENVIRONMENTmacro,
196

<Keyword>_HOOK_EVICT_CLAIM
macro, 278, 484

<Keyword>_HOOK_FETCH_WORKmacro,
278, 484, 487

<Keyword>_HOOK_JOB_CLEANUP
macro, 279, 491

<Keyword>_HOOK_JOB_EXIT macro,
278, 486

<Keyword>_HOOK_JOB_EXIT_TIMEOUT
macro, 278, 672, 674

<Keyword>_HOOK_JOB_FINALIZE
macro, 279, 491

<Keyword>_HOOK_PREPARE_JOB
macro, 278, 485, 961

<Keyword>_HOOK_REPLY_CLAIM
macro, 278

<Keyword>_HOOK_REPLY_FETCH
macro, 278, 484

<Keyword>_HOOK_TRANSLATE_JOB
macro, 279, 490

<Keyword>_HOOK_UPDATE_JOB_INFO
macro, 278, 485, 486, 490

<subsys>_LOCK macro, 711
$

as a literal character in a submit descrip-
tion file, 904

$ENV
in configuration file, 167
in submit description file, 905

$RANDOM_CHOICE()
in configuration, 167
in submit description file, 905

$RANDOM_INTEGER()
in configuration, 167, 585

$$
as literal characters in a submit descrip-

tion file, 905
_CONDOR_JOB_AD environment variable,

36
_CONDOR_JOB_IWD environment vari-

able, 36
_CONDOR_MACHINE_AD environment

variable, 36
_CONDOR_SCRATCH_DIR environment

variable, 35
_CONDOR_SLOT environment variable, 35
_CONDOR_WRAPPER_ERROR_FILE en-

vironment variable, 36

ABORT_ON_EXCEPTIONmacro, 174
ACCOUNTANT_LOCAL_DOMAINmacro,

239
accounting

by group, 290
activities and state figure, 303
activity

of a machine, 302
transitions, 303–314
transitions summary, 312

ADD_WINDOWS_FIREWALL_EXCEPTION
macro, 201

administrator’s manual, 130–446
AFS

interaction with, 126
AfterHours macro, 320
agents

1001

INDEX 1002

condor_shadow, 15
ALIVE_INTERVAL macro, 205, 219, 301
ALL_DEBUGmacro, 180
ALLOW_*macro, 603
ALLOW_* macros macro, 351
ALLOW_ADMIN_COMMANDSmacro, 201
ALLOW_ADMINISTRATORmacro, 348
ALLOW_ADVERTISE_MASTERmacro, 348
ALLOW_ADVERTISE_SCHEDDmacro, 348
ALLOW_ADVERTISE_STARTDmacro, 348
ALLOW_CLIENTmacro, 261, 330
ALLOW_CLIENTmacro, 349
ALLOW_CONFIGmacro, 570
ALLOW_CONFIGmacro, 348
ALLOW_DAEMONmacro, 348
ALLOW_NEGOTIATORmacro, 348
ALLOW_OWNERmacro, 348
ALLOW_READmacro, 348
ALLOW_SCRIPTS_TO_RUN_AS_EXECUTABLES

macro, 176
ALLOW_SOAPmacro, 348
ALLOW_VM_CRUFTmacro, 35, 212, 978
ALLOW_WRITEmacro, 348
AllRemoteHosts

job ClassAd attribute, 956
ALWAYS_VM_UNIV_USE_NOBODYmacro,

267
Amazon EC2 Query API, 545
API

Chirp, 516
Command line, 517
Condor GAHP, 517
DRMAA, 505
Perl module, 517
ReadUserLog class, 507
Web Service, 493

APPEND_PREF_STANDARDmacro, 233
APPEND_PREF_VANILLAmacro, 233
APPEND_RANKmacro, 233
APPEND_RANK_STANDARDmacro, 233
APPEND_RANK_VANILLAmacro, 233
APPEND_REQ_STANDARDmacro, 232
APPEND_REQ_VANILLAmacro, 232
APPEND_REQUIREMENTSmacro, 232
ARCHmacro, 166
Args

job ClassAd attribute, 956
argv[0]

Condor use of, 129
AUTH_SSL_CLIENT_CADIRmacro, 264,

339
AUTH_SSL_CLIENT_CAFILEmacro, 264,

339
AUTH_SSL_CLIENT_CERTFILE macro,

264, 339
AUTH_SSL_CLIENT_KEYFILE macro,

264, 339
AUTH_SSL_SERVER_CADIRmacro, 264,

339
AUTH_SSL_SERVER_CAFILEmacro, 264,

339
AUTH_SSL_SERVER_CERTFILEmacro,

264, 339
AUTH_SSL_SERVER_KEYFILE macro,

264, 339
authentication, 333–343

GSI, 336
Kerberos, 339
Kerberos principal, 340
SSL, 339
using a file system, 343
using a remote file system, 343
Windows, 343

authorization
for security, 347

available platforms, 5

Backfill, 426
BOINC Configuration in Condor, 430
BOINC Installation, 429
BOINC Overview, 428
Defining Condor policy, 427
Overview, 427

backfill state, 298, 311
BACKFILL_SYSTEMmacro, 209, 427
BASE_CGROUPmacro, 246, 435
batch system, 10
BENCHMARKS_<JobName>_ARGSmacro,

282
BENCHMARKS_<JobName>_CWDmacro,

282

Condor Version 7.7.6 Reference Manual

INDEX 1003

BENCHMARKS_<JobName>_ENVmacro,
282

BENCHMARKS_<JobName>_EXECUTABLE
macro, 280

BENCHMARKS_<JobName>_JOB_LOAD
macro, 282

BENCHMARKS_<JobName>_KILLmacro,
282

BENCHMARKS_<JobName>_MODEmacro,
281

BENCHMARKS_<JobName>_PERIOD
macro, 281

BENCHMARKS_<JobName>_PREFIX
macro, 280

BENCHMARKS_<JobName>_SLOTS
macro, 280

BENCHMARKS_CONFIG_VALmacro, 279
BENCHMARKS_JOBLISTmacro, 280, 683
BENCHMARKS_MAX_JOB_LOADmacro,

282
BIN macro, 169
BIND_ALL_INTERFACES macro, 185,

375, 655
BOINC_Arguments macro, 431, 433
BOINC_Environment macro, 431
BOINC_Error macro, 431
BOINC_Executable macro, 429, 430,

433
BOINC_InitialDir macro, 429, 430,

432, 433
BOINC_Output macro, 431
BOINC_Owner macro, 429, 430, 433
BOINC_Universe macro, 430

C_GAHP_CONTACT_SCHEDD_DELAY
macro, 249, 724

C_GAHP_LOGmacro, 248, 529
C_GAHP_WORKER_THREAD_LOGmacro,

248
CCB_ADDRESSmacro, 186, 374
CCB_HEARTBEAT_INTERVALmacro, 186
central manager, 130, 131

installation issues, 137
certificate

X.509, 336

CERTIFICATE_MAPFILE macro, 264,
344, 669

cgroup based process tracking, 435
checkpoint, 2, 3, 15, 465

compression, 466
implementation, 465
library interface, 468
periodic, 3, 466, 585
stand alone, 466

checkpoint image, 15
checkpoint server, 131

configuration of, 381
installation, 379–384
multiple servers, 382

Chirp, 58
Chirp.jar, 60
ChirpClient, 59
ChirpInputStream, 58
ChirpOutputStream, 58

Chirp API, 516
CKPT_PROBEmacro, 174
CKPT_SERVER_CHECK_PARENT_INTERVAL

macro, 194
CKPT_SERVER_CLASSAD_FILEmacro,

194
CKPT_SERVER_CLEAN_INTERVAL

macro, 194
CKPT_SERVER_CLIENT_TIMEOUT

macro, 226
CKPT_SERVER_CLIENT_TIMEOUT_RETRY

macro, 226
CKPT_SERVER_DEBUGmacro, 381
CKPT_SERVER_DIRmacro, 194, 381
CKPT_SERVER_HOSTmacro, 194, 378,

382
CKPT_SERVER_INTERVALmacro, 194
CKPT_SERVER_LOGmacro, 381
CKPT_SERVER_MAX_PROCESSESmacro,

194
CKPT_SERVER_MAX_RESTORE_PROCESSES

macro, 195
CKPT_SERVER_MAX_STORE_PROCESSES

macro, 195
CKPT_SERVER_REMOVE_STALE_CKPT_INTERVAL

macro, 194
CKPT_SERVER_SOCKET_BUFSIZE

Condor Version 7.7.6 Reference Manual

INDEX 1004

macro, 194
CKPT_SERVER_STALE_CKPT_AGE_CUTOFF

macro, 195
CkptArch

job ClassAd attribute, 956
CkptOpSys

job ClassAd attribute, 956
claim lease, 301
CLAIM_PARTITIONABLE_LEFTOVERS

macro, 212, 649
CLAIM_WORKLIFEmacro, 205, 313, 323
claimed state, 298, 307
ClassAd, 2, 4, 11, 447–465

attributes, 11, 450
Collector attributes, 994
DaemonCore statistics attributes, 996
DaemonMaster attributes, 980
Defrag attributes, 993
expression examples, 461
expression functions, 451
expression operators, 450, 460
expression syntax of Old ClassAds, 450
job, 11
job attributes, 956
machine, 11
machine attributes, 969
machine example, 12
Negotiator attributes, 989
Scheduler attributes, 981
scope of evaluation, MY., 459
scope of evaluation, TARGET., 459
submitter attributes, 992

ClassAd attribute
CurrentTime, 980
rank, 21, 462
rank examples, 22
requirements, 21, 462

ClassAd attribute added by the con-
dor_collector, 996

AuthenticatedIdentity, 996
LastHeardFrom, 996
UpdatesHistory, 237, 996
UpdatesLost, 237, 996
UpdatesSequenced, 237, 996
UpdatesTotal, 237, 996

ClassAd attribute, ephemeral

RemoteAutoregroup, 288
RemoteGroup, 287
RemoteGroupQuota, 287
RemoteGroupResourcesInUse, 287
RemoteNegotiatingGroup, 287
RemoteUserPrio, 287
RemoteUserResourcesInUse, 287
Slot<N>_RemoteUserPrio, 287
SubmitterAutoregroup, 288
SubmitterGroup, 287
SubmitterGroupQuota, 287
SubmitterGroupResourcesInUse, 287
SubmitterNegotiatingGroup, 287
SubmitterUserPrio, 287
SubmitterUserResourcesInUse, 287

ClassAd Collector attribute
CollectorIpAddr, 994
CurrentJobsRunning<universe>, 994
CurrentJobsRunningAll, 994
DaemonStartTime, 994
HostsClaimed, 995
HostsOwner, 995
HostsTotal, 995
HostsUnclaimed, 995
IdleJobs, 995
Machine, 995
MaxJobsRunning<universe>, 995
MaxJobsRunningAll, 995
MyAddress, 995
MyCurrentTime, 995
Name, 995
RunningJobs, 995
UpdateInterval, 995
UpdateSequenceNumber, 995

ClassAd DaemonMaster attribute
CkptServer, 980
DaemonStartTime, 980
Machine, 980
MasterIpAddr, 980
MonitorSelfAge, 981
MonitorSelfCPUUsage, 981
MonitorSelfImageSize, 981
MonitorSelfRegisteredSocketCount,

981
MonitorSelfResidentSetSize, 981
MonitorSelfSecuritySessions, 981

Condor Version 7.7.6 Reference Manual

INDEX 1005

MonitorSelfTime, 981
MyAddress, 981
MyCurrentTime, 981
Name, 981
PublicNetworkIpAddr, 981
RealUid, 981
UpdateSequenceNumber, 981

ClassAd Defrag attribute
AvgDrainingBadput, 993
AvgDrainingUnclaimedTime, 993
DaemonStartTime, 993
DrainFailures, 993
DrainSuccesses, 993
Machine, 993
MachinesDraining, 993
MachinesDrainingPeak, 993
MonitorSelfAge, 993
MonitorSelfCPUUsage, 993
MonitorSelfImageSize, 993
MonitorSelfRegisteredSocketCount,

993
MonitorSelfResidentSetSize, 993
MonitorSelfSecuritySessions, 993
MonitorSelfTime, 993
MyAddress, 994
MyCurrentTime, 994
Name, 994
RecentDrainFailures, 994
RecentDrainSuccesses, 994
RecentStatsLifetime, 994
UpdateSequenceNumber, 994
WholeMachines, 994
WholeMachinesPeak, 994

ClassAd functions, 451
ceiling(), 453
debug(), 457
eval(), 324, 451
floor(), 453
formatTime(), 456
ifThenElse(), 452
int(), 452
interval(), 457
isBoolean(), 452
isError(), 452
isInteger(), 452
isReal(), 452

isString(), 452
isUndefined(), 452
pow(), 453
quantize(), 453
random(), 454
real(), 453
regexp(), 458
regexps(), 458
round(), 454
size(), 455
splitSlotName(), 455
splitUserName(), 455
strcat(), 454
strcmp(), 455
stricmp(), 455
string(), 453
stringList_regexpMember(), 459
stringListAvg(), 457
stringListIMember(), 458
stringListMax(), 458
stringListMember(), 458
stringListMin(), 457
stringListsIntersect(), 458
stringListSize(), 457
stringListSum(), 457
substr(), 454
time(), 456
toLower(), 455
toUpper(), 455
unparse(), 451

ClassAd job attribute
AccountingGroup, 290
AllRemoteHosts, 956
Args, 956
CkptArch, 956
CkptOpSys, 956
ClusterId, 904, 956
Cmd, 956
CommittedSlotTime, 957
CommittedSuspensionTime, 957
CommittedTime, 956
CompletionDate, 957
ConcurrencyLimits, 956
CumulativeSlotTime, 957
CumulativeSuspensionTime, 957
CurrentHosts, 957

Condor Version 7.7.6 Reference Manual

INDEX 1006

DAGManJobId, 957
DAGParentNodeNames, 74, 957
DeferralPrepTime, 119
DeferralTime, 118
DeferralWindow, 118
DelegateJobGSICredentialsLifetime,

969
DeltacloudAvailableActions, 957
DeltacloudHardwareProfile, 957
DeltacloudHardwareProfileCpu, 957
DeltacloudHardwareProfileMemory,

957
DeltacloudHardwareProfileStorage, 957
DeltacloudImageId, 958
DeltacloudKeyname, 958
DeltacloudPasswordFile, 958
DeltacloudPrivateNetworkAddresses,

958
DeltacloudPublicNetworkAddresses,

958
DeltacloudRealmId, 958
DeltacloudUserData, 958
DeltacloudUsername, 958
DiskUsage, 958
EC2AccessKeyId, 958
EC2AmiID, 958
EC2ElasticIp, 958
EC2InstanceName, 959
EC2InstanceType, 959
EC2KeyPair, 959
EC2RemoteVirtualMachineName, 959
EC2SecretAccessKey, 959
EC2SecurityGroups, 959
EC2TagNames, 959
EC2UserData, 959
EC2UserDataFile, 959
EmailAttributes, 959
EnteredCurrentStatus, 959
ExecutableSize, 959
ExitBySignal, 959
ExitCode, 960
ExitSignal, 960
ExitStatus, 960
GridJobStatus, 960
GridResource, 960
HoldKillSig, 960

HoldReason, 960
HoldReasonCode, 960
HoldReasonSubCode, 960
ImageSize, 960
IwdFlushNFSCache, 127, 961
JobAdInformationAttrs, 961
JobLeaseDuration, 128, 962
JobMaxVacateTime, 962
JobPrio, 962
JobRunCount, 962
JobStartDate, 962
JobStatus, 962
JobUniverse, 962
KeepClaimIdle, 963
KillSig, 963
KillSigTimeout, 963
LastCheckpointPlatform, 963
LastCkptServer, 963
LastCkptTime, 963
LastMatchTime, 963
LastRejMatchReason, 963
LastRejMatchTime, 963
LastSuspensionTime, 963
LastVacateTime, 963
LeaveJobInQueue, 963
LocalSysCpu, 963
LocalUserCpu, 963
MachineAttr<X><N>, 964
MaxHosts, 964
MaxJobRetirementTime, 964
MemoryUsage, 964
MinHosts, 964
NextJobStartDelay, 964
NiceUser, 964
NTDomain, 964
NumCkpts, 964
NumGlobusSubmits, 964
NumJobMatches, 964
NumJobReconnects, 964
NumJobStarts, 964
NumPids, 964
NumRestarts, 965
NumShadowExceptions, 965
NumShadowStarts, 965
NumSystemHolds, 965
OtherJobRemoveRequirements, 965

Condor Version 7.7.6 Reference Manual

INDEX 1007

Owner, 965
ParallelShutdownPolicy, 965
PreserveRelativeExecutable, 965
ProcId, 965
ProportionalSetSizeKb, 965
QDate, 966
ReleaseReason, 966
RemoteIwd, 966
RemoteSysCpu, 966
RemoteUserCpu, 966
RemoteWallClockTime, 966
RemoveKillSig, 966
RequestCpus, 966
RequestDisk, 966
RequestedChroot, 966
RequestMemory, 966
ResidentSetSize, 967
StackSize, 967
StageOutFinish, 967
StageOutStart, 967
StreamErr, 967
StreamOut, 967
SubmitterAutoregroup, 967
SubmitterGroup, 967
SubmitterNegotiatingGroup, 967
TotalSuspensions, 967
TransferErr, 967
TransferExecutable, 967
TransferIn, 968
TransferOut, 968
VM_MACAddr, 969
WantGracefulRemoval, 968
WindowsBuildNumber, 968
WindowsMajorVersion, 968
WindowsMinorVersion, 968
X509UserProxy, 968
X509UserProxyEmail, 968
X509UserProxyExpiration, 968
X509UserProxyFirstFQAN, 968
X509UserProxyFQAN, 968
X509UserProxySubject, 969
X509UserProxyVOName, 969

ClassAd machine attribute
Activity, 969
Arch, 969
AvailSince, 215

AvailTime, 215
AvailTimeEstimate, 215
CheckpointPlatform, 970
ClockDay, 970
ClockMin, 970
CondorLoadAvg, 970
ConsoleIdle, 970
Cpus, 970
CurrentRank, 970
Disk, 970
DotNetVersions, 970
Draining, 970
DrainingRequestId, 970
DynamicSlot, 971
EnteredCurrentActivity, 971
ExpectedMachineGracefulDraining-

Badput, 971
ExpectedMachineGracefulDraining-

Completion, 971
ExpectedMachineQuickDrainingBad-

put, 971
ExpectedMachineQuickDrainingCom-

pletion, 971
FileSystemDomain, 971
HasVM, 971
HookKeyword, 960
JobVM_VCPUS, 971
KeyboardIdle, 971
KFlops, 971
LastAvailInterval, 215
LastDrainStartTime, 972
LastHeardFrom, 972
LoadAvg, 972
Machine, 972
MachineMaxVacateTime, 972
MaxJobRetirementTime, 976
Memory, 972
Mips, 972
MonitorSelfAge, 972
MonitorSelfCPUUsage, 972
MonitorSelfImageSize, 972
MonitorSelfRegisteredSocketCount,

972
MonitorSelfResidentSetSize, 972
MonitorSelfSecuritySessions, 972
MonitorSelfTime, 972

Condor Version 7.7.6 Reference Manual

INDEX 1008

MyAddress, 972
MyType, 972
Name, 972
OpSys, 972
OpSysAndVer, 973
OpSysLegacy, 974
OpSysLongName, 974
OpSysMajorVersion, 974
OpSysName, 975
OpSysShortName, 975
OpSysVer, 975
PartitionableSlot, 976
Requirements, 976
SlotID, 976
SlotWeight, 976
StartdIpAddr, 976
State, 976
TargetType, 977
TotalCpus, 977
TotalMachineDrainingBadput, 977
TotalMachineDrainingUnclaimedTime,

977
TotalTimeBackfillBusy, 977
TotalTimeBackfillIdle, 977
TotalTimeBackfillKilling, 977
TotalTimeClaimedBusy, 977
TotalTimeClaimedIdle, 977
TotalTimeClaimedRetiring, 977
TotalTimeClaimedSuspended, 977
TotalTimeMatchedIdle, 977
TotalTimeOwnerIdle, 977
TotalTimePreemptingKilling, 977
TotalTimePreemptingVacating, 978
TotalTimeUnclaimedBenchmarking,

978
TotalTimeUnclaimedIdle, 978
UidDomain, 978
VirtualMachineID, 978
VirtualMemory, 978
VM_AvailNum, 978
VM_Guest_Mem, 978
VM_Memory, 978
VM_Networking, 978
VM_Type, 978
WindowsBuildNumber, 978
WindowsMajorVersion, 978

WindowsMinorVersion, 978
ClassAd machine attribute (in Claimed State)

ClientMachine, 979
PreemptingOwner, 979
PreemptingRank, 979
PreemptingUser, 979
RemoteAutoregroup, 979
RemoteGroup, 979
RemoteNegotiatingGroup, 979
RemoteOwner, 979
RemoteUser, 979
TotalClaimRunTime, 979
TotalClaimSuspendTime, 979
TotalJobRunTime, 979
TotalJobSuspendTime, 979

ClassAd machine attribute (when offline)
MachineLastMatchTime, 980
Offline, 980
Unhibernate, 980

ClassAd machine attribute (when running)
JobId, 980
JobStart, 980
LastPeriodicCheckpoint, 980

ClassAd Negotiator attribute
DaemonStartTime, 989
LastNegotiationCycleActiveSubmitter-

Count<X>, 989
LastNegotiationCycleCandidateS-

lots<X>, 989
LastNegotiationCycleDuration<X>, 990
LastNegotiationCycleEnd<X>, 990
LastNegotiationCycleMatches<X>, 990
LastNegotiationCycleMatchRate<X>,

990
LastNegotiationCycleMatchRateSus-

tained<X>, 990
LastNegotiationCycleNumIdle-

Jobs<X>, 990
LastNegotiationCycleNumJobsConsid-

ered<X>, 990
LastNegotiationCycleNumSched-

ulers<X>, 990
LastNegotiationCyclePeriod<X>, 990
LastNegotiationCycle-

Phase1Duration<X>, 990

Condor Version 7.7.6 Reference Manual

INDEX 1009

LastNegotiationCycle-
Phase2Duration<X>, 990

LastNegotiationCycle-
Phase3Duration<X>, 991

LastNegotiationCycle-
Phase4Duration<X>, 991

LastNegotiationCycleRejections<X>,
991

LastNegotiationCycleSlotShare-
Iter<X>, 991

LastNegotiationCycleSubmitters-
Failed<X>, 991

LastNegotiationCycleSubmittersOutOf-
Time<X>, 991

LastNegotiationCycleSubmittersShare-
Limit, 991

LastNegotiationCycleTime<X>, 991
LastNegotiationCycleTotalSlots<X>,

991
LastNegotiationCycleTrimmed-

Slots<X>, 992
Machine, 992
MyAddress, 992
MyCurrentTime, 992
Name, 992
NegotiatorIpAddr, 992
PublicNetworkIpAddr, 992
UpdateSequenceNumber, 992

ClassAd Scheduler attribute
DaemonCoreDutyCycle, 981
DaemonStartTime, 981
DetectedCpus, 982
DetectedMemory, 982
JobQueueBirthdate, 982
JobsAccumBadputTime, 982
JobsAccumRunningTime, 982
JobsAccumTimeToStart, 982
JobsBadputRuntimes, 982
JobsBadputSizes, 982
JobsCheckpointed, 982
JobsCompleted, 982
JobsCompletedRuntimes, 982
JobsCompletedSizes, 982
JobsCoredumped, 982
JobsDebugLogError, 982
JobsExecFailed, 983

JobsExited, 983
JobsExitedAndClaimClosing, 983
JobsExitedNormally, 983
JobsExitException, 983
JobsKilled, 983
JobsMissedDeferralTime, 983
JobsNotStarted, 983
JobsRunningRuntimes, 983
JobsRunningSizes, 983
JobsRuntimesHistogramBuckets, 983
JobsShadowNoMemory, 984
JobsShouldHold, 984
JobsShouldRemove, 984
JobsShouldRequeue, 984
JobsSizesHistogramBuckets, 984
JobsStarted, 984
JobsSubmitted, 984
Machine, 984
MaxJobsRunning, 984
MonitorSelfAge, 984
MonitorSelfCPUUsage, 984
MonitorSelfImageSize, 984
MonitorSelfRegisteredSocketCount,

984
MonitorSelfResidentSetSize, 984
MonitorSelfSecuritySessions, 984
MonitorSelfTime, 984
MyAddress, 984
MyCurrentTime, 985
Name, 985
NumUsers, 985
PublicNetworkIpAddr, 985
QuillEnabled, 985
RecentDaemonCoreDutyCycle, 985
RecentJobsAccumBadputTime, 985
RecentJobsAccumRunningTime, 985
RecentJobsAccumTimeToStart, 985
RecentJobsBadputRuntimes, 985
RecentJobsBadputSizes, 985
RecentJobsCheckpointed, 985
RecentJobsCompleted, 985
RecentJobsCompletedRuntimes, 986
RecentJobsCompletedSizes, 986
RecentJobsCoredumped, 986
RecentJobsDebugLogError, 986
RecentJobsExecFailed, 986

Condor Version 7.7.6 Reference Manual

INDEX 1010

RecentJobsExited, 986
RecentJobsExitedAndClaimClosing,

986
RecentJobsExitedNormally, 986
RecentJobsExitException, 986
RecentJobsKilled, 986
RecentJobsMissedDeferralTime, 986
RecentJobsNotStarted, 986
RecentJobsShadowNoMemory, 987
RecentJobsShouldHold, 987
RecentJobsShouldRemove, 987
RecentJobsShouldRequeue, 987
RecentJobsStarted, 987
RecentJobsSubmitted, 987
RecentShadowsReconnections, 987
RecentShadowsRecycled, 987
RecentShadowsStarted, 987
RecentStatsLifetime, 987
RecentStatsTickTime, 987
RecentWindowMax, 987
ScheddIpAddr, 988
ServerTime, 988
ShadowsReconnections, 988
ShadowsRecycled, 988
ShadowsRunning, 988
ShadowsRunningPeak, 988
ShadowsStarted, 988
StartLocalUniverse, 988
StartSchedulerUniverse, 988
StatsLastUpdateTime, 988
StatsLifetime, 988
TotalFlockedJobs, 988
TotalHeldJobs, 988
TotalIdleJobs, 989
TotalJobAds, 989
TotalLocalIdleJobs, 989
TotalLocalRunningJobs, 989
TotalRemovedJobs, 989
TotalRunningJobs, 989
TotalSchedulerIdleJobs, 989
TotalSchedulerRunningJobs, 989
UpdateInterval, 989
UpdateSequenceNumber, 989
VirtualMemory, 989
WantResAd, 989

ClassAd statistics attribute

DebugOuts, 996
PipeMessages, 996
PipeRuntime, 996
SelectWaittime, 996
SignalRuntime, 996
Signals, 996
SocketRuntime, 996
SockMessages, 996
TimerRuntime, 996
TimersFired, 996

ClassAd submitter attribute
FlockedJobs, 992
HeldJobs, 992
IdleJobs, 992
Name, 992
RunningJobs, 992
ScheddIpAddr, 992
ScheddName, 992
SubmitterTag, 992

CLASSAD_LIFETIMEmacro, 235
CLASSAD_USER_LIBSmacro, 176, 701
cleanup_release, 731
CLIENT_TIMEOUTmacro, 235
clipped platform

availability, 5
definition of, 5

clock skew, 591
cloud computing

submitting jobs to Deltacloud, 547
cluster

definition, 956
Cluster macro, 904
ClusterId

job ClassAd attribute, 904, 956
CM_IP_ADDRmacro, 174
Cmd

job ClassAd attribute, 956
COD

attributes, 471
ClusterId, 474
ProcID, 474

authorizing users, 470
condor_cod tool, 475
condor_cod_activate command, 474,

478
condor_cod_deactivate command, 480

Condor Version 7.7.6 Reference Manual

INDEX 1011

condor_cod_delegate_proxy command,
481

condor_cod_release command, 481
condor_cod_renew command, 479
condor_cod_request command, 476
condor_cod_resume command, 480
condor_cod_suspend command, 479
defining an application, 471
defining applications

Job ID, 473
defining attributes by configuration, 474
introduction, 469
limitations, 482
managing claims, 475
optional attributes, 472

Args, 472
Env, 472
Err, 472
In, 472
IWD, 472
JarFiles, 473
JobUniverse, 472
KillSig, 473
Out, 472
StarterUserLog, 473
StarterUserLogUseXML, 473

overview, 470
required attributes, 471

Cmd, 471
Owner, 472

COD (Computing on Demand), 469–482
COLLECTOR_ADDRESS_FILEmacro, 371,

659
COLLECTOR_ADDRESS_FILEmacro, 183
COLLECTOR_CLASS_HISTORY_SIZE

macro, 238
COLLECTOR_DAEMON_HISTORY_SIZE

macro, 237, 735, 919, 996
COLLECTOR_DAEMON_STATSmacro, 237,

238
COLLECTOR_DEBUGmacro, 238
COLLECTOR_HOSTmacro, 168, 200, 371,

591, 659, 822
COLLECTOR_NAMEmacro, 236
COLLECTOR_QUERY_WORKERSmacro,

238

COLLECTOR_REQUIREMENTSmacro, 235
COLLECTOR_SOCKET_BUFSIZEmacro,

236
COLLECTOR_STATS_SWEEPmacro, 237
COLLECTOR_TCP_SOCKET_BUFSIZE

macro, 236
COLLECTOR_UPDATE_INTERVALmacro,

236
CommittedSlotTime

job ClassAd attribute, 957
CommittedSuspensionTime

job ClassAd attribute, 957
CommittedTime

job ClassAd attribute, 956
compilers

supported with condor_compile, 6
CompletionDate

job ClassAd attribute, 957
COMPRESS_PERIODIC_CKPTmacro, 228
COMPRESS_VACATE_CKPTmacro, 228
Computing On Demand

Defining Applications
Job ID, 473
Optional attributes, 472
Required attributes, 471

Computing on Demand (see COD), 469
concurrency limits, 437
CONCURRENCY_LIMIT_DEFAULTmacro,

438
CONCURRENCY_LIMIT_DEFAULT_<group>

macro, 645
ConcurrencyLimits

job ClassAd attribute, 956
Condor

binaries, 580
configuration, 159
contact information, 8, 606
contributions, 6
default policy, 315
distribution, 580
downloading, 580
FAQ, 580–606
flocking, 526
Frequently Asked Questions, 580–606
getting, 580
limitations, under UNIX, 4

Condor Version 7.7.6 Reference Manual

INDEX 1012

mailing lists, 8, 606
new versions, notification of, 606
overview, 1–4
Personal, 581
platforms available, 5
pool, 130
resource allocation, 11
resource management, 2
shared functionality in daemons, 384
source code, 581
universe, 14
Unix administrator, 138
user manual, 10–129

Condor commands
condor_advertise, 733
condor_check_userlogs, 737
condor_checkpoint, 738
condor_chirp, 741
condor_cod, 745
condor_cold_start, 157, 748
condor_cold_stop, 157, 751
condor_compile, 53, 754

list of supported compilers, 6
condor_config_bind, 756
condor_config_val, 758
condor_configure, 762
condor_continue, 767
condor_convert_history, 769
condor_dagman, 771
condor_drain, 776
condor_fetchlog, 779
condor_findhost, 782
condor_glidein, 554, 787
condor_history, 794
condor_hold, 44, 797
condor_install, 762
condor_load_history, 800
condor_master, 802
condor_off, 804
condor_on, 807
condor_power, 810
condor_preen, 812
condor_prio, 44, 52, 814
condor_procd, 816
condor_q, 14, 41, 45, 819
condor_qedit, 827

condor_reconfig, 829
condor_release, 44, 832
condor_reschedule, 834
condor_restart, 837
condor_rm, 14, 43, 840
condor_rmdir, 843
condor_run, 849
condor_set_shutdown, 853
condor_ssh_to_job, 856
condor_stats, 860
condor_status, 12, 14, 21, 41, 42, 864
condor_store_cred, 871
condor_submit, 14, 18, 127, 873
condor_submit_dag, 909
condor_suspend, 915
condor_transfer_data, 917
condor_updates_stats, 919
condor_userprio, 52, 925
condor_vacate, 930
condor_vacate_job, 933
condor_version, 936
condor_wait, 938
gidd_alloc, 945
procd_ctl, 948
really slow; why?, 591

Condor daemon
command line arguments, 386
condor_ckpt_server, 133, 379
condor_collector, 133
condor_credd, 134, 246, 569
condor_dbmsd, 134, 610
condor_defrag, 134, 421
condor_gridmanager, 133
condor_had, 134, 394
condor_hdfs, 134
condor_job_router, 134, 557
condor_kbdd, 133, 407
condor_lease_manager, 134
condor_master, 132, 802
condor_negotiator, 133
condor_procd, 134, 365
condor_quill, 134, 610
condor_replication, 134, 395
condor_rooster, 134, 444
condor_schedd, 132
condor_shadow, 15, 127

Condor Version 7.7.6 Reference Manual

INDEX 1013

condor_shadow, 132
condor_shared_port, 134, 373
condor_startd, 132, 294
condor_starter, 132
condor_transferer, 134, 395
descriptions, 132

Condor GAHP, 528
Condor-C, 528–532

configuration, 528
job submission, 529
limitations, 532

Condor-G, 532–542
GASS, 533
GRAM, 533
GSI, 532
job submission, 534
limitations, 542
proxy, 534
X.509 certificate, 534

CONDOR_ADMINmacro, 172
condor_advertise command, 733
condor_check_userlogs command, 737
condor_checkpoint command, 738
condor_chirp, 741
condor_ckpt_server daemon, 133, 379
condor_cod command, 745
condor_cold_start, 748
condor_cold_stop, 751
condor_collector, 378
condor_collector daemon, 133
condor_compile, 588
condor_compile command, 754

list of supported compilers, 6
condor_config_bind command, 756
condor_config_val command, 758
condor_configure command, 141, 762
condor_continue command, 767
condor_convert_history command, 769
condor_credd daemon, 134, 246, 569
condor_dagman command, 771
condor_dbmsd daemon, 134, 610
condor_defrag daemon, 134, 421
CONDOR_DEVELOPERSmacro, 9, 235
CONDOR_DEVELOPERS_COLLECTOR

macro, 9, 236
condor_drain command, 776

condor_fetchlog command, 779
condor_findhost command, 782
CONDOR_FSYNCmacro, 176
CONDOR_GAHPmacro, 249, 529
condor_glidein command, 787
condor_gridmanager daemon, 133
condor_had daemon, 134, 394
condor_hdfs daemon, 134
condor_history command, 794
condor_hold command, 797
CONDOR_HOSTmacro, 168
CONDOR_IDS

environment variable, 138, 173
CONDOR_IDSmacro, 138, 171, 360
condor_install command, 762
CONDOR_JOB_POLL_INTERVALmacro,

247
condor_job_router daemon, 134, 557
condor_kbdd daemon, 133, 407
condor_lease_manager daemon, 134
condor_load_history command, 800
condor_master daemon, 132, 802
condor_negotiator daemon, 133
condor_off command, 804
condor_on command, 807
condor_power command, 810
condor_preen command, 812
condor_prio command, 814
condor_procd command, 816
condor_procd daemon, 134, 365
condor_q command, 819
condor_qedit command, 827
condor_quill daemon, 134, 610
condor_reconfig command, 829
condor_release command, 832
condor_replication daemon, 134, 395
condor_reschedule command, 834
condor_restart command, 837
condor_rm command, 840
condor_rmdir command, 843
condor_rooster daemon, 134, 444
condor_router_history, 845
condor_router_q, 847
condor_run command, 849
condor_schedd daemon, 132

receiving signal 25, 603

Condor Version 7.7.6 Reference Manual

INDEX 1014

condor_set_shutdown command, 853
condor_shadow, 15, 42
condor_shadow daemon, 132
condor_shared_port daemon, 134, 373
CONDOR_SSH_KEYGENmacro, 65
condor_ssh_to_job command, 856
CONDOR_SSHDmacro, 65
condor_startd daemon, 132
condor_startddaemon, 294
condor_starter daemon, 132
condor_stats command, 860
condor_status command, 864
condor_store_cred command, 871
condor_submit command, 873
condor_submit_dag command, 909
CONDOR_SUPPORT_EMAILmacro, 172
condor_suspend command, 915
condor_transfer_data command, 917
condor_transferer daemon, 134, 395
condor_updates_stats command, 919
condor_userprio command, 925
condor_vacate command, 930
condor_vacate_job command, 933
condor_version command, 936
CONDOR_VIEW_CLASSAD_TYPESmacro,

238, 686
CONDOR_VIEW_HOSTmacro, 168, 410,

411, 663, 704
CONDOR_VM environment variable, 35
condor_wait command, 938
CondorView

Client, 638
Client installation, 639
configuration, 409
Server, 408
use ofcrontabprogram, 640

configuration, 159
checkpoint server configuration vari-

ables, 193
Condor-wide configuration variables,

168
condor_collector configuration vari-

ables, 235
condor_credd configuration variables,

246

condor_defrag configuration variables,
283

condor_gridmanager configuration vari-
ables, 246

condor_hdfs configuration variables,
608

condor_job_router configuration vari-
ables, 250

condor_lease_manager configuration
variables, 252

condor_master configuration variables,
195

condor_negotiator configuration vari-
ables, 238

condor_preen configuration variables,
234

condor_rooster configuration variables,
275

condor_schedd configuration variables,
216

condor_shadow configuration variables,
227

condor_shared_port configuration vari-
ables, 276

condor_ssh_to_job configuration vari-
ables, 274

condor_startd configuration variables,
201

condor_starter configuration variables,
229

condor_submit configuration variables,
232

daemon logging configuration variables,
176

DaemonCore configuration variables,
182

DAGMan configuration variables, 254
example, 297
for flocking, 526
for glidein, 555
grid and glidein configuration variables,

254
Grid Monitor configuration variables,

253
high availability configuration variables,

268

Condor Version 7.7.6 Reference Manual

INDEX 1015

hook configuration variables, 277
network-related configuration variables,

185
of machines, to implement a given pol-

icy, 294
pre-defined macros, 165
PrivSep configuration variables, 265
Quill configuration variables, 614
security configuration variables, 261
shared file system configuration vari-

ables, 189
SMP machines, 416
startd policy, 294
virtual machine configuration variables,

266
Windows platform configuration vari-

ables, 283
configuration change requiring a restart of

Condor, 164
configuration file

$ENV definition, 167
evaluation order, 160
macro definitions, 160
macros, 166
pre-defined macros, 165
subsystem names, 165

configuration files
location, 140

configuration macro
<DaemonName>_ENVIRONMENT,

196
<Keyword>_HOOK_EVICT_CLAIM,

278, 484
<Keyword>_HOOK_FETCH_WORK,

278, 484, 487
<Keyword>_HOOK_JOB_CLEANUP,

279, 491
<Keyword>_HOOK_JOB_EXIT_TIMEOUT,

278, 672, 674
<Keyword>_HOOK_JOB_EXIT, 278,

486
<Keyword>_HOOK_JOB_FINALIZE ,

279, 491
<Keyword>_HOOK_PREPARE_JOB,

278, 485, 961
<Keyword>_HOOK_REPLY_CLAIM,

278
<Keyword>_HOOK_REPLY_FETCH,

278, 484
<Keyword>_HOOK_TRANSLATE_JOB,

279, 490
<Keyword>_HOOK_UPDATE_JOB_INFO,

278, 485, 486, 490
<SUBSYS>_<LEVEL>_LOG, 180
<SUBSYS>_ADDRESS_FILE, 183,

370
<SUBSYS>_ADMIN_EMAIL, 172
<SUBSYS>_ARGS, 196
<SUBSYS>_ATTRS, 183
<SUBSYS>_DAEMON_AD_FILE, 183
<SUBSYS>_DEBUG, 178
<SUBSYS>_ENABLE_SOAP_SSL,

273
<SUBSYS>_EXPRS, 183
<SUBSYS>_LOCK, 177
<SUBSYS>_LOG_KEEP_OPEN, 177
<SUBSYS>_LOG, 176
<SUBSYS>_MAX_FILE_DESCRIPTORS,

186
<SUBSYS>_NOT_RESPONDING_TIMEOUT,

185
<SUBSYS>_SOAP_SSL_PORT, 273
<SUBSYS>_TIMEOUT_MULTIPLIER,

189
<SUBSYS>_USERID, 196
<SUBSYS>, 195
<subsys>_LOCK , 711
ABORT_ON_EXCEPTION, 174
ACCOUNTANT_LOCAL_DOMAIN, 239
ADD_WINDOWS_FIREWALL_EXCEPTION,

201
ALIVE_INTERVAL , 205, 219, 301
ALLOW_* macros, 351
ALLOW_*, 603
ALLOW_ADMIN_COMMANDS, 201
ALLOW_CLIENT, 261, 330
ALLOW_CONFIG, 570
ALLOW_SCRIPTS_TO_RUN_AS_EXECUTABLES,

176
ALLOW_VM_CRUFT, 35, 212, 978
ALL_DEBUG, 180
ALWAYS_VM_UNIV_USE_NOBODY,

Condor Version 7.7.6 Reference Manual

INDEX 1016

267
APPEND_PREF_STANDARD, 233
APPEND_PREF_VANILLA, 233
APPEND_RANK_STANDARD, 233
APPEND_RANK_VANILLA, 233
APPEND_RANK, 233
APPEND_REQUIREMENTS, 232
APPEND_REQ_STANDARD, 232
APPEND_REQ_VANILLA, 232
ARCH, 166
AUTH_SSL_CLIENT_CADIR, 264,

339
AUTH_SSL_CLIENT_CAFILE, 264,

339
AUTH_SSL_CLIENT_CERTFILE,

264, 339
AUTH_SSL_CLIENT_KEYFILE, 264,

339
AUTH_SSL_SERVER_CADIR, 264,

339
AUTH_SSL_SERVER_CAFILE, 264,

339
AUTH_SSL_SERVER_CERTFILE,

264, 339
AUTH_SSL_SERVER_KEYFILE, 264,

339
AfterHours , 320
BACKFILL_SYSTEM, 209, 427
BASE_CGROUP, 246, 435
BENCHMARKS_<JobName>_ARGS,

282
BENCHMARKS_<JobName>_CWD,

282
BENCHMARKS_<JobName>_ENV,

282
BENCHMARKS_<JobName>_EXECUTABLE,

280
BENCHMARKS_<JobName>_JOB_LOAD,

282
BENCHMARKS_<JobName>_KILL,

282
BENCHMARKS_<JobName>_MODE,

281
BENCHMARKS_<JobName>_PERIOD,

281
BENCHMARKS_<JobName>_PREFIX,

280
BENCHMARKS_<JobName>_SLOTS,

280
BENCHMARKS_CONFIG_VAL, 279
BENCHMARKS_JOBLIST, 280, 683
BENCHMARKS_MAX_JOB_LOAD, 282
BIND_ALL_INTERFACES, 185, 375,

655
BIN , 169
BOINC_Arguments , 431, 433
BOINC_Environment , 431
BOINC_Error , 431
BOINC_Executable , 429, 430, 433
BOINC_InitialDir , 429, 430, 432,

433
BOINC_Output , 431
BOINC_Owner, 429, 430, 433
BOINC_Universe , 430
CCB_ADDRESS, 186, 374
CCB_HEARTBEAT_INTERVAL, 186
CERTIFICATE_MAPFILE, 264, 344,

669
CKPT_PROBE, 174
CKPT_SERVER_CHECK_PARENT_INTERVAL,

194
CKPT_SERVER_CLASSAD_FILE,

194
CKPT_SERVER_CLEAN_INTERVAL,

194
CKPT_SERVER_CLIENT_TIMEOUT_RETRY,

226
CKPT_SERVER_CLIENT_TIMEOUT,

226
CKPT_SERVER_DEBUG, 381
CKPT_SERVER_DIR, 194, 381
CKPT_SERVER_HOST, 194, 378, 382
CKPT_SERVER_INTERVAL, 194
CKPT_SERVER_LOG, 381
CKPT_SERVER_MAX_PROCESSES,

194
CKPT_SERVER_MAX_RESTORE_PROCESSES,

195
CKPT_SERVER_MAX_STORE_PROCESSES,

195
CKPT_SERVER_REMOVE_STALE_CKPT_INTERVAL,

194

Condor Version 7.7.6 Reference Manual

INDEX 1017

CKPT_SERVER_SOCKET_BUFSIZE,
194

CKPT_SERVER_STALE_CKPT_AGE_CUTOFF,
195

CLAIM_PARTITIONABLE_LEFTOVERS,
212, 649

CLAIM_WORKLIFE, 205, 313, 323
CLASSAD_LIFETIME, 235
CLASSAD_USER_LIBS, 176, 701
CLIENT_TIMEOUT, 235
CM_IP_ADDR, 174
COLLECTOR_ADDRESS_FILE, 371,

659
COLLECTOR_CLASS_HISTORY_SIZE,

238
COLLECTOR_DAEMON_HISTORY_SIZE,

237, 735, 919, 996
COLLECTOR_DAEMON_STATS, 237,

238
COLLECTOR_DEBUG, 238
COLLECTOR_HOST, 168, 200, 371,

591, 659, 822
COLLECTOR_NAME, 236
COLLECTOR_QUERY_WORKERS, 238
COLLECTOR_REQUIREMENTS, 235
COLLECTOR_SOCKET_BUFSIZE,

236
COLLECTOR_STATS_SWEEP, 237
COLLECTOR_TCP_SOCKET_BUFSIZE,

236
COLLECTOR_UPDATE_INTERVAL,

236
COMPRESS_PERIODIC_CKPT, 228
COMPRESS_VACATE_CKPT, 228
CONCURRENCY_LIMIT_DEFAULT_<group>,

645
CONCURRENCY_LIMIT_DEFAULT,

438
CONDOR_ADMIN, 172
CONDOR_DEVELOPERS_COLLECTOR,

9, 236
CONDOR_DEVELOPERS, 9, 235
CONDOR_FSYNC, 176
CONDOR_GAHP, 249, 529
CONDOR_HOST, 168
CONDOR_IDS, 138, 171, 360

CONDOR_JOB_POLL_INTERVAL,
247

CONDOR_SSHD, 65
CONDOR_SSH_KEYGEN, 65
CONDOR_SUPPORT_EMAIL, 172
CONDOR_VIEW_CLASSAD_TYPES,

238, 686
CONDOR_VIEW_HOST, 168, 410, 411,

663, 704
CONSOLE_DEVICES, 144, 205, 404,

718
CONTINUE, 202, 313
COUNT_HYPERTHREAD_CPUS, 207
CREAM_GAHP, 249, 728
CREATE_CORE_FILES, 174
CREATE_LOCKS_ON_LOCAL_DISK,

178, 697
CREDD_CACHE_LOCALLY, 246
CREDD_HOST, 246
C_GAHP_CONTACT_SCHEDD_DELAY,

249, 724
C_GAHP_LOG, 248, 529
C_GAHP_WORKER_THREAD_LOG,

248
Cluster , 904
DAEMON_LIST, 195, 381, 405, 802
DAEMON_SHUTDOWN_FAST, 184
DAEMON_SHUTDOWN, 184, 1000
DAEMON_SOCKET_DIR, 186, 277, 707
DAGMAN_ABORT_DUPLICATES, 257
DAGMAN_ABORT_ON_SCARY_SUBMIT,

258
DAGMAN_ALLOW_EVENTS, 256
DAGMAN_ALLOW_LOG_ERROR, 260,

685
DAGMAN_ALWAYS_RUN_POST, 260,

658
DAGMAN_AUTO_RESCUE, 258
DAGMAN_CONDOR_RM_EXE, 257
DAGMAN_CONDOR_SUBMIT_EXE,

257
DAGMAN_COPY_TO_SPOOL, 259
DAGMAN_DEBUG_CACHE_ENABLE,

254
DAGMAN_DEBUG_CACHE_SIZE, 254
DAGMAN_DEBUG, 257

Condor Version 7.7.6 Reference Manual

INDEX 1018

DAGMAN_DEFAULT_NODE_LOG, 259
DAGMAN_GENERATE_SUBDAG_SUBMITS,

259
DAGMAN_HOLD_CLAIM_TIME, 85,

260, 650, 651
DAGMAN_IGNORE_DUPLICATE_JOB_EXECUTION,

256
DAGMAN_INSERT_SUB_FILE, 258
DAGMAN_LOG_ON_NFS_IS_ERROR,

257
DAGMAN_MAX_JOBS_IDLE, 255
DAGMAN_MAX_JOBS_SUBMITTED,

255
DAGMAN_MAX_JOB_HOLDS, 259
DAGMAN_MAX_POST_SCRIPTS, 260,

685
DAGMAN_MAX_PRE_SCRIPTS, 260,

685
DAGMAN_MAX_RESCUE_NUM, 101,

259
DAGMAN_MAX_SUBMITS_PER_INTERVAL,

254
DAGMAN_MAX_SUBMIT_ATTEMPTS,

255
DAGMAN_MUNGE_NODE_NAMES, 85,

256
DAGMAN_OLD_RESCUE, 659
DAGMAN_ON_EXIT_REMOVE, 258
DAGMAN_PENDING_REPORT_INTERVAL,

258
DAGMAN_PROHIBIT_MULTI_JOBS,

257, 676
DAGMAN_RESET_RETRIES_UPON_RESCUE,

100, 259
DAGMAN_RETRY_NODE_FIRST, 255,

258
DAGMAN_RETRY_SUBMIT_FIRST,

255
DAGMAN_STARTUP_CYCLE_DETECT,

98, 255
DAGMAN_STORK_RM_EXE, 257
DAGMAN_STORK_SUBMIT_EXE, 257
DAGMAN_SUBMIT_DELAY, 255, 646
DAGMAN_SUBMIT_DEPTH_FIRST,

257
DAGMAN_USER_LOG_SCAN_INTERVAL,

105, 254
DAGMAN_USE_STRICT, 100, 260, 664
DAGMAN_VERBOSITY, 259, 684, 685
DAGMAN_WRITE_PARTIAL_RESCUE,

100, 102, 259, 659
DATABASE_PURGE_INTERVAL, 615
DATABASE_REINDEX_INTERVAL,

616
DBMSD_ARGS, 616
DBMSD_LOG, 616
DBMSD_NOT_RESPONDING_TIMEOUT,

616
DBMSD, 616
DC_DAEMON_LIST, 195
DEAD_COLLECTOR_MAX_AVOIDANCE_TIME,

175
DEBUG_TIME_FORMAT, 178
DEDICATED_EXECUTE_ACCOUNT_REGEXP,

191, 364, 434
DEDICATED_SCHEDULER_USE_FIFO,

225
DEFAULT_DOMAIN_NAME, 174, 378,

596
DEFAULT_IO_BUFFER_BLOCK_SIZE,

233
DEFAULT_IO_BUFFER_SIZE, 233
DEFAULT_PRIO_FACTOR, 239
DEFAULT_RANK_STANDARD, 233
DEFAULT_RANK_VANILLA, 233
DEFAULT_RANK, 233
DEFAULT_UNIVERSE, 232, 880
DEFRAG_DRAINING_MACHINES_PER_HOUR,

283
DEFRAG_INTERVAL, 283, 284
DEFRAG_LOG, 284
DEFRAG_MAX_CONCURRENT_DRAINING,

284
DEFRAG_MAX_WHOLE_MACHINES,

284
DEFRAG_NAME, 283, 994
DEFRAG_RANK, 283
DEFRAG_REQUIREMENTS, 283
DEFRAG_SCHEDULE, 284
DEFRAG_STATE_FILE, 284
DEFRAG_WHOLE_MACHINE_EXPR,

283, 284

Condor Version 7.7.6 Reference Manual

INDEX 1019

DELEGATE_FULL_JOB_GSI_CREDENTIALS,
262

DELEGATE_JOB_GSI_CREDENTIALS_LIFETIME,
229, 262, 685, 892, 969

DELEGATE_JOB_GSI_CREDENTIALS_REFRESH,
229, 262, 685

DELEGATE_JOB_GSI_CREDENTIALS,
262, 892, 969

DELTACLOUD_GAHP, 249, 681
DENY_*, 603
DENY_CLIENT, 261, 663
DEPLOYMENT_RECOMMENDED_DIRS,

158
DEPLOYMENT_RECOMMENDED_EXECS,

158
DEPLOYMENT_RELEASE_DIR, 158
DEPLOYMENT_REQUIRED_DIRS,

158
DEPLOYMENT_REQUIRED_EXECS,

158
DETECTED_CORES, 166, 207
DETECTED_MEMORY, 166, 207
DISCONNECTED_KEYBOARD_IDLE_BOOST,

210, 416
DOT_NET_VERSIONS, 213
D_COMMAND, 352
D_SECURITY, 352
DedicatedScheduler , 208, 423
EC2_GAHP, 249
EMAIL_DOMAIN, 174
EMAIL_SIGNATURE, 172
ENABLE_ADDRESS_REWRITING,

188, 713
ENABLE_BACKFILL, 209, 427, 430
ENABLE_CCB_SERVER, 675
ENABLE_CHIRP, 232, 712
ENABLE_GRID_MONITOR, 253, 725
ENABLE_HISTORY_ROTATION, 173
ENABLE_PERSISTENT_CONFIG,

182, 697, 759
ENABLE_RUNTIME_CONFIG, 182,

759
ENABLE_SOAP_SSL, 273
ENABLE_SOAP, 273
ENABLE_SSH_TO_JOB, 274
ENABLE_URL_TRANSFERS, 232

ENABLE_USERLOG_LOCKING, 178
ENABLE_VERSIONED_OPSYS, 203,

658
ENABLE_WEB_SERVER, 273, 712
ENCRYPT_EXECUTE_DIRECTORY,

263
ENFORCE_CPU_AFFINITY, 231
ENV, 167
EVENT_LOG_FSYNC, 181
EVENT_LOG_JOB_AD_INFORMATION_ATTRS,

50, 182, 668
EVENT_LOG_LOCKING, 181
EVENT_LOG_MAX_ROTATIONS, 181
EVENT_LOG_MAX_SIZE, 181
EVENT_LOG_ROTATION_LOCK, 181
EVENT_LOG_USE_XML, 182
EVENT_LOG, 181, 667
EVICT_BACKFILL , 210, 314, 428
EXECUTE_LOGIN_IS_DEDICATED,

191
EXECUTE, 170, 367, 414, 592, 970
EXEC_TRANSFER_ATTEMPTS, 229
FILESYSTEM_DOMAIN, 166, 192, 378
FILETRANSFER_PLUGINS, 232
FILE_LOCK_VIA_MUTEX, 177
FLOCK_COLLECTOR_HOSTS, 222,

526
FLOCK_FROM, 527
FLOCK_NEGOTIATOR_HOSTS, 222,

527, 696
FLOCK_TO, 526
FS_REMOTE_DIR, 263, 343
FULL_HOSTNAME, 165
FetchWorkDelay , 278, 484, 487
GAHP_ARGS, 248
GAHP, 248
GLEXEC_JOB, 254, 369
GLEXEC_STARTER, 369
GLEXEC, 254, 369
GLIDEIN_SERVER_URLS, 254, 555
GLITE_LOCATION, 249, 543–545,

685
GLOBUS_GATEKEEPER_TIMEOUT,

248
GRAM_VERSION_DETECTION, 248,

539, 696, 698

Condor Version 7.7.6 Reference Manual

INDEX 1020

GRIDMANAGER_CHECKPROXY_INTERVAL,
247

GRIDMANAGER_CONNECT_FAILURE_RETRY_COUNT,
248

GRIDMANAGER_CONTACT_SCHEDD_DELAY,
247

GRIDMANAGER_EMPTY_RESOURCE_DELAY,
247

GRIDMANAGER_GAHP_CALL_TIMEOUT,
248

GRIDMANAGER_GLOBUS_COMMIT_TIMEOUT,
248

GRIDMANAGER_JOB_PROBE_INTERVAL,
247

GRIDMANAGER_LOG, 247
GRIDMANAGER_MAX_JOBMANAGERS_PER_RESOURCE,

248, 539
GRIDMANAGER_MAX_PENDING_REQUESTS,

248
GRIDMANAGER_MAX_SUBMITTED_JOBS_PER_RESOURCE,

247, 725
GRIDMANAGER_MINIMUM_PROXY_TIME,

247
GRIDMANAGER_PROXY_REFRESH_TIME,

247, 651
GRIDMANAGER_RESOURCE_PROBE_DELAY,

247
GRIDMANAGER_RESOURCE_PROBE_INTERVAL,

247
GRIDMANAGER_SELECTION_EXPR,

226
GRIDMAP, 262, 337, 345
GRID_MONITOR_DISABLE_TIME,

253
GRID_MONITOR_HEARTBEAT_TIMEOUT,

253
GRID_MONITOR_NO_STATUS_TIMEOUT,

253
GRID_MONITOR_RETRY_DURATION,

253
GRID_MONITOR, 253, 542
GROUP_ACCEPT_SURPLUS_<groupname>,

244
GROUP_ACCEPT_SURPLUS, 244, 669
GROUP_AUTOREGROUP_<groupname>,

244

GROUP_AUTOREGROUP, 244, 669,
967, 979

GROUP_DYNAMIC_MACH_CONSTRAINT,
241, 655

GROUP_NAMES, 243, 244
GROUP_PRIO_FACTOR_<groupname>,

244
GROUP_QUOTA_<groupname>, 243
GROUP_QUOTA_DYNAMIC_<groupname>,

243
GROUP_QUOTA_MAX_ALLOCATION_ROUNDS,

245, 991
GROUP_QUOTA_ROUND_ROBIN_RATE,

244
GSI_DAEMON_CERT, 261, 336
GSI_DAEMON_DIRECTORY, 261,

336, 337
GSI_DAEMON_KEY, 261, 337
GSI_DAEMON_NAME, 261
GSI_DAEMON_PROXY, 262, 337
GSI_DAEMON_TRUSTED_CA_DIR,

261, 337
GT2_GAHP, 249
HAD_ARGS, 271
HAD_CONNECTION_TIMEOUT, 270
HAD_CONTROLLEE, 270
HAD_DEBUG, 271
HAD_LIST, 270
HAD_LOG, 271
HAD_UPDATE_INTERVAL, 271
HAD_USE_PRIMARY, 270
HAD_USE_REPLICATION, 271, 396
HAD, 271
HAWKEYE_JOBS, 685
HA_<SUBSYS>_LOCK_HOLD_TIME,

269
HA_<SUBSYS>_LOCK_URL, 269
HA_<SUBSYS>_POLL_PERIOD, 270
HA_LOCK_HOLD_TIME, 269
HA_LOCK_URL, 269
HA_POLL_PERIOD, 270
HDFS_ALLOW, 609
HDFS_BACKUPNODE_WEB, 609
HDFS_BACKUPNODE, 609
HDFS_DATANODE_ADDRESS, 609
HDFS_DATANODE_CLASS, 609

Condor Version 7.7.6 Reference Manual

INDEX 1021

HDFS_DATANODE_DIR, 609
HDFS_DATANODE_WEB, 608
HDFS_DENY, 609
HDFS_HOME, 608
HDFS_LOG4J, 609
HDFS_NAMENODE_CLASS, 609
HDFS_NAMENODE_DIR, 609
HDFS_NAMENODE_ROLE, 609
HDFS_NAMENODE_WEB, 608
HDFS_NAMENODE, 608
HDFS_NODETYPE, 609
HDFS_REPLICATION, 610
HDFS_SITE_FILE , 610
HIBERNATE_CHECK_INTERVAL,

213, 443
HIBERNATE, 213, 443
HIBERNATION_OVERRIDE_WOL,

214
HIBERNATION_PLUGIN_ARGS, 214,

671
HIBERNATION_PLUGIN, 214
HIGHPORT, 188, 372
HISTORY, 173
HOLD_JOB_IF_CREDENTIAL_EXPIRES,

247
HOSTALLOW. . ., 182, 759
HOSTALLOW_*, 603
HOSTALLOW_ADMINISTRATOR, 152
HOSTALLOW_NEGOTIATOR_SCHEDD,

527
HOSTALLOW_READ, 152
HOSTALLOW_WRITE, 137, 152, 388,

555
HOSTALLOW, 182
HOSTDENY_*, 603
HOSTDENY_CLIENT, 663
HOSTDENY, 182
HOSTNAME, 165
IGNORE_NFS_LOCK_ERRORS, 193,

655
INCLUDE, 169
INVALID_LOG_FILES , 234, 678, 812
IN_HIGHPORT, 188, 372
IN_LOWPORT, 188, 372
IP_ADDRESS, 165
IS_OWNER, 203, 303

IS_VALID_CHECKPOINT_PLATFORM,
203

JAVA5_HOOK_PREPARE_JOB, 488
JAVA_CLASSPATH_ARGUMENT, 212
JAVA_CLASSPATH_DEFAULT, 212
JAVA_CLASSPATH_SEPARATOR,

212, 669
JAVA_EXTRA_ARGUMENTS, 212,

440, 681
JAVA_MAXHEAP_ARGUMENT, 681
JAVA, 212, 439
JOB_DEFAULT_REQUESTMEMORY,

232, 881, 967
JOB_INHERITS_STARTER_ENVIRONMENT,

231
JOB_IS_FINISHED_INTERVAL ,

219
JOB_QUEUE_LOG, 177, 650
JOB_RENICE_INCREMENT, 229, 295
JOB_ROUTER_DEFAULTS, 250
JOB_ROUTER_ENTRIES_CMD, 250,

563
JOB_ROUTER_ENTRIES_FILE, 250
JOB_ROUTER_ENTRIES_REFRESH,

250
JOB_ROUTER_ENTRIES, 250, 564
JOB_ROUTER_HOOK_KEYWORD, 279
JOB_ROUTER_LOCK, 250, 700
JOB_ROUTER_MAX_JOBS, 251
JOB_ROUTER_NAME, 251
JOB_ROUTER_POLLING_PERIOD,

251, 490
JOB_ROUTER_RELEASE_ON_HOLD,

251
JOB_ROUTER_SOURCE_JOB_CONSTRAINT,

251
JOB_START_COUNT, 219
JOB_START_DELAY, 219
JOB_STOP_COUNT, 219
JOB_STOP_DELAY, 219
KEEP_POOL_HISTORY, 236, 409
KERBEROS_CLIENT_KEYTAB, 265
KERBEROS_MAP_FILE, 340, 345
KERBEROS_SERVER_KEYTAB, 265
KERBEROS_SERVER_PRINCIPAL,

265, 340

Condor Version 7.7.6 Reference Manual

INDEX 1022

KERBEROS_SERVER_SERVICE, 265
KERBEROS_SERVER_USER, 265
KILLING_TIMEOUT , 204, 311, 314,

901, 963
KILL , 202–204, 313, 314
LIBEXEC, 169
LIBVIRT_XML_SCRIPT_ARGS, 267
LIBVIRT_XML_SCRIPT , 267, 674
LIB , 169
LINUX_HIBERNATION_METHOD,

214
LOCAL_CONFIG_DIR_EXCLUDE_REGEXP,

171, 691
LOCAL_CONFIG_DIR, 171
LOCAL_CONFIG_FILE, 140, 164,

170, 403–405, 586
LOCAL_CREDD, 570
LOCAL_DIR, 138, 141, 169, 367
LOCAL_UNIV_EXECUTE, 216
LOCK_DEBUG_LOG_TO_APPEND,

177, 691
LOCK_FILE_UPDATE_INTERVAL,

185
LOCK, 139, 173
LOGS_USE_TIMESTAMP, 178
LOG_ON_NFS_IS_ERROR, 234
LOG, 169, 174, 206, 387
LOWPORT, 188, 372
LSF_GAHP, 249, 544
LeaseManager.CLASSAD_LOG ,

253
LeaseManager.DEBUG_ADS , 252
LeaseManager.DEFAULT_MAX_LEASE_DURATION,

252
LeaseManager.GETADS_INTERVAL ,

252
LeaseManager.MAX_LEASE_DURATION,

252
LeaseManager.MAX_TOTAL_LEASE_DURATION,

252
LeaseManager.PRUNE_INTERVAL ,

252
LeaseManager.QUERY_ADTYPE,

253
LeaseManager.QUERY_CONSTRAINTS,

253

LeaseManager.UPDATE_INTERVAL ,
252

MAIL_FROM, 172
MAIL, 172, 404
MASTER_<SUBSYS>_CONTROLLER,

270
MASTER_<name>_BACKOFF_CEILING,

198
MASTER_<name>_BACKOFF_CONSTANT,

198
MASTER_<name>_BACKOFF_FACTOR,

198
MASTER_<name>_RECOVER_FACTOR,

199
MASTER_ADDRESS_FILE, 200
MASTER_ATTRS, 200
MASTER_BACKOFF_CEILING, 198
MASTER_BACKOFF_CONSTANT, 198
MASTER_BACKOFF_FACTOR, 198
MASTER_CHECK_INTERVAL, 235
MASTER_CHECK_NEW_EXEC_INTERVAL,

197, 388
MASTER_DEBUG, 200
MASTER_HAD_BACKOFF_CONSTANT,

396
MASTER_HA_LIST, 268, 392
MASTER_INSTANCE_LOCK, 201
MASTER_NAME, 168, 200, 802
MASTER_NEW_BINARY_DELAY, 197
MASTER_NEW_BINARY_RESTART,

197, 646
MASTER_RECOVER_FACTOR, 199
MASTER_SHUTDOWN_<Name>, 198,

709
MASTER_UPDATE_INTERVAL, 197
MATCH_TIMEOUT, 300, 307, 313
MAXJOBRETIREMENTTIME, 202,

204, 313
MAX_<SUBSYS>_<LEVEL>_LOG,

181
MAX_<SUBSYS>_LOG, 176, 672
MAX_ACCEPTS_PER_CYCLE, 185
MAX_ACCOUNTANT_DATABASE_SIZE,

239
MAX_CKPT_SERVER_LOG, 381
MAX_CLAIM_ALIVES_MISSED, 205,

Condor Version 7.7.6 Reference Manual

INDEX 1023

220
MAX_CONCURRENT_DOWNLOADS,

218
MAX_CONCURRENT_UPLOADS, 218
MAX_C_GAHP_LOG, 248
MAX_DAGMAN_LOG, 76, 257
MAX_DISCARDED_RUN_TIME, 194,

380
MAX_EVENT_LOG, 181
MAX_FILE_DESCRIPTORS, 186, 189
MAX_HAD_LOG, 271
MAX_HISTORY_LOG, 173
MAX_HISTORY_ROTATIONS, 173
MAX_JOBS_RUNNING, 42, 217, 373,

725, 984
MAX_JOBS_SUBMITTED, 218
MAX_JOB_MIRROR_UPDATE_LAG,

251
MAX_JOB_QUEUE_LOG_ROTATIONS,

173
MAX_NEXT_JOB_START_DELAY,

219, 886, 964
MAX_NUM_<SUBSYS>_LOG, 177,

700, 701
MAX_NUM_CPUS, 207
MAX_PENDING_STARTD_CONTACTS,

218
MAX_PERIODIC_EXPR_INTERVAL,

223
MAX_PROCD_LOG, 245, 703
MAX_REPLICATION_LOG, 272
MAX_SHADOW_EXCEPTIONS, 218
MAX_SLOT_TYPES, 211
MAX_TRACKING_GID, 246, 434
MAX_TRANSFERER_LIFETIME, 271
MAX_TRANSFERER_LOG, 272
MAX_VM_GAHP_LOG, 266
MEMORY_USAGE_METRIC_VM, 232,

646
MEMORY_USAGE_METRIC, 232, 646
MEMORY, 207
MIN_TRACKING_GID, 246, 434
MOUNT_UNDER_SCRATCH, 209, 649
MYPROXY_GET_DELEGATION, 272,

541

MachineMaxVacateTime , 202–
204, 310, 313, 655

NAMED_CHROOT, 231, 649
NEGOTIATE_ALL_JOBS_IN_CLUSTER,

223, 289
NEGOTIATION_CYCLE_STATS_LENGTH,

239, 695
NEGOTIATOR_ADDRESS_FILE, 370
NEGOTIATOR_CONSIDER_PREEMPTION,

242, 323
NEGOTIATOR_CYCLE_DELAY, 238
NEGOTIATOR_DEBUG, 241
NEGOTIATOR_DISCOUNT_SUSPENDED_RESOURCES,

239
NEGOTIATOR_HOST, 168
NEGOTIATOR_IGNORE_USER_PRIORITIES,

552
NEGOTIATOR_INFORM_STARTD,

240
NEGOTIATOR_INTERVAL, 238, 681,

725
NEGOTIATOR_MATCHLIST_CACHING,

242, 552
NEGOTIATOR_MATCH_EXPRS, 242
NEGOTIATOR_MATCH_LOG, 181, 714
NEGOTIATOR_MAX_TIME_PER_PIESPIN,

242
NEGOTIATOR_MAX_TIME_PER_SUBMITTER,

242, 991
NEGOTIATOR_POST_JOB_RANK,

240
NEGOTIATOR_PRE_JOB_RANK, 240
NEGOTIATOR_READ_CONFIG_BEFORE_CYCLE,

243, 646
NEGOTIATOR_SLOT_CONSTRAINT,

241, 655
NEGOTIATOR_SLOT_POOLSIZE_CONSTRAINT,

241, 655, 990
NEGOTIATOR_SOCKET_CACHE_SIZE,

239, 372
NEGOTIATOR_STARTD_CONSTRAINT_REMOVE,

655, 661
NEGOTIATOR_TIMEOUT, 239
NEGOTIATOR_UPDATE_AFTER_CYCLE,

243, 661, 663
NEGOTIATOR_USE_NONBLOCKING_STARTD_CONTACT,

Condor Version 7.7.6 Reference Manual

INDEX 1024

189
NEGOTIATOR_USE_SLOT_WEIGHTS,

245
NETWORK_INTERFACE, 186, 377,

378, 685
NETWORK_MAX_PENDING_CONNECTS,

175
NEW_LOCKING, 697, 703
NICE_USER_PRIO_FACTOR, 239,

286
NODE, 62
NONBLOCKING_COLLECTOR_UPDATE,

189
NORDUGRID_GAHP, 249
NOT_RESPONDING_TIMEOUT, 185
NOT_RESPONDING_WANT_CORE,

185, 691
NO_DNS, 174
NUM_CPUS, 206, 212, 415
NUM_SLOTS_TYPE_<N>, 212, 415
NUM_SLOTS, 212, 415
Node, 904
OBITUARY_LOG_LENGTH, 197
OFFLINE_EXPIRE_ADS_AFTER,

215, 445
OFFLINE_LOG, 214, 215, 276, 445
OPEN_VERB_FOR_<EXT>_FILES,

176
OPSYS_AND_VER, 166
OPSYS_VER, 166
OPSYS, 166
OUT_HIGHPORT, 189, 372
OUT_LOWPORT, 188, 372
PASSWD_CACHE_REFRESH, 175
PBS_GAHP, 249, 543
PERIODIC_CHECKPOINT, 202, 466,

585
PERIODIC_EXPR_INTERVAL, 223
PERIODIC_EXPR_TIMESLICE, 223
PERIODIC_MEMORY_SYNC, 228
PERSISTENT_CONFIG_DIR, 182
PER_JOB_HISTORY_DIR, 225
PID , 166
POLLING_INTERVAL, 204, 308
POOL_HISTORY_DIR, 237, 409
POOL_HISTORY_MAX_STORAGE,

237, 409
POOL_HISTORY_SAMPLING_INTERVAL,

237
PPID, 166
PREEMPTION_RANK_STABLE, 241,

287
PREEMPTION_RANK, 241
PREEMPTION_REQUIREMENTS_STABLE,

241, 287
PREEMPTION_REQUIREMENTS, 52,

240, 242, 286, 822
PREEMPT, 202, 313, 486
PREEN_ADMIN, 234, 812
PREEN_ARGS, 197
PREEN_INTERVAL, 197
PREEN, 196
PRIORITY_HALFLIFE , 52, 239, 285,

288
PRIVATE_NETWORK_INTERFACE,

187, 377, 685
PRIVATE_NETWORK_NAME, 186,

187, 377
PRIVSEP_ENABLED, 265, 367
PRIVSEP_SWITCHBOARD, 266, 367
PROCD_ADDRESS, 246
PROCD_LOG, 245, 651, 698
PROCD_MAX_SNAPSHOT_INTERVAL,

245
PUBLISH_OBITUARIES, 197
ParallelSchedulingGroup , 225,

425, 426
Process , 904
QUERY_TIMEOUT, 235
QUEUE_ALL_USERS_TRUSTED, 221
QUEUE_CLEAN_INTERVAL, 220
QUEUE_SUPER_USERS, 221
QUILL_ADDRESS_FILE, 616
QUILL_ARGS, 614
QUILL_DBSIZE_LIMIT , 615
QUILL_DB_IP_ADDR, 612, 615
QUILL_DB_NAME, 614
QUILL_DB_QUERY_PASSWORD, 616
QUILL_DB_TYPE, 614
QUILL_DB_USER, 614
QUILL_ENABLED, 614, 985
QUILL_IS_REMOTELY_QUERYABLE,

Condor Version 7.7.6 Reference Manual

INDEX 1025

616
QUILL_JOB_HISTORY_DURATION,

615
QUILL_LOG, 614
QUILL_MAINTAIN_DB_CONN, 615
QUILL_MANAGE_VACUUM, 616
QUILL_NAME, 614
QUILL_NOT_RESPONDING_TIMEOUT,

615
QUILL_POLLING_PERIOD, 615
QUILL_RESOURCE_HISTORY_DURATION,

615
QUILL_RUN_HISTORY_DURATION,

615
QUILL_SHOULD_REINDEX, 616
QUILL_USE_SQL_LOG, 614
QUILL , 614
Q_QUERY_TIMEOUT, 175
RANDOM_CHOICE(), 167
RANDOM_INTEGER(), 167, 585
RANK_FACTOR, 425
RANK, 203, 297, 314, 424, 425
RELEASE_DIR, 140, 168, 404
REMOTE_PRIO_FACTOR, 239, 286
REPLICATION_ARGS, 272
REPLICATION_DEBUG, 272
REPLICATION_INTERVAL, 271
REPLICATION_LIST , 271
REPLICATION_LOG, 272
REPLICATION, 272
REQUEST_CLAIM_TIMEOUT, 220
REQUIRE_LOCAL_CONFIG_FILE,

171
RESERVED_DISK, 172, 970
RESERVED_MEMORY, 207
RESERVED_SWAP, 47, 172
RESERVE_AFS_CACHE, 192
ROOSTER_INTERVAL, 276
ROOSTER_MAX_UNHIBERNATE, 276,

701
ROOSTER_UNHIBERNATE_RANK,

276, 701
ROOSTER_UNHIBERNATE, 276
ROOSTER_WAKEUP_CMD, 276
ROTATE_HISTORY_DAILY, 227
ROTATE_HISTORY_MONTHLY, 227

RUNBENCHMARKS, 208, 306, 313
RUN, 170
Requirements , 216
SBIN, 169
SCHEDD_ADDRESS_FILE, 222
SCHEDD_ASSUME_NEGOTIATOR_GONE,

224
SCHEDD_ATTRS, 222
SCHEDD_BACKUP_SPOOL, 225
SCHEDD_CLUSTER_INCREMENT_VALUE,

226
SCHEDD_CLUSTER_INITIAL_VALUE,

226
SCHEDD_CLUSTER_MAXIMUM_VALUE,

226, 696
SCHEDD_COLLECT_STATS_FOR_<name>,

646
SCHEDD_CRON_<JobName>_ARGS,

282
SCHEDD_CRON_<JobName>_CWD,

282
SCHEDD_CRON_<JobName>_ENV,

282
SCHEDD_CRON_<JobName>_EXECUTABLE,

280
SCHEDD_CRON_<JobName>_JOB_LOAD,

282
SCHEDD_CRON_<JobName>_KILL,

282
SCHEDD_CRON_<JobName>_MODE,

281
SCHEDD_CRON_<JobName>_PERIOD,

281
SCHEDD_CRON_<JobName>_PREFIX,

280
SCHEDD_CRON_<JobName>_RECONFIG_RERUN,

281
SCHEDD_CRON_<JobName>_RECONFIG,

281
SCHEDD_CRON_CONFIG_VAL, 279
SCHEDD_CRON_JOBLIST, 280
SCHEDD_CRON_MAX_JOB_LOAD,

282
SCHEDD_CRON_NAME, 279
SCHEDD_DAEMON_AD_FILE, 183
SCHEDD_DEBUG, 222

Condor Version 7.7.6 Reference Manual

INDEX 1026

SCHEDD_ENABLE_SSH_TO_JOB,
274

SCHEDD_EXECUTE, 222
SCHEDD_HOST, 168
SCHEDD_INTERVAL_TIMESLICE,

218
SCHEDD_INTERVAL, 124, 218, 219
SCHEDD_JOB_QUEUE_LOG_FLUSH_DELAY,

227, 724
SCHEDD_LOCK, 222
SCHEDD_MIN_INTERVAL, 219
SCHEDD_NAME, 168, 200, 222, 393
SCHEDD_PREEMPTION_RANK, 225,

426
SCHEDD_PREEMPTION_REQUIREMENTS,

225, 425
SCHEDD_QUERY_WORKERS, 218
SCHEDD_ROUND_ATTR_<xxxx>,

224
SCHEDD_SEND_VACATE_VIA_TCP,

226
SCHED_UNIV_RENICE_INCREMENT,

220
SECONDARY_COLLECTOR_LIST,

200
SEC_*_AUTHENTICATION_METHODS,

261
SEC_*_AUTHENTICATION, 261
SEC_*_CRYPTO_METHODS, 261
SEC_*_ENCRYPTION, 261
SEC_*_INTEGRITY , 261
SEC_*_NEGOTIATION, 261
SEC_<access-level>_SESSION_DURATION ,

262
SEC_<access-level>_SESSION_LEASE ,

263, 705
SEC_DEFAULT_AUTHENTICATION_TIMEOUT,

264
SEC_DEFAULT_SESSION_DURATION,

262, 705
SEC_DEFAULT_SESSION_LEASE,

263, 705
SEC_ENABLE_MATCH_PASSWORD_AUTHENTICATION,

264, 351, 698
SEC_INVALIDATE_SESSIONS_VIA_TCP,

263

SEC_PASSWORD_FILE, 264, 341
SEC_TCP_SESSION_DEADLINE,

263
SEC_TCP_SESSION_TIMEOUT, 263
SETTABLE_ATTRS. . ., 183, 759
SETTABLE_ATTRS_<PERMISSION-LEVEL>,

359
SETTABLE_ATTRS, 183, 359
SGE_GAHP, 249, 544
SHADOW_CHECKPROXY_INTERVAL,

229, 262, 685
SHADOW_DEBUG, 227
SHADOW_JOB_CLEANUP_RETRY_DELAY,

228
SHADOW_LAZY_QUEUE_UPDATE,

228
SHADOW_LOCK, 227
SHADOW_MAX_JOB_CLEANUP_RETRIES,

228
SHADOW_QUEUE_UPDATE_INTERVAL,

227
SHADOW_RENICE_INCREMENT, 220
SHADOW_RUN_UNKNOWN_USER_JOBS,

229, 672
SHADOW_SIZE_ESTIMATE, 172, 220
SHADOW_WORKLIFE, 228, 656
SHADOW, 216
SHARED_PORT_ARGS, 277
SHARED_PORT_DAEMON_AD_FILE,

276
SHARED_PORT_MAX_WORKERS, 276
SHELL, 851
SHUTDOWN_FAST_TIMEOUT, 198
SHUTDOWN_GRACEFUL_TIMEOUT,

183, 205
SIGNIFICANT_ATTRIBUTES , 289
SKIP_WINDOWS_LOGON_NETWORK,

246, 672
SLOT<N>_CPU_AFFINITY, 231
SLOT<N>_EXECUTE, 170, 414
SLOT<N>_JOB_HOOK_KEYWORD,

277, 487
SLOT<N>_USER, 191, 363
SLOTS_CONNECTED_TO_CONSOLE,

210, 416
SLOTS_CONNECTED_TO_KEYBOARD,

Condor Version 7.7.6 Reference Manual

INDEX 1027

210, 416
SLOT_TYPE_<N>_PARTITIONABLE,

211, 420
SLOT_TYPE_<N>, 211, 413
SLOW_CKPT_SPEED, 228
SMTP_SERVER, 172
SOAP_LEAVE_IN_QUEUE, 273, 495
SOAP_SSL_CA_DIR, 273, 274, 711
SOAP_SSL_CA_FILE, 273, 274, 711
SOAP_SSL_DH_FILE, 274
SOAP_SSL_SERVER_KEYFILE_PASSWORD,

273
SOAP_SSL_SERVER_KEYFILE, 273
SOAP_SSL_SKIP_HOST_CHECK,

274, 695
SOFT_UID_DOMAIN, 190, 361
SPOOL, 170
SSH_TO_JOB_<SSH-CLIENT>_CMD,

274
SSH_TO_JOB_SSHD_ARGS, 275
SSH_TO_JOB_SSHD_CONFIG_TEMPLATE,

275
SSH_TO_JOB_SSHD, 275
SSH_TO_JOB_SSH_KEYGEN_ARGS,

275
SSH_TO_JOB_SSH_KEYGEN, 275
STARTD_ADDRESS_FILE, 206
STARTD_AD_REEVAL_EXPR, 243
STARTD_ATTRS, 183, 206, 360, 419,

426
STARTD_AVAIL_CONFIDENCE, 215
STARTD_CLAIM_ID_FILE , 206
STARTD_COMPUTE_AVAIL_STATS,

215
STARTD_CRON_<JobName>_ARGS,

282
STARTD_CRON_<JobName>_CWD,

282
STARTD_CRON_<JobName>_ENV,

282
STARTD_CRON_<JobName>_EXECUTABLE,

280
STARTD_CRON_<JobName>_JOB_LOAD,

282
STARTD_CRON_<JobName>_KILL,

282

STARTD_CRON_<JobName>_MODE,
281

STARTD_CRON_<JobName>_PERIOD,
281

STARTD_CRON_<JobName>_PREFIX,
280

STARTD_CRON_<JobName>_RECONFIG_RERUN,
281

STARTD_CRON_<JobName>_RECONFIG,
281

STARTD_CRON_<JobName>_SLOTS,
280

STARTD_CRON_AUTOPUBLISH, 280
STARTD_CRON_CONFIG_VAL, 279
STARTD_CRON_JOBLIST, 280
STARTD_CRON_JOBS, 685
STARTD_CRON_MAX_JOB_LOAD,

282
STARTD_CRON_NAME, 279
STARTD_DEBUG, 206
STARTD_EXPRS, 183
STARTD_HAS_BAD_UTMP, 205
STARTD_HISTORY, 203
STARTD_JOB_EXPRS, 206, 241
STARTD_JOB_HOOK_KEYWORD, 277,

487
STARTD_MAX_AVAIL_PERIOD_SAMPLES,

216
STARTD_NAME, 207
STARTD_NOCLAIM_SHUTDOWN, 208
STARTD_PUBLISH_DOTNET, 212,

213
STARTD_PUBLISH_WINREG, 208,

685
STARTD_RESOURCE_PREFIX, 210
STARTD_SENDS_ALIVES, 220, 696
STARTD_SHOULD_WRITE_CLAIM_ID_FILE,

206
STARTD_SLOT_ATTRS, 211
STARTD_VM_ATTRS, 211
STARTD_VM_EXPRS, 211
STARTER_ALLOW_RUNAS_OWNER,

191, 363, 433
STARTER_CHOOSES_CKPT_SERVER,

194, 382
STARTER_DEBUG, 230

Condor Version 7.7.6 Reference Manual

INDEX 1028

STARTER_INITIAL_UPDATE_INTERVAL,
485

STARTER_JOB_ENVIRONMENT, 231
STARTER_JOB_HOOK_KEYWORD,

487
STARTER_LOCAL_LOGGING, 229
STARTER_LOCAL, 216
STARTER_UPDATE_INTERVAL_TIMESLICE,

230
STARTER_UPDATE_INTERVAL, 230,

485
STARTER_UPLOAD_TIMEOUT, 231
STARTER, 204
START_BACKFILL, 209, 307, 314,

427, 430
START_DAEMONS, 197
START_LOCAL_UNIVERSE, 216,

725, 988
START_MASTER, 197
START_SCHEDULER_UNIVERSE,

216, 725, 988
START, 201, 210, 295, 313, 424
STATE_FILE , 271
STATISTICS_TO_PUBLISH, 227
STATISTICS_WINDOW_SECONDS,

227, 988
STRICT_CLASSAD_EVALUATION,

176, 449
SUBMIT_EXPRS, 234, 437
SUBMIT_MAX_PROCS_IN_CLUSTER,

234
SUBMIT_SEND_RESCHEDULE, 234
SUBMIT_SKIP_FILECHECKS, 233
SUBSYSTEM, 165
SUSPEND, 202, 313
SYSAPI_GET_LOADAVG, 175
SYSTEM_JOB_MACHINE_ATTRS_HISTORY_LENGTH,

221, 695
SYSTEM_JOB_MACHINE_ATTRS,

221, 222, 695, 900, 957
SYSTEM_PERIODIC_HOLD_REASON,

223, 663
SYSTEM_PERIODIC_HOLD_SUBCODE,

224, 663
SYSTEM_PERIODIC_HOLD, 223, 961
SYSTEM_PERIODIC_RELEASE, 224

SYSTEM_PERIODIC_REMOVE, 224
SlotWeight , 206
TCP_FORWARDING_HOST, 187, 719
TCP_UPDATE_COLLECTORS, 189
TILDE , 165
TOOLS_PROVIDE_OLD_MESSAGES,

724
TOOL_DEBUG, 180
TOUCH_LOG_INTERVAL, 178
TRANSFERER_DEBUG, 272
TRANSFERER_LOG, 272
TRANSFERER, 272
TRUNC_<SUBSYS>_<LEVEL>_LOG_ON_OPEN,

181
TRUNC_<SUBSYS>_LOG_ON_OPEN,

177, 181
TRUST_UID_DOMAIN, 190, 681
UID_DOMAIN, 166, 189, 361, 377, 378,

880
UNAME_ARCH, 166
UNAME_OPSYS, 166
UNHIBERNATE, 214, 276, 444
UNICORE_GAHP, 249
UPDATE_COLLECTOR_WITH_TCP,

189, 379
UPDATE_INTERVAL, 204, 280, 305
UPDATE_OFFSET, 204
USERNAME, 166
USER_JOB_WRAPPER, 230, 436, 596
USE_AFS, 193
USE_CKPT_SERVER, 194, 382
USE_CLONE_TO_CREATE_PROCESSES,

184, 670
USE_GID_PROCESS_TRACKING,

246, 434
USE_NFS, 192
USE_PROCD, 245, 265, 368, 434
USE_PROCESS_GROUPS, 201
USE_PSS, 232, 649
USE_SHARED_PORT, 186, 373
USE_VISIBLE_DESKTOP, 231, 573,

728
VALID_COD_USERS, 471
VALID_SPOOL_FILES, 234, 269,

392, 812
VMP_HOST_MACHINE, 268, 411

Condor Version 7.7.6 Reference Manual

INDEX 1029

VMP_VM_LIST, 268, 411
VMWARE_BRIDGE_NETWORKING_TYPE,

268
VMWARE_LOCAL_SETTINGS_FILE,

268
VMWARE_NAT_NETWORKING_TYPE,

268
VMWARE_NETWORKING_TYPE, 268
VMWARE_PERL, 267
VMWARE_SCRIPT, 267
VM_BRIDGE_SCRIPT, 713
VM_GAHP_LOG, 266
VM_GAHP_REQ_TIMEOUT, 266
VM_GAHP_SERVER, 266
VM_MAX_NUMBER, 266, 978
VM_MEMORY, 266, 978
VM_NETWORKING_BRIDGE_INTERFACE,

267, 713
VM_NETWORKING_DEFAULT_TYPE,

267
VM_NETWORKING_TYPE, 267
VM_NETWORKING, 267
VM_RECHECK_INTERVAL, 266
VM_SOFT_SUSPEND, 266
VM_STATUS_INTERVAL, 266
VM_TYPE, 266, 978
VM_UNIV_NOBODY_USER, 266
WALL_CLOCK_CKPT_INTERVAL,

221
WANT_HOLD_REASON, 202
WANT_HOLD_SUBCODE, 202, 656
WANT_HOLD, 202, 656, 961
WANT_SUSPEND, 203, 313
WANT_UDP_COMMAND_SOCKET, 175,

240
WANT_VACATE, 203, 204, 314
WARN_ON_UNUSED_SUBMIT_FILE_MACROS,

233, 874
WEB_ROOT_DIR, 273
WINDOWED_STAT_WIDTH, 218
WINDOWS_FIREWALL_FAILURE_RETRY,

201
WINDOWS_RMDIR_OPTIONS, 283
WINDOWS_RMDIR, 283
WorkHours , 320
XEN_BOOTLOADER, 268

grid_resource , 539
remote_initialdir , 647
vm_cdrom_files , 711
ALLOW_ADMINISTRATOR, 348
ALLOW_ADVERTISE_MASTER, 348
ALLOW_ADVERTISE_SCHEDD, 348
ALLOW_ADVERTISE_STARTD, 348
ALLOW_CLIENT, 349
ALLOW_CONFIG, 348
ALLOW_DAEMON, 348
ALLOW_NEGOTIATOR, 348
ALLOW_OWNER, 348
ALLOW_READ, 348
ALLOW_SOAP, 348
ALLOW_WRITE, 348
COLLECTOR_ADDRESS_FILE, 183
DENY_ADMINISTRATOR, 348
DENY_ADVERTISE_MASTER, 348
DENY_ADVERTISE_SCHEDD, 348
DENY_ADVERTISE_STARTD, 348
DENY_CLIENT, 349
DENY_CONFIG, 348
DENY_DAEMON, 348
DENY_NEGOTIATOR, 348
DENY_OWNER, 348
DENY_READ, 348
DENY_SOAP, 348
DENY_WRITE, 348
IS_VALID_CHECKPOINT_PLATFORM,

296
MAXJOBRETIREMENTTIME, 322
NEGOTIATOR_ADDRESS_FILE, 183
SEC_ADMINISTRATOR_AUTHENTICATION_METHODS,

334
SEC_ADMINISTRATOR_AUTHENTICATION,

333
SEC_ADMINISTRATOR_CRYPTO_METHODS,

346
SEC_ADMINISTRATOR_ENCRYPTION,

345
SEC_ADMINISTRATOR_INTEGRITY,

347
SEC_ADVERTISE_MASTER_AUTHENTICATION_METHODS,

334
SEC_ADVERTISE_MASTER_AUTHENTICATION,

333

Condor Version 7.7.6 Reference Manual

INDEX 1030

SEC_ADVERTISE_MASTER_CRYPTO_METHODS,
346

SEC_ADVERTISE_MASTER_ENCRYPTION,
345

SEC_ADVERTISE_MASTER_INTEGRITY,
347

SEC_ADVERTISE_SCHEDD_AUTHENTICATION_METHODS,
334

SEC_ADVERTISE_SCHEDD_AUTHENTICATION,
333

SEC_ADVERTISE_SCHEDD_CRYPTO_METHODS,
346

SEC_ADVERTISE_SCHEDD_ENCRYPTION,
345

SEC_ADVERTISE_SCHEDD_INTEGRITY,
347

SEC_ADVERTISE_STARTD_AUTHENTICATION_METHODS,
334

SEC_ADVERTISE_STARTD_AUTHENTICATION,
333

SEC_ADVERTISE_STARTD_CRYPTO_METHODS,
346

SEC_ADVERTISE_STARTD_ENCRYPTION,
345

SEC_ADVERTISE_STARTD_INTEGRITY,
347

SEC_CLIENT_AUTHENTICATION_METHODS,
334

SEC_CLIENT_AUTHENTICATION,
333

SEC_CLIENT_CRYPTO_METHODS,
346

SEC_CLIENT_ENCRYPTION, 345
SEC_CLIENT_INTEGRITY, 347
SEC_CONFIG_AUTHENTICATION_METHODS,

334
SEC_CONFIG_AUTHENTICATION,

333
SEC_CONFIG_CRYPTO_METHODS,

346
SEC_CONFIG_ENCRYPTION, 345
SEC_CONFIG_INTEGRITY, 347
SEC_DAEMON_AUTHENTICATION_METHODS,

334
SEC_DAEMON_AUTHENTICATION,

333

SEC_DAEMON_CRYPTO_METHODS,
346

SEC_DAEMON_ENCRYPTION, 345
SEC_DAEMON_INTEGRITY, 347
SEC_DEFAULT_AUTHENTICATION_METHODS,

334
SEC_DEFAULT_AUTHENTICATION,

333
SEC_DEFAULT_CRYPTO_METHODS,

346
SEC_DEFAULT_ENCRYPTION, 345
SEC_DEFAULT_INTEGRITY, 347
SEC_NEGOTIATOR_AUTHENTICATION_METHODS,

334
SEC_NEGOTIATOR_AUTHENTICATION,

333
SEC_NEGOTIATOR_CRYPTO_METHODS,

346
SEC_NEGOTIATOR_INTEGRITY,

347
SEC_OWNER_AUTHENTICATION_METHODS,

334
SEC_OWNER_AUTHENTICATION,

333
SEC_OWNER_CRYPTO_METHODS,

346
SEC_OWNER_ENCRYPTION, 345
SEC_OWNER_INTEGRITY, 347
SEC_READ_AUTHENTICATION_METHODS,

334
SEC_READ_AUTHENTICATION, 333
SEC_READ_CRYPTO_METHODS, 346
SEC_READ_ENCRYPTION, 345
SEC_READ_INTEGRITY, 347
SEC_WRITE_AUTHENTICATION_METHODS,

334
SEC_WRITE_AUTHENTICATION,

333
SEC_WRITE_CRYPTO_METHODS,

346
SEC_WRITE_ENCRYPTION, 345
SEC_WRITE_INTEGRITY, 347

CONSOLE_DEVICESmacro, 144, 205, 404,
718

CONTINUEmacro, 202, 313
contrib module

Condor Version 7.7.6 Reference Manual

INDEX 1031

CondorView client, 638
COUNT_HYPERTHREAD_CPUSmacro, 207
crashes, 603
cream, 547
CREAM_GAHPmacro, 249, 728
CREATE_CORE_FILESmacro, 174
CREATE_LOCKS_ON_LOCAL_DISK

macro, 178, 697
CREDD_CACHE_LOCALLYmacro, 246
CREDD_HOSTmacro, 246
Crondor, 120
CronTab job scheduling, 120
crontab program, 640
CumulativeSlotTime

job ClassAd attribute, 957
CumulativeSuspensionTime

job ClassAd attribute, 957
current working directory, 364
CurrentHosts

job ClassAd attribute, 957
cwd

of jobs, 364

D_COMMANDmacro, 352
D_SECURITYmacro, 352
daemon

condor_ckpt_server, 133, 379
condor_collector, 133
condor_credd, 134, 246, 569
condor_dbmsd, 134, 610
condor_defrag, 134, 421
condor_gridmanager, 133
condor_had, 134, 394
condor_hdfs, 134
condor_job_router, 134, 557
condor_kbdd, 133, 407
condor_lease_manager, 134
condor_master, 132, 802
condor_negotiator, 133
condor_procd, 134, 365
condor_quill, 134, 610
condor_replication, 134, 395
condor_rooster, 134, 444
condor_schedd, 132
condor_shadow, 132
condor_shared_port, 134, 373

condor_startd, 132, 294
condor_starter, 132
condor_transferer, 134, 395
descriptions, 132
running as root, 127

Daemon ClassAd Hooks, 491
DAEMON_LISTmacro, 195, 381, 405, 802
DAEMON_SHUTDOWNmacro, 184, 1000
DAEMON_SHUTDOWN_FASTmacro, 184
DAEMON_SOCKET_DIRmacro, 186, 277,

707
daemoncore, 384–387

command line arguments, 386
Unix signals, 385

DAGMan, 66–113
ABORT-DAG-ON, 77
CONFIG, 84
DAG FINAL node, 98
DAG input file, 67
$DAG_STATUSvalue, 98
DAGs within DAGs, 86
default log file specification, 73
describing dependencies, 72
dot, 103
example submit description file, 74
$FAILED_COUNTvalue, 99
File Paths in DAGs, 103
$JOB value, 71
job submission, 75
$JOBID value, 71
jobstate.log file, 106
large numbers of jobs, 109
lazy log file evaluation, 73
machine-readable event history, 106
$MAX_RETRIESvalue, 71
node status file, 104
POST script, 69
PRE and POST scripts, 69
PRE script, 69
PRE_SKIP command, 70
$PRE_SCRIPT_RETURNvalue, 71
Rescue DAG, 100
$RETRYvalue, 71
RETRY of failed nodes, 77
$RETURNvalue, 71

Condor Version 7.7.6 Reference Manual

INDEX 1032

Single submission of multiple, indepen-
dent DAGs, 85

Splicing DAGs, 90
submit description file with, 72
usage of log files, 72
VARS (macro for submit description

file), 78
visualizing DAGs, 103

DAGMan input file
ABORT-DAG-ON key word, 77
CATEGORY key word, 83
CONFIG key word, 84
DATA key word, 68
FINAL key word, 98
JOB key word, 67
MAXJOBS key word, 83
PARENT. . .CHILD key word, 72
PRE_SKIP key word, 70
PRIORITY key word, 82
RETRY key word, 77
SCRIPT key word, 69
SPLICE key word, 90
SUBDAG key word, 86
VARS key word, 78

DAGMAN_ABORT_DUPLICATESmacro,
257

DAGMAN_ABORT_ON_SCARY_SUBMIT
macro, 258

DAGMAN_ALLOW_EVENTSmacro, 256
DAGMAN_ALLOW_LOG_ERRORmacro, 260,

685
DAGMAN_ALWAYS_RUN_POSTmacro, 260,

658
DAGMAN_AUTO_RESCUEmacro, 258
DAGMAN_CONDOR_RM_EXEmacro, 257
DAGMAN_CONDOR_SUBMIT_EXEmacro,

257
DAGMAN_COPY_TO_SPOOLmacro, 259
DAGMAN_DEBUGmacro, 257
DAGMAN_DEBUG_CACHE_ENABLEmacro,

254
DAGMAN_DEBUG_CACHE_SIZEmacro,

254
DAGMAN_DEFAULT_NODE_LOGmacro,

259
DAGMAN_GENERATE_SUBDAG_SUBMITS

macro, 259
DAGMAN_HOLD_CLAIM_TIMEmacro, 85,

260, 650, 651
DAGMAN_IGNORE_DUPLICATE_JOB_EXECUTION

macro, 256
DAGMAN_INSERT_SUB_FILEmacro, 258
DAGMAN_LOG_ON_NFS_IS_ERROR

macro, 257
DAGMAN_MAX_JOB_HOLDSmacro, 259
DAGMAN_MAX_JOBS_IDLEmacro, 255
DAGMAN_MAX_JOBS_SUBMITTEDmacro,

255
DAGMAN_MAX_POST_SCRIPTSmacro,

260, 685
DAGMAN_MAX_PRE_SCRIPTSmacro, 260,

685
DAGMAN_MAX_RESCUE_NUMmacro, 101,

259
DAGMAN_MAX_SUBMIT_ATTEMPTS

macro, 255
DAGMAN_MAX_SUBMITS_PER_INTERVAL

macro, 254
DAGMAN_MUNGE_NODE_NAMESmacro,

85, 256
DAGMAN_OLD_RESCUEmacro, 659
DAGMAN_ON_EXIT_REMOVEmacro, 258
DAGMAN_PENDING_REPORT_INTERVAL

macro, 258
DAGMAN_PROHIBIT_MULTI_JOBS

macro, 257, 676
DAGMAN_RESET_RETRIES_UPON_RESCUE

macro, 100, 259
DAGMAN_RETRY_NODE_FIRSTmacro,

255, 258
DAGMAN_RETRY_SUBMIT_FIRSTmacro,

255
DAGMAN_STARTUP_CYCLE_DETECT

macro, 98, 255
DAGMAN_STORK_RM_EXEmacro, 257
DAGMAN_STORK_SUBMIT_EXEmacro,

257
DAGMAN_SUBMIT_DELAYmacro, 255, 646
DAGMAN_SUBMIT_DEPTH_FIRSTmacro,

257
DAGMAN_USE_STRICTmacro, 100, 260,

664

Condor Version 7.7.6 Reference Manual

INDEX 1033

DAGMAN_USER_LOG_SCAN_INTERVAL
macro, 105, 254

DAGMAN_VERBOSITYmacro, 259, 684,
685

DAGMAN_WRITE_PARTIAL_RESCUE
macro, 100, 102, 259, 659

DAGManJobId
job ClassAd attribute, 957

DAGParentNodeNames
job ClassAd attribute, 74, 957

DATABASE_PURGE_INTERVAL macro,
615

DATABASE_REINDEX_INTERVALmacro,
616

DBMSDmacro, 616
DBMSD_ARGSmacro, 616
DBMSD_LOGmacro, 616
DBMSD_NOT_RESPONDING_TIMEOUT

macro, 616
DC_DAEMON_LISTmacro, 195
DEAD_COLLECTOR_MAX_AVOIDANCE_TIME

macro, 175
Debian installation with Debian packages,

156
DEBUG_TIME_FORMATmacro, 178
dedicated scheduling, 423
DEDICATED_EXECUTE_ACCOUNT_REGEXP

macro, 191, 364, 434
DEDICATED_SCHEDULER_USE_FIFO

macro, 225
DedicatedScheduler macro, 208, 423
DEFAULT_DOMAIN_NAMEmacro, 174,

378, 596
DEFAULT_IO_BUFFER_BLOCK_SIZE

macro, 233
DEFAULT_IO_BUFFER_SIZEmacro, 233
DEFAULT_PRIO_FACTORmacro, 239
DEFAULT_RANKmacro, 233
DEFAULT_RANK_STANDARDmacro, 233
DEFAULT_RANK_VANILLAmacro, 233
DEFAULT_UNIVERSEmacro, 232, 880
deferral time

of a job, 118
DEFRAG_DRAINING_MACHINES_PER_HOUR

macro, 283
DEFRAG_INTERVALmacro, 283, 284

DEFRAG_LOGmacro, 284
DEFRAG_MAX_CONCURRENT_DRAINING

macro, 284
DEFRAG_MAX_WHOLE_MACHINESmacro,

284
DEFRAG_NAMEmacro, 283, 994
DEFRAG_RANKmacro, 283
DEFRAG_REQUIREMENTSmacro, 283
DEFRAG_SCHEDULEmacro, 284
DEFRAG_STATE_FILEmacro, 284
DEFRAG_WHOLE_MACHINE_EXPRmacro,

283, 284
DELEGATE_FULL_JOB_GSI_CREDENTIALS

macro, 262
DELEGATE_JOB_GSI_CREDENTIALS

macro, 262, 892, 969
DELEGATE_JOB_GSI_CREDENTIALS_LIFETIME

macro, 229, 262, 685, 892, 969
DELEGATE_JOB_GSI_CREDENTIALS_REFRESH

macro, 229, 262, 685
DelegateJobGSICredentialsLifetime

job ClassAd attribute, 969
Deltacloud, 547
DELTACLOUD_GAHPmacro, 249, 681
DeltacloudAvailableActions

job ClassAd attribute, 957
DeltacloudHardwareProfile

job ClassAd attribute, 957
DeltacloudHardwareProfileCpu

job ClassAd attribute, 957
DeltacloudHardwareProfileMemory

job ClassAd attribute, 957
DeltacloudHardwareProfileStorage

job ClassAd attribute, 957
DeltacloudImageId

job ClassAd attribute, 958
DeltacloudKeyname

job ClassAd attribute, 958
DeltacloudPasswordFile

job ClassAd attribute, 958
DeltacloudPrivateNetworkAddresses

job ClassAd attribute, 958
DeltacloudPublicNetworkAddresses

job ClassAd attribute, 958
DeltacloudRealmId

job ClassAd attribute, 958

Condor Version 7.7.6 Reference Manual

INDEX 1034

DeltacloudUserData
job ClassAd attribute, 958

DeltacloudUsername
job ClassAd attribute, 958

DENY_*macro, 603
DENY_ADMINISTRATORmacro, 348
DENY_ADVERTISE_MASTERmacro, 348
DENY_ADVERTISE_SCHEDDmacro, 348
DENY_ADVERTISE_STARTDmacro, 348
DENY_CLIENTmacro, 261, 663
DENY_CLIENTmacro, 349
DENY_CONFIGmacro, 348
DENY_DAEMONmacro, 348
DENY_NEGOTIATORmacro, 348
DENY_OWNERmacro, 348
DENY_READmacro, 348
DENY_SOAPmacro, 348
DENY_WRITEmacro, 348
Deployment commands

cleanup_release, 731
condor_cold_start, 748
condor_cold_stop, 751
filelock_midwife, 941
filelock_undertaker, 943
install_release, 946
uniq_pid_midwife, 951
uniq_pid_undertaker, 953

deployment commands, 157
DEPLOYMENT_RECOMMENDED_DIRS

macro, 158
DEPLOYMENT_RECOMMENDED_EXECS

macro, 158
DEPLOYMENT_RELEASE_DIRmacro, 158
DEPLOYMENT_REQUIRED_DIRSmacro,

158
DEPLOYMENT_REQUIRED_EXECSmacro,

158
DETECTED_CORESmacro, 166, 207
DETECTED_MEMORYmacro, 166, 207
directed acyclic graph (DAG), 66
Directed Acyclic Graph Manager (DAG-

Man), 66
DISCONNECTED_KEYBOARD_IDLE_BOOST

macro, 210, 416
disk space requirement

execute directory, 138

log directory, 139
spool directory, 139
all versions, 141
Condor files, 139

DiskUsage
job ClassAd attribute, 958

distributed ownership
of machines, 2

Distributed Resource Management Applica-
tion API (DRMAA), 505

dot, 103
DOT_NET_VERSIONSmacro, 213
download, 135
drained state, 298, 312
DRMAA (Distributed Resource Management

Application API), 505
dynamiccondor_startdprovisioning, 420
dynamic deployment, 157

configuration, 157
relevance to grid computing, 556

dynamic slots, 420

EC2_GAHPmacro, 249
EC2AccessKeyId

job ClassAd attribute, 958
EC2AmiID

job ClassAd attribute, 958
EC2ElasticIp

job ClassAd attribute, 958
EC2InstanceName

job ClassAd attribute, 959
EC2InstanceType

job ClassAd attribute, 959
EC2KeyPair

job ClassAd attribute, 959
EC2RemoteVirtualMachineName

job ClassAd attribute, 959
EC2SecretAccessKey

job ClassAd attribute, 959
EC2SecurityGroups

job ClassAd attribute, 959
EC2TagNames

job ClassAd attribute, 959
EC2UserData

job ClassAd attribute, 959
EC2UserDataFile

Condor Version 7.7.6 Reference Manual

INDEX 1035

job ClassAd attribute, 959
effective user priority (EUP), 285
EMAIL_DOMAINmacro, 174
EMAIL_SIGNATUREmacro, 172
EmailAttributes

job ClassAd attribute, 959
ENABLE_ADDRESS_REWRITINGmacro,

188, 713
ENABLE_BACKFILLmacro, 209, 427, 430
ENABLE_CCB_SERVERmacro, 675
ENABLE_CHIRPmacro, 232, 712
ENABLE_GRID_MONITORmacro, 253, 725
ENABLE_HISTORY_ROTATION macro,

173
ENABLE_PERSISTENT_CONFIGmacro,

182, 697, 759
ENABLE_RUNTIME_CONFIGmacro, 182,

759
ENABLE_SOAPmacro, 273
ENABLE_SOAP_SSLmacro, 273
ENABLE_SSH_TO_JOBmacro, 274
ENABLE_URL_TRANSFERSmacro, 232
ENABLE_USERLOG_LOCKINGmacro, 178
ENABLE_VERSIONED_OPSYSmacro, 203,

658
ENABLE_WEB_SERVERmacro, 273, 712
ENCRYPT_EXECUTE_DIRECTORYmacro,

263
ENFORCE_CPU_AFFINITYmacro, 231
EnteredCurrentStatus

job ClassAd attribute, 959
ENVmacro, 167
environment variables, 35

_CONDOR_JOB_AD, 36, 437
_CONDOR_JOB_IWD, 36
_CONDOR_MACHINE_AD, 36, 437
_CONDOR_SCRATCH_DIR, 35
_CONDOR_SLOT, 35
_CONDOR_WRAPPER_ERROR_FILE,

36, 437
CONDOR_CONFIG, 601
CONDOR_IDS, 138, 173
CONDOR_VM, 35
copying current environment, 879
in submit description file, 905
setting, for a job, 877

X509_USER_PROXY, 36
Event Log Reader API, 507
EVENT_LOGmacro, 181, 667
EVENT_LOG_FSYNCmacro, 181
EVENT_LOG_JOB_AD_INFORMATION_ATTRS

macro, 50, 182, 668
EVENT_LOG_LOCKINGmacro, 181
EVENT_LOG_MAX_ROTATIONS macro,

181
EVENT_LOG_MAX_SIZEmacro, 181
EVENT_LOG_ROTATION_LOCK macro,

181
EVENT_LOG_USE_XMLmacro, 182
EVICT_BACKFILL macro, 210, 314, 428
EXEC_TRANSFER_ATTEMPTSmacro, 229
ExecutableSize

job ClassAd attribute, 959
execute machine, 131
EXECUTEmacro, 170, 367, 414, 592, 970
EXECUTE_LOGIN_IS_DEDICATED

macro, 191
execution environment, 35
ExitBySignal

job ClassAd attribute, 959
ExitCode

job ClassAd attribute, 960
ExitSignal

job ClassAd attribute, 960
ExitStatus

job ClassAd attribute, 960

FAQ, 580–606
Condor on Windows machines, 592
installing Condor, 580

FetchWorkDelay macro, 278, 484, 487
file

locking, 4, 16
memory-mapped, 4, 16
read only, 4, 16
submit description, 18
write only, 4, 16

file system
AFS, 126, 399
NFS, 127

file transfer mechanism, 25
input file specified by URL, 33, 401

Condor Version 7.7.6 Reference Manual

INDEX 1036

missing files, 592
output file(s) specified by URL, 33, 401,

882
submit command should_transfer_files,

882
FILE_LOCK_VIA_MUTEXmacro, 177
filelock_midwife, 941
filelock_undertaker, 943
FILESYSTEM_DOMAINmacro, 166, 192,

378
FILETRANSFER_PLUGINSmacro, 232
FLOCK_COLLECTOR_HOSTSmacro, 222,

526
FLOCK_FROMmacro, 527
FLOCK_NEGOTIATOR_HOSTSmacro, 222,

527, 696
FLOCK_TOmacro, 526
FlockedJobs

submitter ClassAd attribute, 992
flocking, 526
Frequently Asked Questions, 580–606
FS_REMOTE_DIRmacro, 263, 343
FULL_HOSTNAMEmacro, 165

GAHP (Grid ASCII Helper Protocol), 528
GAHPmacro, 248
GAHP_ARGSmacro, 248
GASS (Global Access to Secondary Storage),

533
gidd_alloc command, 945
GLEXECmacro, 254, 369
GLEXEC_JOBmacro, 254, 369
GLEXEC_STARTERmacro, 369
glidein, 554, 600

configuration, 555
GLIDEIN_SERVER_URLSmacro, 254, 555
GLITE_LOCATION macro, 249, 543–545,

685
Globus

gatekeeper errors, 600
GLOBUS_GATEKEEPER_TIMEOUTmacro,

248
GRAM (Grid Resource Allocation and Man-

agement), 533
GRAM_VERSION_DETECTIONmacro, 248,

539, 696, 698

green computing, 443–446
grid computing

Condor-C, 528
FAQs, 600
glidein, 554
Grid Monitor, 541
matchmaking, 549
submitting jobs to cream, 547
submitting jobs to gt2, 534
submitting jobs to gt5, 539
submitting jobs to NorduGrid, 542
submitting jobs to PBS, 543
submitting jobs to Platform LSF, 544
submitting jobs to SGE, 544
submitting jobs to Unicore, 543
submitting jobs using the EC2 Query

API, 545
Grid Monitor, 541
grid type

ec2, 545
GRID_MONITORmacro, 253, 542
GRID_MONITOR_DISABLE_TIMEmacro,

253
GRID_MONITOR_HEARTBEAT_TIMEOUT

macro, 253
GRID_MONITOR_NO_STATUS_TIMEOUT

macro, 253
GRID_MONITOR_RETRY_DURATION

macro, 253
grid_resource macro, 539
GRIDFTP_SERVERconfiguration variable

no longer exists as of Condor ver-
sion 7.7.5, 651

GRIDFTP_SERVER_WRAPPERconfigura-
tion variable no longer exists as of
Condor version 7.7.5, 651

GRIDFTP_URL_BASEconfiguration vari-
able no longer exists as of Condor
version 7.7.5, 651

GridJobStatus
job ClassAd attribute, 960

GRIDMANAGER_CHECKPROXY_INTERVAL
macro, 247

GRIDMANAGER_CONNECT_FAILURE_RETRY_COUNT
macro, 248

GRIDMANAGER_CONTACT_SCHEDD_DELAY

Condor Version 7.7.6 Reference Manual

INDEX 1037

macro, 247
GRIDMANAGER_EMPTY_RESOURCE_DELAY

macro, 247
GRIDMANAGER_GAHP_CALL_TIMEOUT

macro, 248
GRIDMANAGER_GLOBUS_COMMIT_TIMEOUT

macro, 248
GRIDMANAGER_JOB_PROBE_INTERVAL

macro, 247
GRIDMANAGER_LOGmacro, 247
GRIDMANAGER_MAX_JOBMANAGERS_PER_RESOURCE

macro, 248, 539
GRIDMANAGER_MAX_PENDING_REQUESTS

macro, 248
GRIDMANAGER_MAX_SUBMITTED_JOBS_PER_RESOURCE

macro, 247, 725
GRIDMANAGER_MAX_WS_DESTROYS_PER_RESOURCE

configuration variable no longer
exists as of Condor version 7.7.5,
651

GRIDMANAGER_MINIMUM_PROXY_TIME
macro, 247

GRIDMANAGER_PROXY_REFRESH_TIME
macro, 247, 651

GRIDMANAGER_RESOURCE_PROBE_DELAY
macro, 247

GRIDMANAGER_RESOURCE_PROBE_INTERVAL
macro, 247

GRIDMANAGER_SELECTION_EXPR
macro, 226

GRIDMAPmacro, 262, 337, 345
GridResource

job ClassAd attribute, 960
GROUP_ACCEPT_SURPLUSmacro, 244,

669
GROUP_ACCEPT_SURPLUS_<groupname>

macro, 244
GROUP_AUTOREGROUPmacro, 244, 669,

967, 979
GROUP_AUTOREGROUP_<groupname>

macro, 244
GROUP_DYNAMIC_MACH_CONSTRAINT

macro, 241, 655
GROUP_NAMESmacro, 243, 244
GROUP_PRIO_FACTOR_<groupname>

macro, 244

GROUP_QUOTA_<groupname> macro,
243

GROUP_QUOTA_DYNAMIC_<groupname>
macro, 243

GROUP_QUOTA_MAX_ALLOCATION_ROUNDS
macro, 245, 991

GROUP_QUOTA_ROUND_ROBIN_RATE
macro, 244

groups
accounting, 290
quotas, 291

GSI (Grid Security Infrastructure), 532
GSI_DAEMON_CERTmacro, 261, 336
GSI_DAEMON_DIRECTORYmacro, 261,

336, 337
GSI_DAEMON_KEYmacro, 261, 337
GSI_DAEMON_NAMEmacro, 261
GSI_DAEMON_PROXYmacro, 262, 337
GSI_DAEMON_TRUSTED_CA_DIRmacro,

261, 337
GT2_GAHPmacro, 249
GT42_GAHP configuration variable no

longer exists as of Condor version
7.7.5, 651

GT42_LOCATIONconfiguration variable no
longer exists as of Condor version
7.7.5, 651

GT4_GAHPconfiguration variable no longer
exists as of Condor version 7.7.5,
651

GT4_LOCATIONconfiguration variable no
longer exists as of Condor version
7.7.5, 651

HA_<SUBSYS>_LOCK_HOLD_TIME
macro, 269

HA_<SUBSYS>_LOCK_URLmacro, 269
HA_<SUBSYS>_POLL_PERIOD macro,

270
HA_LOCK_HOLD_TIMEmacro, 269
HA_LOCK_URLmacro, 269
HA_POLL_PERIODmacro, 270
HADmacro, 271
HAD_ARGSmacro, 271
HAD_CONNECTION_TIMEOUTmacro, 270
HAD_CONTROLLEEmacro, 270

Condor Version 7.7.6 Reference Manual

INDEX 1038

HAD_DEBUGmacro, 271
HAD_LIST macro, 270
HAD_LOGmacro, 271
HAD_UPDATE_INTERVALmacro, 271
HAD_USE_PRIMARYmacro, 270
HAD_USE_REPLICATIONmacro, 271, 396
Hadoop Distributed File System (HDFS)

integrated with Condor, 607
Hawkeye

see Daemon ClassAd Hooks, 491
HAWKEYE_JOBSmacro, 685
HDFS_ALLOWmacro, 609
HDFS_BACKUPNODEmacro, 609
HDFS_BACKUPNODE_WEBmacro, 609
HDFS_DATANODE_ADDRESSmacro, 609
HDFS_DATANODE_CLASSmacro, 609
HDFS_DATANODE_DIRmacro, 609
HDFS_DATANODE_WEBmacro, 608
HDFS_DENYmacro, 609
HDFS_HOMEmacro, 608
HDFS_LOG4Jmacro, 609
HDFS_NAMENODEmacro, 608
HDFS_NAMENODE_CLASSmacro, 609
HDFS_NAMENODE_DIRmacro, 609
HDFS_NAMENODE_ROLEmacro, 609
HDFS_NAMENODE_WEBmacro, 608
HDFS_NODETYPEmacro, 609
HDFS_REPLICATIONmacro, 610
HDFS_SITE_FILE macro, 610
HeldJobs

submitter ClassAd attribute, 992
heterogeneous pool

submitting a job to, 36
HIBERNATEmacro, 213, 443
HIBERNATE_CHECK_INTERVALmacro,

213, 443
HIBERNATION_OVERRIDE_WOLmacro,

214
HIBERNATION_PLUGINmacro, 214
HIBERNATION_PLUGIN_ARGS macro,

214, 671
High Availability, 391

of central manager, 393
of job queue, 391
of job queue, with remote job submis-

sion, 393

sample configuration, 396
High-Performance Computing (HPC), 1
High-Throughput Computing (HTC), 1
HIGHPORTmacro, 188, 372
HISTORYmacro, 173
HOLD_JOB_IF_CREDENTIAL_EXPIRES

macro, 247
HoldKillSig

job ClassAd attribute, 960
HoldReason

job ClassAd attribute, 960
HoldReasonCode

job ClassAd attribute, 960
HoldReasonSubCode

job ClassAd attribute, 960
Hooks, 482–493

Daemon ClassAd Hooks, 491
job hooks that fetch work, 483
Job Router hooks, 489

host certificate, 336
HOSTALLOWmacro, 182
HOSTALLOW. . . macro, 182, 759
HOSTALLOW_*macro, 603
HOSTALLOW_ADMINISTRATOR macro,

152
HOSTALLOW_NEGOTIATOR_SCHEDD

macro, 527
HOSTALLOW_READmacro, 152
HOSTALLOW_WRITEmacro, 137, 152, 388,

555
HOSTDENYmacro, 182
HOSTDENY_*macro, 603
HOSTDENY_CLIENTmacro, 663
HOSTNAMEmacro, 165
HPC (High-Performance Computing), 1
HTC (High-Throughput Computing), 1

IdleJobs
submitter ClassAd attribute, 992

IGNORE_NFS_LOCK_ERRORSmacro, 193,
655

ImageSize, 590
job ClassAd attribute, 960

IN_HIGHPORTmacro, 188, 372
IN_LOWPORTmacro, 188, 372
INCLUDEmacro, 169

Condor Version 7.7.6 Reference Manual

INDEX 1039

install_release, 946
installation

checkpoint server, 379
CondorView Client, 639
download, 135
for the vm universe, 441
installing a new version on an existing

pool, 388
Java, 439
running as root, 138
using Debian packages, 156
using Red Hat RPMs, 155
Windows, 146–155
with condor_configure, 141

INVALID_LOG_FILES macro, 234, 678,
812

IP_ADDRESSmacro, 165
IS_OWNERmacro, 203, 303
IS_VALID_CHECKPOINT_PLATFORM

macro, 203
IS_VALID_CHECKPOINT_PLATFORM

macro, 296
IwdFlushNFSCache

job ClassAd attribute, 961

Java, 15, 53, 439
job example, 54
multiple class files, 55
using JAR files, 56
using packages, 57

JAVA macro, 212, 439
Java Virtual Machine, 15, 53, 439
JAVA5_HOOK_PREPARE_JOBmacro, 488
JAVA_CLASSPATH_ARGUMENTmacro,

212
JAVA_CLASSPATH_DEFAULTmacro, 212
JAVA_CLASSPATH_SEPARATORmacro,

212, 669
JAVA_EXTRA_ARGUMENTSmacro, 212,

440, 681
JAVA_MAXHEAP_ARGUMENTmacro, 681
job

analysis, 45
batch ready, 13
completion, 51
credential error on Windows, 594

dependencies within, 66
exiting with status 128NT , 595
heterogeneous submit, 36
image size, 590
job ID

defined for a DAGMan node job, 71
lease, 128
log events, 47
multiple data sets, 2
not running, 45
not running, why?, 586
preparation, 13
priority, 44, 52
state, 42, 44, 962
submission using a shared file system,

23
submission without a shared file system,

25
submitting, 18
universe, 962

job deferral time, 118
job execution

at a specific time, 118
Job hooks, 483

Fetch Hooks
Job exit, 486
Update job info, 485
Evict a claim, 484
Fetch work, 484
Prepare job, 485
Reply to fetched work, 484

FetchWorkDelay, 487
Hooks invoked by Condor, 484
Java example, 488
Job Router Hooks

Job Cleanup, 491
Job Finalize, 491
Translate Job, 490
Update Job Info, 490

keywords, 486
job ID

cluster identifier, 904, 956
defined for a DAGMan node job, 71
process identifier, 965
use incondor_wait, 938

Job Log Reader API, 507

Condor Version 7.7.6 Reference Manual

INDEX 1040

Job monitor, 124
Job Router, 277, 489, 557
Job Router commands

condor_router_history, 845
condor_router_q, 847

Job Router Routing Table ClassAd attribute
Copy_<ATTR>, 563
Delete_<ATTR>, 563
Eval_Set_<ATTR>, 563
FailureRateThreshold, 562
GridResource, 561
JobFailureTest, 562
JobShouldBeSandboxed, 562
MaxIdleJobs, 561
MaxJobs, 561
Name, 561
OverrideRoutingEntry, 562
Requirements, 561
Set_<ATTR>, 563
SharedX509UserProxy, 562
TargetUniverse, 562
UseSharedX509UserProxy, 562

job scheduling
periodic, 120

JOB_DEFAULT_REQUESTMEMORYmacro,
232, 881, 967

JOB_INHERITS_STARTER_ENVIRONMENT
macro, 231

JOB_IS_FINISHED_INTERVAL macro,
219

job_max_vacate_time, 901
JOB_QUEUE_LOGmacro, 177, 650
JOB_RENICE_INCREMENTmacro, 229,

295
JOB_ROUTER_DEFAULTSmacro, 250
JOB_ROUTER_ENTRIESmacro, 250, 564
JOB_ROUTER_ENTRIES_CMDmacro, 250,

563
JOB_ROUTER_ENTRIES_FILE macro,

250
JOB_ROUTER_ENTRIES_REFRESH

macro, 250
JOB_ROUTER_HOOK_KEYWORDmacro,

279
JOB_ROUTER_LOCKmacro, 250, 700
JOB_ROUTER_MAX_JOBSmacro, 251

JOB_ROUTER_NAMEmacro, 251
JOB_ROUTER_POLLING_PERIODmacro,

251, 490
JOB_ROUTER_RELEASE_ON_HOLD

macro, 251
JOB_ROUTER_SOURCE_JOB_CONSTRAINT

macro, 251
JOB_START_COUNTmacro, 219
JOB_START_DELAYmacro, 219
JOB_STOP_COUNTmacro, 219
JOB_STOP_DELAYmacro, 219
JobAdInformationAttrs

job ClassAd attribute, 961
JobLeaseDuration

job ClassAd attribute, 128, 962
JobMaxVacateTime

job ClassAd attribute, 962
JobPrio

job ClassAd attribute, 962
JobRunCount

job ClassAd attribute, 962
JobStartDate

job ClassAd attribute, 962
JobStatus

job ClassAd attribute, 962
JobUniverse

job ClassAd attribute, 962
JVM, 15, 53, 439

KEEP_POOL_HISTORYmacro, 236, 409
KeepClaimIdle

job ClassAd attribute, 963
Kerberos authentication, 339
KERBEROS_CLIENT_KEYTABmacro, 265
KERBEROS_MAP_FILEmacro, 340, 345
KERBEROS_SERVER_KEYTABmacro, 265
KERBEROS_SERVER_PRINCIPALmacro,

265, 340
KERBEROS_SERVER_SERVICE macro,

265
KERBEROS_SERVER_USERmacro, 265
KILL macro, 202–204, 313, 314
KILLING_TIMEOUT macro, 204, 311, 314,

901, 963
KillSig

job ClassAd attribute, 963

Condor Version 7.7.6 Reference Manual

INDEX 1041

KillSigTimeout
job ClassAd attribute, 963

LastCheckpointPlatform
job ClassAd attribute, 963

LastCkptServer
job ClassAd attribute, 963

LastCkptTime
job ClassAd attribute, 963

LastMatchTime
job ClassAd attribute, 963

LastRejMatchReason
job ClassAd attribute, 963

LastRejMatchTime
job ClassAd attribute, 963

LastSuspensionTime
job ClassAd attribute, 963

LastVacateTime
job ClassAd attribute, 963

LeaseManager.CLASSAD_LOG macro,
253

LeaseManager.DEBUG_ADS macro, 252
LeaseManager.DEFAULT_MAX_LEASE_DURATION

macro, 252
LeaseManager.GETADS_INTERVAL

macro, 252
LeaseManager.MAX_LEASE_DURATION

macro, 252
LeaseManager.MAX_TOTAL_LEASE_DURATION

macro, 252
LeaseManager.PRUNE_INTERVAL

macro, 252
LeaseManager.QUERY_ADTYPE macro,

253
LeaseManager.QUERY_CONSTRAINTS

macro, 253
LeaseManager.UPDATE_INTERVAL

macro, 252
LeaveJobInQueue

job ClassAd attribute, 963
LIB macro, 169
LIBEXEC macro, 169
LIBVIRT_XML_SCRIPT macro, 267, 674
LIBVIRT_XML_SCRIPT_ARGS macro,

267
limits

on resource usage, 436
linking

dynamic, 5, 16
static, 5, 16

Linux
keyboard and mouse activity, 566, 589

LINUX_HIBERNATION_METHODmacro,
214

local universe, 18
LOCAL_CONFIG_DIRmacro, 171
LOCAL_CONFIG_DIR_EXCLUDE_REGEXP

macro, 171, 691
LOCAL_CONFIG_FILE macro, 140, 164,

170, 403–405, 586
LOCAL_CREDDmacro, 570
LOCAL_DIRmacro, 138, 141, 169, 367
LOCAL_UNIV_EXECUTEmacro, 216
LocalSysCpu

job ClassAd attribute, 963
LocalUserCpu

job ClassAd attribute, 963
LOCKmacro, 139, 173
LOCK_DEBUG_LOG_TO_APPENDmacro,

177, 691
LOCK_FILE_UPDATE_INTERVALmacro,

185
log files

event descriptions, 47
LOGmacro, 169, 174, 206, 387
LOG_ON_NFS_IS_ERRORmacro, 234
LOGS_USE_TIMESTAMPmacro, 178
LOWPORTmacro, 188, 372
LSF, 544
LSF_GAHPmacro, 249, 544

machine
central manager, 131
checkpoint server, 131
execute, 131
owner, 130
submit, 131

machine activity, 302
Backfill, 303
Benchmarking, 302
Busy, 302
Drained, 303

Condor Version 7.7.6 Reference Manual

INDEX 1042

Idle, 302
Killing, 303
Retiring, 302
Suspended, 302
transitions, 303–314
transitions summary, 312
Unclaimed, 302
Vacating, 303

machine ClassAd, 12
machine state, 298

Backfill, 298, 311
Claimed, 298, 307
claimed, the claim lease, 301
Drained, 298, 312
Matched, 298, 307
Owner, 298, 303
Preempting, 298, 310
transitions, 303–314
transitions summary, 312
Unclaimed, 298, 306

machine state and activities figure, 303
MachineAttr<X><N>

job ClassAd attribute, 964
MachineMaxVacateTime macro, 202–

204, 310, 313, 655
macro

in configuration file, 160
in submit description file, 904
predefined, 62
subsystem names, 165

MAIL macro, 172, 404
MAIL_FROMmacro, 172
mailing lists, 8, 606
MASTER_<name>_BACKOFF_CEILING

macro, 198
MASTER_<name>_BACKOFF_CONSTANT

macro, 198
MASTER_<name>_BACKOFF_FACTOR

macro, 198
MASTER_<name>_RECOVER_FACTOR

macro, 199
MASTER_<SUBSYS>_CONTROLLER

macro, 270
MASTER_ADDRESS_FILEmacro, 200
MASTER_ATTRSmacro, 200
MASTER_BACKOFF_CEILINGmacro, 198

MASTER_BACKOFF_CONSTANTmacro,
198

MASTER_BACKOFF_FACTORmacro, 198
MASTER_CHECK_INTERVALmacro, 235
MASTER_CHECK_NEW_EXEC_INTERVAL

macro, 197, 388
MASTER_DEBUGmacro, 200
MASTER_HA_LISTmacro, 268, 392
MASTER_HAD_BACKOFF_CONSTANT

macro, 396
MASTER_INSTANCE_LOCKmacro, 201
MASTER_NAMEmacro, 168, 200, 802
MASTER_NEW_BINARY_DELAY macro,

197
MASTER_NEW_BINARY_RESTARTmacro,

197, 646
MASTER_RECOVER_FACTORmacro, 199
MASTER_SHUTDOWN_<Name> macro,

198, 709
MASTER_UPDATE_INTERVALmacro, 197
MATCH_TIMEOUTmacro, 300, 307, 313
matched state, 298, 307
matchmaking, 2

negotiation algorithm, 288
on the Grid, 549
priority, 286

MAX_<SUBSYS>_<LEVEL>_LOGmacro,
181

MAX_<SUBSYS>_LOGmacro, 176, 672
MAX_ACCEPTS_PER_CYCLEmacro, 185
MAX_ACCOUNTANT_DATABASE_SIZE

macro, 239
MAX_C_GAHP_LOGmacro, 248
MAX_CKPT_SERVER_LOGmacro, 381
MAX_CLAIM_ALIVES_MISSED macro,

205, 220
MAX_CONCURRENT_DOWNLOADSmacro,

218
MAX_CONCURRENT_UPLOADSmacro, 218
MAX_DAGMAN_LOGmacro, 76, 257
MAX_DISCARDED_RUN_TIMEmacro, 194,

380
MAX_EVENT_LOGmacro, 181
MAX_FILE_DESCRIPTORSmacro, 186,

189
MAX_HAD_LOGmacro, 271

Condor Version 7.7.6 Reference Manual

INDEX 1043

MAX_HISTORY_LOGmacro, 173
MAX_HISTORY_ROTATIONSmacro, 173
MAX_JOB_MIRROR_UPDATE_LAGmacro,

251
MAX_JOB_QUEUE_LOG_ROTATIONS

macro, 173
max_job_retirement_time, 902
MAX_JOBS_RUNNINGmacro, 42, 217, 373,

725, 984
MAX_JOBS_SUBMITTEDmacro, 218
MAX_NEXT_JOB_START_DELAYmacro,

219, 886, 964
MAX_NUM_<SUBSYS>_LOGmacro, 177,

700, 701
MAX_NUM_CPUSmacro, 207
MAX_PENDING_STARTD_CONTACTS

macro, 218
MAX_PERIODIC_EXPR_INTERVAL

macro, 223
MAX_PROCD_LOGmacro, 245, 703
MAX_REPLICATION_LOGmacro, 272
MAX_SHADOW_EXCEPTIONSmacro, 218
MAX_SLOT_TYPESmacro, 211
MAX_TRACKING_GIDmacro, 246, 434
MAX_TRANSFERER_LIFETIME macro,

271
MAX_TRANSFERER_LOGmacro, 272
MAX_VM_GAHP_LOGmacro, 266
MaxHosts

job ClassAd attribute, 964
MaxJobRetirementTime

job ClassAd attribute, 964
MAXJOBRETIREMENTTIMEmacro, 202,

204, 313
MAXJOBRETIREMENTTIMEmacro, 322
MEMORYmacro, 207
MEMORY_USAGE_METRICmacro, 232, 646
MEMORY_USAGE_METRIC_VMmacro, 232,

646
MemoryUsage

job ClassAd attribute, 964
migration, 2, 3
MIN_TRACKING_GIDmacro, 246, 434
MinHosts

job ClassAd attribute, 964
MOUNT_UNDER_SCRATCHmacro, 209, 649

MPI application, 60, 64
under the dedicated scheduler, 423

multiple network interfaces, 375
MY., ClassAd scope resolution prefix, 459
MYPROXY_GET_DELEGATIONmacro, 272,

541

Name
submitter ClassAd attribute, 992

NAMED_CHROOTmacro, 231, 649
NEGOTIATE_ALL_JOBS_IN_CLUSTER

macro, 223, 289
negotiation, 288

by group, 291
priority, 286

NEGOTIATION_CYCLE_STATS_LENGTH
macro, 239, 695

NEGOTIATOR_ADDRESS_FILE macro,
370

NEGOTIATOR_ADDRESS_FILE macro,
183

NEGOTIATOR_CONSIDER_PREEMPTION
macro, 242, 323

NEGOTIATOR_CYCLE_DELAYmacro, 238
NEGOTIATOR_DEBUGmacro, 241
NEGOTIATOR_DISCOUNT_SUSPENDED_RESOURCES

macro, 239
NEGOTIATOR_HOSTmacro, 168
NEGOTIATOR_IGNORE_USER_PRIORITIES

macro, 552
NEGOTIATOR_INFORM_STARTDmacro,

240
NEGOTIATOR_INTERVAL macro, 238,

681, 725
NEGOTIATOR_MATCH_EXPRSmacro, 242
NEGOTIATOR_MATCH_LOGmacro, 181,

714
NEGOTIATOR_MATCHLIST_CACHING

macro, 242, 552
NEGOTIATOR_MAX_TIME_PER_PIESPIN

macro, 242
NEGOTIATOR_MAX_TIME_PER_SUBMITTER

macro, 242, 991
NEGOTIATOR_POST_JOB_RANKmacro,

240

Condor Version 7.7.6 Reference Manual

INDEX 1044

NEGOTIATOR_PRE_JOB_RANK macro,
240

NEGOTIATOR_READ_CONFIG_BEFORE_CYCLE
macro, 243, 646

NEGOTIATOR_SLOT_CONSTRAINT
macro, 241, 655

NEGOTIATOR_SLOT_POOLSIZE_CONSTRAINT
macro, 241, 655, 990

NEGOTIATOR_SOCKET_CACHE_SIZE
macro, 239, 372

NEGOTIATOR_STARTD_CONSTRAINT_REMOVE
macro, 655, 661

NEGOTIATOR_TIMEOUTmacro, 239
NEGOTIATOR_UPDATE_AFTER_CYCLE

macro, 243, 661, 663
NEGOTIATOR_USE_NONBLOCKING_STARTD_CONTACT

macro, 189
NEGOTIATOR_USE_SLOT_WEIGHTS

macro, 245
network, 4, 16, 369
network interfaces

multiple, 375
NETWORK_INTERFACEmacro, 186, 377,

378, 685
NETWORK_MAX_PENDING_CONNECTS

macro, 175
NEW_LOCKINGmacro, 697, 703
NextJobStartDelay

job ClassAd attribute, 964
NFS

cache flush on submit machine, 127
interaction with, 127

nice job, 52
NICE_USER_PRIO_FACTORmacro, 239,

286
NiceUser

job ClassAd attribute, 964
NICs, 375
NIS

Condor must be dynamically linked, 591
NO_DNSmacro, 174
NODEmacro, 62
Node macro, 904
NONBLOCKING_COLLECTOR_UPDATE

macro, 189
NorduGrid, 542

NORDUGRID_GAHPmacro, 249
NOT_RESPONDING_TIMEOUTmacro, 185
NOT_RESPONDING_WANT_COREmacro,

185, 691
NTDomain

job ClassAd attribute, 964
NUM_CPUSmacro, 206, 212, 415
NUM_SLOTSmacro, 212, 415
NUM_SLOTS_TYPE_<N>macro, 212, 415
NumCkpts

job ClassAd attribute, 964
NumGlobusSubmits

job ClassAd attribute, 964
NumJobMatches

job ClassAd attribute, 964
NumJobReconnects

job ClassAd attribute, 964
NumJobStarts

job ClassAd attribute, 964
NumPids

job ClassAd attribute, 964
NumRestarts

job ClassAd attribute, 965
NumShadowExceptions

job ClassAd attribute, 965
NumShadowStarts

job ClassAd attribute, 965
NumSystemHolds

job ClassAd attribute, 965

OBITUARY_LOG_LENGTHmacro, 197
offline ClassAd, 980
offline machine, 443
OFFLINE_EXPIRE_ADS_AFTER macro,

215, 445
OFFLINE_LOGmacro, 214, 215, 276, 445
OPEN_VERB_FOR_<EXT>_FILESmacro,

176
OPSYSmacro, 166
OPSYS_AND_VERmacro, 166
OPSYS_VERmacro, 166
OtherJobRemoveRequirements

job ClassAd attribute, 965
OUT_HIGHPORTmacro, 189, 372
OUT_LOWPORTmacro, 188, 372
overview, 1–4

Condor Version 7.7.6 Reference Manual

INDEX 1045

Owner
job ClassAd attribute, 965

owner
of directories, 138

owner state, 298, 303

parallel universe, 18, 60–65
running MPI applications, 64

ParallelSchedulingGroup macro,
225, 425, 426

ParallelShutdownPolicy
job ClassAd attribute, 965

partitionable slots, 420
partitioning SMP machines, 412, 413
PASSWD_CACHE_REFRESHmacro, 175
PBS (Portable Batch System), 543
PBS_GAHPmacro, 249, 543
PER_JOB_HISTORY_DIRmacro, 225
PERIODIC_CHECKPOINT macro, 202,

466, 585
PERIODIC_EXPR_INTERVALmacro, 223
PERIODIC_EXPR_TIMESLICE macro,

223
PERIODIC_MEMORY_SYNCmacro, 228
Perl module, 517

examples, 520
permission denied, 603
PERSISTENT_CONFIG_DIRmacro, 182
Personal Condor, 581
PID macro, 166
pie slice, 289
pie spin, 289
platform-specific information

address space randomization, 566
Linux, 565
Linux keyboard and mouse activity, 566
Macintosh OS X, 578
Windows, 567–578

starting and stopping a job, 572
platforms supported, 5
policy

at UW-Madison, 317
default with Condor, 315
desktop/non-desktop, 320
disabling preemption, 322

suspending jobs instead of evicting
them, 323

time of day, 319
POLLING_INTERVALmacro, 204, 308
pool management, 387

installing a new version on an existing
pool, 388

reconfiguration, 391
restarting Condor, 389
shutting down Condor, 389

pool of machines, 130
POOL_HISTORY_DIRmacro, 237, 409
POOL_HISTORY_MAX_STORAGEmacro,

237, 409
POOL_HISTORY_SAMPLING_INTERVAL

macro, 237
port usage, 370

conflicts, 373
FAQ on communication errors, 581
firewalls, 372
multiple collectors, 373
nonstandard ports for central managers,

371
power management, 443–446

entering a low power state, 443
leaving a low power state, 444
Linux platform details, 445
Windows platform troubleshooting, 445

PPID macro, 166
PREEMPTmacro, 202, 313, 486
preempting state, 298, 310
preemption

desktop/non-desktop, 320
disabling, 322
priority, 52, 286
vacate, 53

PREEMPTION_RANKmacro, 241
PREEMPTION_RANK_STABLEmacro, 241,

287
PREEMPTION_REQUIREMENTSmacro,

52, 240, 242, 286, 822
PREEMPTION_REQUIREMENTS_STABLE

macro, 241, 287
PREENmacro, 196
PREEN_ADMINmacro, 234, 812
PREEN_ARGSmacro, 197

Condor Version 7.7.6 Reference Manual

INDEX 1046

PREEN_INTERVALmacro, 197
PreserveRelativeExecutable

job ClassAd attribute, 965
priority

by group, 290
in machine allocation, 285
nice job, 52
of a job, 44, 52
of a user, 52

PRIORITY_HALFLIFE macro, 52, 239,
285, 288

PRIVATE_NETWORK_INTERFACEmacro,
187, 377, 685

PRIVATE_NETWORK_NAMEmacro, 186,
187, 377

privilege separation, 365
PrivSep (privilege separation), 365
PRIVSEP_ENABLEDmacro, 265, 367
PRIVSEP_SWITCHBOARDmacro, 266, 367
PROCD_ADDRESSmacro, 246
procd_ctl command, 948
PROCD_LOGmacro, 245, 651, 698
PROCD_MAX_SNAPSHOT_INTERVAL

macro, 245
process

definition for a submitted job, 965
Process macro, 904
ProcId

job ClassAd attribute, 965
ProportionalSetSizeKb

job ClassAd attribute, 965
proxy, 534

renewal withMyProxy, 539
PUBLISH_OBITUARIESmacro, 197

Q_QUERY_TIMEOUTmacro, 175
QDate

job ClassAd attribute, 966
QUERY_TIMEOUTmacro, 235
QUEUE_ALL_USERS_TRUSTED macro,

221
QUEUE_CLEAN_INTERVALmacro, 220
QUEUE_SUPER_USERSmacro, 221
Quill, 610
QUILL macro, 614
QUILL_ADDRESS_FILEmacro, 616

QUILL_ARGSmacro, 614
QUILL_DB_IP_ADDRmacro, 612, 615
QUILL_DB_NAMEmacro, 614
QUILL_DB_QUERY_PASSWORDmacro,

616
QUILL_DB_TYPEmacro, 614
QUILL_DB_USERmacro, 614
QUILL_DBSIZE_LIMIT macro, 615
QUILL_ENABLEDmacro, 614, 985
QUILL_IS_REMOTELY_QUERYABLE

macro, 616
QUILL_JOB_HISTORY_DURATION

macro, 615
QUILL_LOGmacro, 614
QUILL_MAINTAIN_DB_CONNmacro, 615
QUILL_MANAGE_VACUUMmacro, 616
QUILL_NAMEmacro, 614
QUILL_NOT_RESPONDING_TIMEOUT

macro, 615
QUILL_POLLING_PERIODmacro, 615
QUILL_RESOURCE_HISTORY_DURATION

macro, 615
QUILL_RUN_HISTORY_DURATION

macro, 615
QUILL_SHOULD_REINDEXmacro, 616
QUILL_USE_SQL_LOGmacro, 614
quotas

hierarchical quotas for a group, 291

RANDOM_CHOICE() macro
use in submit description file, 905

RANDOM_CHOICE()macro, 167
RANDOM_INTEGER()macro, 167, 585
rank attribute, 21

examples, 22, 462
RANKmacro, 203, 297, 314, 424, 425
RANK_FACTORmacro, 425
ReadUserLog class, 507
real user priority (RUP), 285
recovery from crashes, 603
RELEASE_DIRmacro, 140, 168, 404
ReleaseReason

job ClassAd attribute, 966
remote system call, 2, 3, 15

condor_shadow, 15, 42, 127
remote_initialdir macro, 647

Condor Version 7.7.6 Reference Manual

INDEX 1047

REMOTE_PRIO_FACTORmacro, 239, 286
RemoteIwd

job ClassAd attribute, 966
RemoteSysCpu

job ClassAd attribute, 966
RemoteUserCpu

job ClassAd attribute, 966
RemoteWallClockTime

job ClassAd attribute, 966
RemoveKillSig

job ClassAd attribute, 966
REPLICATION macro, 272
REPLICATION_ARGSmacro, 272
REPLICATION_DEBUGmacro, 272
REPLICATION_INTERVALmacro, 271
REPLICATION_LIST macro, 271
REPLICATION_LOGmacro, 272
REQUEST_CLAIM_TIMEOUTmacro, 220
RequestCpus

job ClassAd attribute, 966
RequestDisk

job ClassAd attribute, 966
RequestedChroot

job ClassAd attribute, 966
RequestMemory

job ClassAd attribute, 966
REQUIRE_LOCAL_CONFIG_FILEmacro,

171
requirements attribute, 21, 462

automatic extensions, 587
Requirements macro, 216
RESERVE_AFS_CACHEmacro, 192
RESERVED_DISKmacro, 172, 970
RESERVED_MEMORYmacro, 207
RESERVED_SWAPmacro, 47, 172
ResidentSetSize

job ClassAd attribute, 967
resource

management, 2
offer, 3
owner, 130
request, 3

resource limits, 436
ROOSTER_INTERVALmacro, 276
ROOSTER_MAX_UNHIBERNATEmacro,

276, 701

ROOSTER_UNHIBERNATEmacro, 276
ROOSTER_UNHIBERNATE_RANKmacro,

276, 701
ROOSTER_WAKEUP_CMDmacro, 276
ROTATE_HISTORY_DAILYmacro, 227
ROTATE_HISTORY_MONTHLYmacro, 227
RPM installation on Red Hat, 155
RUNmacro, 170
RUNBENCHMARKSmacro, 208, 306, 313
running a job

at certain times of day, 585
on a different architecture, 36
on only certain machines, 584
only at night, 585

running multiple programs, 20
RunningJobs

submitter ClassAd attribute, 992

SBIN macro, 169
scalability

using the Grid Monitor, 541
SCHED_UNIV_RENICE_INCREMENT

macro, 220
Schedd Cron functionality

see Daemon ClassAd Hooks, 491
SCHEDD_ADDRESS_FILEmacro, 222
SCHEDD_ASSUME_NEGOTIATOR_GONE

macro, 224
SCHEDD_ATTRSmacro, 222
SCHEDD_BACKUP_SPOOLmacro, 225
SCHEDD_CLUSTER_INCREMENT_VALUE

macro, 226
SCHEDD_CLUSTER_INITIAL_VALUE

macro, 226
SCHEDD_CLUSTER_MAXIMUM_VALUE

macro, 226, 696
SCHEDD_COLLECT_STATS_FOR_<name>

macro, 646
SCHEDD_CRON_<JobName>_ARGS

macro, 282
SCHEDD_CRON_<JobName>_CWDmacro,

282
SCHEDD_CRON_<JobName>_ENVmacro,

282
SCHEDD_CRON_<JobName>_EXECUTABLE

macro, 280

Condor Version 7.7.6 Reference Manual

INDEX 1048

SCHEDD_CRON_<JobName>_JOB_LOAD
macro, 282

SCHEDD_CRON_<JobName>_KILL
macro, 282

SCHEDD_CRON_<JobName>_MODE
macro, 281

SCHEDD_CRON_<JobName>_PERIOD
macro, 281

SCHEDD_CRON_<JobName>_PREFIX
macro, 280

SCHEDD_CRON_<JobName>_RECONFIG
macro, 281

SCHEDD_CRON_<JobName>_RECONFIG_RERUN
macro, 281

SCHEDD_CRON_CONFIG_VALmacro, 279
SCHEDD_CRON_JOBLISTmacro, 280
SCHEDD_CRON_MAX_JOB_LOADmacro,

282
SCHEDD_CRON_NAMEmacro, 279
SCHEDD_DAEMON_AD_FILEmacro, 183
SCHEDD_DEBUGmacro, 222
SCHEDD_ENABLE_SSH_TO_JOBmacro,

274
SCHEDD_EXECUTEmacro, 222
SCHEDD_HOSTmacro, 168
SCHEDD_INTERVALmacro, 124, 218, 219
SCHEDD_INTERVAL_TIMESLICEmacro,

218
SCHEDD_JOB_QUEUE_LOG_FLUSH_DELAY

macro, 227, 724
SCHEDD_LOCKmacro, 222
SCHEDD_MIN_INTERVALmacro, 219
SCHEDD_NAMEmacro, 168, 200, 222, 393
SCHEDD_PREEMPTION_RANKmacro, 225,

426
SCHEDD_PREEMPTION_REQUIREMENTS

macro, 225, 425
SCHEDD_QUERY_WORKERSmacro, 218
SCHEDD_ROUND_ATTR_<xxxx>macro,

224
SCHEDD_SEND_VACATE_VIA_TCP

macro, 226
ScheddIpAddr

submitter ClassAd attribute, 992
ScheddName

submitter ClassAd attribute, 992

scheduler universe, 17
scheduling

dedicated, 60
pie slice, 289
pie spin, 289

scheduling jobs
to execute at a specific time, 118
to execute periodically, 120

SDK
Chirp, 58

SEC_*_AUTHENTICATIONmacro, 261
SEC_*_AUTHENTICATION_METHODS

macro, 261
SEC_*_CRYPTO_METHODSmacro, 261
SEC_*_ENCRYPTIONmacro, 261
SEC_*_INTEGRITY macro, 261
SEC_*_NEGOTIATIONmacro, 261
SEC_<access-level>_SESSION_DURATION

macro, 262
SEC_<access-level>_SESSION_LEASE

macro, 263, 705
SEC_ADMINISTRATOR_AUTHENTICATION

macro, 333
SEC_ADMINISTRATOR_AUTHENTICATION_METHODS

macro, 334
SEC_ADMINISTRATOR_CRYPTO_METHODS

macro, 346
SEC_ADMINISTRATOR_ENCRYPTION

macro, 345
SEC_ADMINISTRATOR_INTEGRITY

macro, 347
SEC_ADVERTISE_MASTER_AUTHENTICATION

macro, 333
SEC_ADVERTISE_MASTER_AUTHENTICATION_METHODS

macro, 334
SEC_ADVERTISE_MASTER_CRYPTO_METHODS

macro, 346
SEC_ADVERTISE_MASTER_ENCRYPTION

macro, 345
SEC_ADVERTISE_MASTER_INTEGRITY

macro, 347
SEC_ADVERTISE_SCHEDD_AUTHENTICATION

macro, 333
SEC_ADVERTISE_SCHEDD_AUTHENTICATION_METHODS

macro, 334
SEC_ADVERTISE_SCHEDD_CRYPTO_METHODS

Condor Version 7.7.6 Reference Manual

INDEX 1049

macro, 346
SEC_ADVERTISE_SCHEDD_ENCRYPTION

macro, 345
SEC_ADVERTISE_SCHEDD_INTEGRITY

macro, 347
SEC_ADVERTISE_STARTD_AUTHENTICATION

macro, 333
SEC_ADVERTISE_STARTD_AUTHENTICATION_METHODS

macro, 334
SEC_ADVERTISE_STARTD_CRYPTO_METHODS

macro, 346
SEC_ADVERTISE_STARTD_ENCRYPTION

macro, 345
SEC_ADVERTISE_STARTD_INTEGRITY

macro, 347
SEC_CLIENT_AUTHENTICATIONmacro,

333
SEC_CLIENT_AUTHENTICATION_METHODS

macro, 334
SEC_CLIENT_CRYPTO_METHODSmacro,

346
SEC_CLIENT_ENCRYPTIONmacro, 345
SEC_CLIENT_INTEGRITY macro, 347
SEC_CONFIG_AUTHENTICATIONmacro,

333
SEC_CONFIG_AUTHENTICATION_METHODS

macro, 334
SEC_CONFIG_CRYPTO_METHODSmacro,

346
SEC_CONFIG_ENCRYPTIONmacro, 345
SEC_CONFIG_INTEGRITYmacro, 347
SEC_DAEMON_AUTHENTICATIONmacro,

333
SEC_DAEMON_AUTHENTICATION_METHODS

macro, 334
SEC_DAEMON_CRYPTO_METHODSmacro,

346
SEC_DAEMON_ENCRYPTIONmacro, 345
SEC_DAEMON_INTEGRITYmacro, 347
SEC_DEFAULT_AUTHENTICATION

macro, 333
SEC_DEFAULT_AUTHENTICATION_METHODS

macro, 334
SEC_DEFAULT_AUTHENTICATION_TIMEOUT

macro, 264
SEC_DEFAULT_CRYPTO_METHODS

macro, 346
SEC_DEFAULT_ENCRYPTIONmacro, 345
SEC_DEFAULT_INTEGRITYmacro, 347
SEC_DEFAULT_SESSION_DURATION

macro, 262, 705
SEC_DEFAULT_SESSION_LEASEmacro,

263, 705
SEC_ENABLE_MATCH_PASSWORD_AUTHENTICATION

macro, 264, 351, 698
SEC_INVALIDATE_SESSIONS_VIA_TCP

macro, 263
SEC_NEGOTIATOR_AUTHENTICATION

macro, 333
SEC_NEGOTIATOR_AUTHENTICATION_METHODS

macro, 334
SEC_NEGOTIATOR_CRYPTO_METHODS

macro, 346
SEC_NEGOTIATOR_ENCRYPTIONmacro,

345
SEC_NEGOTIATOR_INTEGRITY macro,

347
SEC_OWNER_AUTHENTICATIONmacro,

333
SEC_OWNER_AUTHENTICATION_METHODS

macro, 334
SEC_OWNER_CRYPTO_METHODSmacro,

346
SEC_OWNER_ENCRYPTIONmacro, 345
SEC_OWNER_INTEGRITYmacro, 347
SEC_PASSWORD_FILEmacro, 264, 341
SEC_READ_AUTHENTICATION macro,

333
SEC_READ_AUTHENTICATION_METHODS

macro, 334
SEC_READ_CRYPTO_METHODSmacro,

346
SEC_READ_ENCRYPTIONmacro, 345
SEC_READ_INTEGRITYmacro, 347
SEC_TCP_SESSION_DEADLINE macro,

263
SEC_TCP_SESSION_TIMEOUT macro,

263
SEC_WRITE_AUTHENTICATION macro,

333
SEC_WRITE_AUTHENTICATION_METHODS

macro, 334

Condor Version 7.7.6 Reference Manual

INDEX 1050

SEC_WRITE_CRYPTO_METHODSmacro,
346

SEC_WRITE_ENCRYPTIONmacro, 345
SEC_WRITE_INTEGRITYmacro, 347
SECONDARY_COLLECTOR_LISTmacro,

200
security

access levels, 327
authentication, 333
authorization, 347
based on user authorization, 347
changing the configuration, 358
configuration examples, 356
encryption, 345
host-based, 353
in Condor, 325–369
integrity, 346
running jobs as user nobody, 363
sample configuration using pool pass-

word, 342
sample configuration using pool pass-

word for startd advertisement, 342
sessions, 352
unified map file, 344

sessions, 352
SETTABLE_ATTRSmacro, 183, 359
SETTABLE_ATTRS. . . macro, 183, 759
SETTABLE_ATTRS_<PERMISSION-LEVEL>

macro, 359
SGE (Sun Grid Engine), 544
SGE_GAHPmacro, 249, 544
shadow, 15
SHADOWmacro, 216
SHADOW_CHECKPROXY_INTERVAL

macro, 229, 262, 685
SHADOW_DEBUGmacro, 227
SHADOW_JOB_CLEANUP_RETRY_DELAY

macro, 228
SHADOW_LAZY_QUEUE_UPDATEmacro,

228
SHADOW_LOCKmacro, 227
SHADOW_MAX_JOB_CLEANUP_RETRIES

macro, 228
SHADOW_QUEUE_UPDATE_INTERVAL

macro, 227
SHADOW_RENICE_INCREMENTmacro,

220
SHADOW_RUN_UNKNOWN_USER_JOBS

macro, 229, 672
SHADOW_SIZE_ESTIMATEmacro, 172,

220
SHADOW_WORKLIFEmacro, 228, 656
shared file system

submission of jobs, 23
submission of jobs without one, 25

SHARED_PORT_ARGSmacro, 277
SHARED_PORT_DAEMON_AD_FILE

macro, 276
SHARED_PORT_MAX_WORKERSmacro,

276
SHELLmacro, 851
SHUTDOWN_FAST_TIMEOUTmacro, 198
SHUTDOWN_GRACEFUL_TIMEOUTmacro,

183, 205
signal, 4, 16

SIGTSTP, 4, 16
SIGUSR2, 4, 16

SIGNIFICANT_ATTRIBUTES macro, 289
Simple Object Access Protocol(SOAP), 493
skew in timing information, 591
SKIP_WINDOWS_LOGON_NETWORK

macro, 246, 672
SLOT<N>_CPU_AFFINITYmacro, 231
SLOT<N>_EXECUTEmacro, 170, 414
SLOT<N>_JOB_HOOK_KEYWORDmacro,

277, 487
SLOT<N>_USERmacro, 191, 363
SLOT_TYPE_<N>macro, 211, 413
SLOT_TYPE_<N>_PARTITIONABLE

macro, 211, 420
slots

dynamic condor_startd provisioning,
420

subdividing slots, 420
SLOTS_CONNECTED_TO_CONSOLE

macro, 210, 416
SLOTS_CONNECTED_TO_KEYBOARD

macro, 210, 416
SlotWeight macro, 206
SLOW_CKPT_SPEEDmacro, 228
SMP machines

configuration, 412–422

Condor Version 7.7.6 Reference Manual

INDEX 1051

SMTP_SERVERmacro, 172
SOAP

Web Service API, 493
SOAP_LEAVE_IN_QUEUEmacro, 273, 495
SOAP_SSL_CA_DIRmacro, 273, 274, 711
SOAP_SSL_CA_FILE macro, 273, 274,

711
SOAP_SSL_DH_FILEmacro, 274
SOAP_SSL_SERVER_KEYFILE macro,

273
SOAP_SSL_SERVER_KEYFILE_PASSWORD

macro, 273
SOAP_SSL_SKIP_HOST_CHECKmacro,

274, 695
SOFT_UID_DOMAINmacro, 190, 361
Software Developer’s Kit

Chirp, 58
SPOOLmacro, 170
SSH_TO_JOB_<SSH-CLIENT>_CMD

macro, 274
SSH_TO_JOB_SSH_KEYGENmacro, 275
SSH_TO_JOB_SSH_KEYGEN_ARGS

macro, 275
SSH_TO_JOB_SSHDmacro, 275
SSH_TO_JOB_SSHD_ARGSmacro, 275
SSH_TO_JOB_SSHD_CONFIG_TEMPLATE

macro, 275
StackSize

job ClassAd attribute, 967
StageOutFinish

job ClassAd attribute, 967
StageOutStart

job ClassAd attribute, 967
STARTmacro, 201, 210, 295, 313, 424
START_BACKFILL macro, 209, 307, 314,

427, 430
START_DAEMONSmacro, 197
START_LOCAL_UNIVERSEmacro, 216,

725, 988
START_MASTERmacro, 197
START_SCHEDULER_UNIVERSEmacro,

216, 725, 988
startd

configuration, 294
Startd Cron functionality

see Daemon ClassAd Hooks, 491

STARTD_AD_REEVAL_EXPRmacro, 243
STARTD_ADDRESS_FILEmacro, 206
STARTD_ATTRSmacro, 183, 206, 360, 419,

426
STARTD_AVAIL_CONFIDENCE macro,

215
STARTD_CLAIM_ID_FILE macro, 206
STARTD_COMPUTE_AVAIL_STATS

macro, 215
STARTD_CRON_<JobName>_ARGS

macro, 282
STARTD_CRON_<JobName>_CWDmacro,

282
STARTD_CRON_<JobName>_ENVmacro,

282
STARTD_CRON_<JobName>_EXECUTABLE

macro, 280
STARTD_CRON_<JobName>_JOB_LOAD

macro, 282
STARTD_CRON_<JobName>_KILL

macro, 282
STARTD_CRON_<JobName>_MODE

macro, 281
STARTD_CRON_<JobName>_PERIOD

macro, 281
STARTD_CRON_<JobName>_PREFIX

macro, 280
STARTD_CRON_<JobName>_RECONFIG

macro, 281
STARTD_CRON_<JobName>_RECONFIG_RERUN

macro, 281
STARTD_CRON_<JobName>_SLOTS

macro, 280
STARTD_CRON_AUTOPUBLISH macro,

280
STARTD_CRON_CONFIG_VALmacro, 279
STARTD_CRON_JOBLISTmacro, 280
STARTD_CRON_JOBSmacro, 685
STARTD_CRON_MAX_JOB_LOADmacro,

282
STARTD_CRON_NAMEmacro, 279
STARTD_DEBUGmacro, 206
STARTD_EXPRSmacro, 183
STARTD_HAS_BAD_UTMPmacro, 205
STARTD_HISTORYmacro, 203
STARTD_JOB_EXPRSmacro, 206, 241

Condor Version 7.7.6 Reference Manual

INDEX 1052

STARTD_JOB_HOOK_KEYWORDmacro,
277, 487

STARTD_MAX_AVAIL_PERIOD_SAMPLES
macro, 216

STARTD_NAMEmacro, 207
STARTD_NOCLAIM_SHUTDOWNmacro,

208
STARTD_PUBLISH_DOTNETmacro, 212,

213
STARTD_PUBLISH_WINREGmacro, 208,

685
STARTD_RESOURCE_PREFIXmacro, 210
STARTD_SENDS_ALIVESmacro, 220, 696
STARTD_SHOULD_WRITE_CLAIM_ID_FILE

macro, 206
STARTD_SLOT_ATTRSmacro, 211
STARTD_VM_ATTRSmacro, 211
STARTD_VM_EXPRSmacro, 211
STARTERmacro, 204
STARTER_ALLOW_RUNAS_OWNERmacro,

191, 363, 433
STARTER_CHOOSES_CKPT_SERVER

macro, 194, 382
STARTER_DEBUGmacro, 230
STARTER_INITIAL_UPDATE_INTERVAL

macro, 485
STARTER_JOB_ENVIRONMENT macro,

231
STARTER_JOB_HOOK_KEYWORDmacro,

487
STARTER_LOCALmacro, 216
STARTER_LOCAL_LOGGINGmacro, 229
STARTER_UPDATE_INTERVAL macro,

230, 485
STARTER_UPDATE_INTERVAL_TIMESLICE

macro, 230
STARTER_UPLOAD_TIMEOUTmacro, 231
starting Condor

Unix platforms, 143
Windows platforms, 154

state
of a machine, 298
transitions, 303–314
transitions summary, 312

state and activities figure, 303
STATE_FILE macro, 271

STATISTICS_TO_PUBLISH macro, 227
STATISTICS_WINDOW_SECONDSmacro,

227, 988
status

of a DAGMan node, 104
of queued jobs, 42

StreamErr
job ClassAd attribute, 967

StreamOut
job ClassAd attribute, 967

STRICT_CLASSAD_EVALUATIONmacro,
176, 449

submit commands, 875
+PostCmd, 903
+PreCmd, 903
$ENV macro, 905
$RANDOM_CHOICE() macro, 905
allow_startup_script, 889
append_files, 889
arguments, 875
buffer_block_size, 890
buffer_files, 890
buffer_size, 890
compress_files, 890
concurrency_limits, 898
copy_to_spool, 898
coresize, 898
cream_attributes, 704, 892
cron_day_of_month, 121, 899
cron_day_of_week, 121, 899
cron_hour, 121, 899
cron_minute, 121, 899
cron_month, 121, 899
cron_prep_time, 899
cron_window, 899
deferral_prep_time, 119, 899
deferral_time, 119, 899
deferral_window, 118, 899
delegate_job_GSI_credentials_lifetime,

892
deltacloud_hardware_profile, 892
deltacloud_hardware_profile_cpu, 892
deltacloud_hardware_profile_memory,

892
deltacloud_hardware_profile_storage,

892

Condor Version 7.7.6 Reference Manual

INDEX 1053

deltacloud_image_id, 892
deltacloud_keyname, 892
deltacloud_password_file, 892
deltacloud_realm_id, 892
deltacloud_user_data, 893
deltacloud_username, 893
ec2_access_key_id, 893
ec2_ami_id, 893
ec2_elastic_ip, 893
ec2_instance_type, 893
ec2_secret_access_key, 893
ec2_security_groups, 893
ec2_tag_<name>, 893
ec2_tag_names, 893
ec2_user_data, 893
ec2_user_data_file, 893
email_attributes, 899
environment, 877
error, 878
executable, 878
fetch_files, 890
file_remaps, 891
getenv, 878
globus_rematch, 893
globus_resubmit, 894
globus_rsl, 894
grid_resource, 535, 894
hold, 885
hold_kill_sig, 896
image_size, 900
initialdir, 900
input, 879
jar_files, 896
java_vm_args, 896
job_ad_information_attrs, 900
job_lease_duration, 900
job_machine_attrs, 900
job_machine_attrs_history_length, 900
job_max_vacate_time, 901
keep_claim_idle, 886
keystore_alias, 895
keystore_file, 895
keystore_passphrase_file, 895
kill_sig, 901
kill_sig_timeout, 901
leave_in_queue, 886

load_profile, 901
local_files, 891
log, 879
log_xml, 879
machine_count, 896
match_list_length, 901
max_job_retirement_time, 902
MyProxyCredentialName, 895
MyProxyHost, 895
MyProxyNewProxyLifetime, 895
MyProxyPassword, 895
MyProxyRefreshThreshold, 895
MyProxyServerDN, 895
next_job_start_delay, 886
nice_user, 902
noop_job, 902
noop_job_exit_code, 903
noop_job_exit_signal, 903
nordugrid_rsl, 895
notification, 51, 879
notify_user, 879
on_exit_hold, 886
on_exit_hold_reason, 887
on_exit_hold_subcode, 887
on_exit_remove, 887
output, 880
output_destination, 882
periodic_hold, 888
periodic_hold_reason, 888
periodic_hold_subcode, 888
periodic_release, 888
periodic_remove, 888
priority, 880
queue, 880
rank, 22, 34, 880
remote_initialdir, 903
remove_kill_sig, 897
rendezvousdir, 903
request_cpus, 881
request_disk, 881
request_memory, 881
requirements, 21, 34, 882
run_as_owner, 569, 903
should_transfer_files, 25, 882
skip_filechecks, 883
stack_size, 903

Condor Version 7.7.6 Reference Manual

INDEX 1054

stream_error, 883
stream_input, 883
stream_output, 883
submit_event_notes, 903
transfer_error, 895
transfer_executable, 883
transfer_input, 896
transfer_input_files, 883
transfer_output, 896
transfer_output_files, 884
transfer_output_remaps, 885
universe, 880
vm_checkpoint, 897
vm_disk, 897
vm_macaddr, 705, 897
vm_memory, 897
vm_networking, 897
vm_networking_type, 897
vm_no_output_vm, 897
vm_type, 897
vmware_dir, 898
vmware_should_transfer_files, 898
vmware_snapshot_disk, 898
want_graceful_removal, 901
want_remote_io, 891
when_to_transfer_output, 25, 592, 885
x509userproxy, 896
xen_initrd, 898
xen_kernel, 898
xen_kernel_params, 898
xen_root, 898

submit description file, 18
contents of, 18
examples, 19–21
grid universe, 534

submit machine, 131
SUBMIT_EXPRSmacro, 234, 437
SUBMIT_MAX_PROCS_IN_CLUSTER

macro, 234
SUBMIT_SEND_RESCHEDULEmacro, 234
SUBMIT_SKIP_FILECHECKSmacro, 233
SubmitterAutoregroup

job ClassAd attribute, 967
SubmitterGroup

job ClassAd attribute, 967
SubmitterNegotiatingGroup

job ClassAd attribute, 967
SubmitterTag

submitter ClassAd attribute, 992
substitution macro

in submit description file, 904
<SUBSYS>macro, 195
<SUBSYS>_ADDRESS_FILEmacro, 183
<SUBSYS>_ADMIN_EMAILmacro, 172
<SUBSYS>_ARGSmacro, 196
<SUBSYS>_ATTRSmacro, 183
<SUBSYS>_DAEMON_AD_FILE macro,

183
<SUBSYS>_DEBUGmacro, 178
<SUBSYS>_DEBUGmacro levels

D_ACCOUNTANT, 180
D_ALL, 178
D_CKPT, 180
D_COMMAND, 179
D_DAEMONCORE, 179
D_FDS, 180
D_FULLDEBUG, 179
D_HOSTNAME, 179
D_JOB, 179
D_KEYBOARD, 179
D_LOAD, 179
D_MACHINE, 179
D_MATCH, 179
D_NETWORK, 179
D_PID, 180
D_PRIV, 179
D_PROCFAMILY, 180
D_PROTOCOL, 180
D_SECURITY, 180
D_SYSCALLS, 179

<SUBSYS>_ENABLE_SOAP_SSLmacro,
273

<SUBSYS>_EXPRSmacro, 183
<SUBSYS>_<LEVEL>_LOGmacro, 180
<SUBSYS>_LOCKmacro, 177
<SUBSYS>_LOGmacro, 176
<SUBSYS>_LOG_KEEP_OPENmacro, 177
<SUBSYS>_MAX_FILE_DESCRIPTORS,

186
<SUBSYS>_SOAP_SSL_PORTmacro, 273
<SUBSYS>_TIMEOUT_MULTIPLIER

macro, 189

Condor Version 7.7.6 Reference Manual

INDEX 1055

<SUBSYS>_USERIDmacro, 196
SUBSYSTEMmacro, 165
subsystem names, 165
supported platforms, 5
SUSPENDmacro, 202, 313
SYSAPI_GET_LOADAVGmacro, 175
SYSTEM_JOB_MACHINE_ATTRSmacro,

221, 222, 695, 900, 957
SYSTEM_JOB_MACHINE_ATTRS_HISTORY_LENGTH

macro, 221, 695
SYSTEM_PERIODIC_HOLDmacro, 223,

961
SYSTEM_PERIODIC_HOLD_REASON

macro, 223, 663
SYSTEM_PERIODIC_HOLD_SUBCODE

macro, 224, 663
SYSTEM_PERIODIC_RELEASE macro,

224
SYSTEM_PERIODIC_REMOVEmacro, 224

TARGET., ClassAd scope resolution prefix,
459

TCP, 378
sending updates, 378

TCP_FORWARDING_HOSTmacro, 187, 719
TCP_UPDATE_COLLECTORSmacro, 189
thread

kernel-level, 4, 16
user-level, 4, 16

TILDE macro, 165
timing information

incorrect, 591
TOOL_DEBUGmacro, 180
TOOLS_PROVIDE_OLD_MESSAGES

macro, 724
TotalSuspensions

job ClassAd attribute, 967
TOUCH_LOG_INTERVALmacro, 178
TRANSFERERmacro, 272
TRANSFERER_DEBUGmacro, 272
TRANSFERER_LOGmacro, 272
TransferErr

job ClassAd attribute, 967
TransferExecutable

job ClassAd attribute, 967
TransferIn

job ClassAd attribute, 968
TransferOut

job ClassAd attribute, 968
transferring files, 25, 592
TRUNC_<SUBSYS>_<LEVEL>_LOG_ON_OPEN

macro, 181
TRUNC_<SUBSYS>_LOG_ON_OPEN

macro, 177, 181
TRUST_UID_DOMAINmacro, 190, 681

UDP, 378
lost datagrams, 378

UID
effective, 360
potential risk running jobs as user no-

body, 363
real, 360

UID_DOMAIN macro, 166, 189, 361, 377,
378, 880

UIDs in Condor, 360–365
UNAME_ARCHmacro, 166
UNAME_OPSYSmacro, 166
unauthenticated, 345, 351
unclaimed state, 298, 306
UNHIBERNATEmacro, 214, 276, 444
Unicore, 543
UNICORE_GAHPmacro, 249
uniq_pid_midwife, 951
uniq_pid_undertaker, 953
universe, 14

Grid, 15, 17
grid, 529, 554
grid, grid type gt2, 534
grid, grid type gt5, 539
Java, 17
java, 15
job attribute definitions, 962
local, 18
parallel, 15, 18
scheduler, 17
standard, 15
vanilla, 15, 17
vm, 15, 18, 113

Unix
alarm, 4, 16
exec, 4, 16

Condor Version 7.7.6 Reference Manual

INDEX 1056

flock, 4, 16
fork, 4, 16
large files, 5, 16
lockf, 4, 16
mmap, 4, 16
pipe, 4, 16
semaphore, 4, 16
shared memory, 4, 16
sleep, 4, 16
socket, 4, 16
system, 4, 16
timer, 4, 16

Unix administrator, 138
Unix daemon

running as root, 127
Unix directory

execute , 138
lock , 139
log , 139
spool , 139

Unix installation
download, 135

Unix user
condor, 138
root, 138

unmapped, 345
UPDATE_COLLECTOR_WITH_TCPmacro,

189, 379
UPDATE_INTERVALmacro, 204, 280, 305
UPDATE_OFFSETmacro, 204
upgrading

items to be aware of, 643
URL file transfer, 33, 401
USE_AFSmacro, 193
USE_CKPT_SERVERmacro, 194, 382
USE_CLONE_TO_CREATE_PROCESSES

macro, 184, 670
USE_GID_PROCESS_TRACKINGmacro,

246, 434
USE_NFSmacro, 192
USE_PROCDmacro, 245, 265, 368, 434
USE_PROCESS_GROUPSmacro, 201
USE_PSSmacro, 232, 649
USE_SHARED_PORTmacro, 186, 373
USE_VISIBLE_DESKTOP macro, 231,

573, 728

user
priority, 52

user condor
home directory not found, 591

User Log Reader API, 507
user manual, 10–129
user nobody

potential security risk with jobs, 363
user priority, 285

effective (EUP), 285
real (RUP), 285

USER_JOB_WRAPPERmacro, 230, 436,
596

USERNAMEmacro, 166

vacate, 53
VALID_COD_USERSmacro, 471
VALID_SPOOL_FILES macro, 234, 269,

392, 812
VARS, 78
viewing

log files, 124
virtual machine

configuration, 411
running Condor jobs under, 411

virtual machine universe, 113–117
virtual machines, 441
vm universe, 18, 113

checkpoints, 116
submit commands specific to VMware,

115
submit commands specific to Xen, 116

VM_BRIDGE_SCRIPTmacro, 713
vm_cdrom_files macro, 711
VM_GAHP_LOGmacro, 266
VM_GAHP_REQ_TIMEOUTmacro, 266
VM_GAHP_SERVERmacro, 266
VM_MAX_NUMBERmacro, 266, 978
VM_MEMORYmacro, 266, 978
VM_NETWORKINGmacro, 267
VM_NETWORKING_BRIDGE_INTERFACE

macro, 267, 713
VM_NETWORKING_DEFAULT_TYPE

macro, 267
VM_NETWORKING_TYPEmacro, 267
VM_RECHECK_INTERVALmacro, 266

Condor Version 7.7.6 Reference Manual

INDEX 1057

VM_SOFT_SUSPENDmacro, 266
VM_STATUS_INTERVALmacro, 266
VM_TYPEmacro, 266, 978
VM_UNIV_NOBODY_USERmacro, 266
VMP_HOST_MACHINEmacro, 268, 411
VMP_VM_LISTmacro, 268, 411
VMWARE_BRIDGE_NETWORKING_TYPE

macro, 268
VMWARE_LOCAL_SETTINGS_FILE

macro, 268
VMWARE_NAT_NETWORKING_TYPE

macro, 268
VMWARE_NETWORKING_TYPEmacro, 268
VMWARE_PERLmacro, 267
VMWARE_SCRIPTmacro, 267

WALL_CLOCK_CKPT_INTERVALmacro,
221

WANT_HOLDmacro, 202, 656, 961
WANT_HOLD_REASONmacro, 202
WANT_HOLD_SUBCODEmacro, 202, 656
WANT_SUSPENDmacro, 203, 313
WANT_UDP_COMMAND_SOCKETmacro,

175, 240
WANT_VACATEmacro, 203, 204, 314
WARN_ON_UNUSED_SUBMIT_FILE_MACROS

macro, 233, 874
Web Service API, 493

condor_schedddaemon command port,
496

file transfer, 495
job submission, 494
transactions, 493

WEB_ROOT_DIRmacro, 273
WINDOWED_STAT_WIDTHmacro, 218
Windows

Condor daemon names, 154
installation, 146–155

initial file size, 146
location of files, 150
preparation, 146
required disk space, 147
unattended install, 150

loading account profile, 571
manual install, 153
out of desktop heap, 597

release notes, 567
starting the Condor service, 154

WINDOWS_FIREWALL_FAILURE_RETRY
macro, 201

WINDOWS_RMDIRmacro, 283
WINDOWS_RMDIR_OPTIONSmacro, 283
WorkHours macro, 320

X509_USER_PROXY environment variable,
36

X509UserProxy
job ClassAd attribute, 968

X509UserProxyEmail
job ClassAd attribute, 968

X509UserProxyExpiration
job ClassAd attribute, 968

X509UserProxyFirstFQAN
job ClassAd attribute, 968

X509UserProxyFQAN
job ClassAd attribute, 968

X509UserProxySubject
job ClassAd attribute, 969

X509UserProxyVOName
job ClassAd attribute, 969

XEN_BOOTLOADERmacro, 268

Condor Version 7.7.6 Reference Manual

	1 Overview
	1.1 High-Throughput Computing (HTC) and its Requirements
	1.2 Condor's Power
	1.3 Exceptional Features
	1.4 Current Limitations
	1.5 Availability
	1.6 Contributions to Condor
	1.7 Contact Information
	1.8 Privacy Notice

	2 Users' Manual
	2.1 Welcome to Condor
	2.2 Introduction
	2.3 Matchmaking with ClassAds
	2.3.1 Inspecting Machine ClassAds with condor_status

	2.4 Road-map for Running Jobs
	2.4.1 Choosing a Condor Universe

	2.5 Submitting a Job
	2.5.1 Sample submit description files
	2.5.2 About Requirements and Rank
	2.5.3 Submitting Jobs Using a Shared File System
	2.5.4 Submitting Jobs Without a Shared File System: Condor's File Transfer Mechanism
	2.5.5 Environment Variables
	2.5.6 Heterogeneous Submit: Execution on Differing Architectures

	2.6 Managing a Job
	2.6.1 Checking on the progress of jobs
	2.6.2 Removing a job from the queue
	2.6.3 Placing a job on hold
	2.6.4 Changing the priority of jobs
	2.6.5 Why is the job not running?
	2.6.6 In the Log File
	2.6.7 Job Completion

	2.7 Priorities and Preemption
	2.7.1 Job Priority
	2.7.2 User priority
	2.7.3 Details About How Condor Jobs Vacate Machines

	2.8 Java Applications
	2.8.1 A Simple Example Java Application
	2.8.2 Less Simple Java Specifications
	2.8.3 Chirp I/O

	2.9 Parallel Applications (Including MPI Applications)
	2.9.1 Prerequisites to Running Parallel Jobs
	2.9.2 Parallel Job Submission
	2.9.3 Parallel Jobs with Separate Requirements
	2.9.4 MPI Applications Within Condor's Parallel Universe

	2.10 DAGMan Applications
	2.10.1 DAGMan Terminology
	2.10.2 Input File Describing the DAG: the JOB, DATA, SCRIPT and PARENT...CHILD Key Words
	2.10.3 Submit Description File Contents and Usage of Log Files
	2.10.4 DAG Submission
	2.10.5 Job Monitoring, Job Failure, and Job Removal
	2.10.6 Suspending a Running DAG
	2.10.7 Advanced Features of DAGMan
	2.10.8 Job Recovery: The Rescue DAG
	2.10.9 File Paths in DAGs
	2.10.10 Visualizing DAGs with dot
	2.10.11 Capturing the Status of Nodes in a File
	2.10.12 A Machine-Readable Event History, the jobstate.log File
	2.10.13 Utilizing the Power of DAGMan for Large Numbers of Jobs

	2.11 Virtual Machine Applications
	2.11.1 The Submit Description File
	2.11.2 Checkpoints
	2.11.3 Disk Images
	2.11.4 Job Completion in the vm Universe

	2.12 Time Scheduling for Job Execution
	2.12.1 Job Deferral
	2.12.2 CronTab Scheduling

	2.13 Job Monitor
	2.13.1 Transition States
	2.13.2 Events
	2.13.3 Selecting Jobs
	2.13.4 Zooming
	2.13.5 Keyboard and Mouse Shortcuts

	2.14 Special Environment Considerations
	2.14.1 AFS
	2.14.2 NFS
	2.14.3 Condor Daemons That Do Not Run as root
	2.14.4 Job Leases

	2.15 Potential Problems
	2.15.1 Renaming of argv[0]

	3 Administrators' Manual
	3.1 Introduction
	3.1.1 The Different Roles a Machine Can Play
	3.1.2 The Condor Daemons

	3.2 Installation
	3.2.1 Obtaining Condor
	3.2.2 Preparation
	3.2.3 Newer Unix Installation Procedure
	3.2.4 Starting Condor Under Unix After Installation
	3.2.5 Installation on Windows
	3.2.6 RPMs
	3.2.7 Debian Packages
	3.2.8 Upgrading - Installing a Newer Version of Condor
	3.2.9 Dynamic Deployment

	3.3 Configuration
	3.3.1 Introduction to Configuration Files
	3.3.2 Special Macros
	3.3.3 Condor-wide Configuration File Entries
	3.3.4 Daemon Logging Configuration File Entries
	3.3.5 DaemonCore Configuration File Entries
	3.3.6 Network-Related Configuration File Entries
	3.3.7 Shared File System Configuration File Macros
	3.3.8 Checkpoint Server Configuration File Macros
	3.3.9 condor_master Configuration File Macros
	3.3.10 condor_startd Configuration File Macros
	3.3.11 condor_schedd Configuration File Entries
	3.3.12 condor_shadow Configuration File Entries
	3.3.13 condor_starter Configuration File Entries
	3.3.14 condor_submit Configuration File Entries
	3.3.15 condor_preen Configuration File Entries
	3.3.16 condor_collector Configuration File Entries
	3.3.17 condor_negotiator Configuration File Entries
	3.3.18 condor_procd Configuration File Macros
	3.3.19 condor_credd Configuration File Macros
	3.3.20 condor_gridmanager Configuration File Entries
	3.3.21 condor_job_router Configuration File Entries
	3.3.22 condor_lease_manager Configuration File Entries
	3.3.23 Grid Monitor Configuration File Entries
	3.3.24 Configuration File Entries Relating to Grid Usage and Glidein
	3.3.25 Configuration File Entries for DAGMan
	3.3.26 Configuration File Entries Relating to Security
	3.3.27 Configuration File Entries Relating to PrivSep
	3.3.28 Configuration File Entries Relating to Virtual Machines
	3.3.29 Configuration File Entries Relating to High Availability
	3.3.30 MyProxy Configuration File Macros
	3.3.31 Configuration File Macros Affecting APIs
	3.3.32 Configuration File Entries Relating to condor_ssh_to_job
	3.3.33 condor_rooster Configuration File Macros
	3.3.34 condor_shared_port Configuration File Macros
	3.3.35 Configuration File Entries Relating to Hooks
	3.3.36 Configuration File Entries Only for Windows Platforms
	3.3.37 condor_defrag Configuration File Macros

	3.4 User Priorities and Negotiation
	3.4.1 Real User Priority (RUP)
	3.4.2 Effective User Priority (EUP)
	3.4.3 Priorities in Negotiation and Preemption
	3.4.4 Priority Calculation
	3.4.5 Negotiation
	3.4.6 The Layperson's Description of the Pie Spin and Pie Slice
	3.4.7 Group Accounting
	3.4.8 Hierarchical Group Quotas

	3.5 Policy Configuration for the condor_startd
	3.5.1 Startd ClassAd Attributes
	3.5.2 The START expression
	3.5.3 The IS_VALID_CHECKPOINT_PLATFORM expression
	3.5.4 The RANK expression
	3.5.5 Machine States
	3.5.6 Machine Activities
	3.5.7 State and Activity Transitions
	3.5.8 State/Activity Transition Expression Summary
	3.5.9 Policy Settings

	3.6 Security
	3.6.1 Condor's Security Model
	3.6.2 Security Negotiation
	3.6.3 Authentication
	3.6.4 The Unified Map File for Authentication
	3.6.5 Encryption
	3.6.6 Integrity
	3.6.7 Authorization
	3.6.8 Security Sessions
	3.6.9 Host-Based Security in Condor
	3.6.10 Examples of Security Configuration
	3.6.11 Changing the Security Configuration
	3.6.12 Using Condor w/ Firewalls, Private Networks, and NATs
	3.6.13 User Accounts in Condor on Unix Platforms
	3.6.14 Privilege Separation
	3.6.15 Support for glexec

	3.7 Networking (includes sections on Port Usage and CCB)
	3.7.1 Port Usage in Condor
	3.7.2 Reducing Port Usage with the condor_shared_port Daemon
	3.7.3 Configuring Condor for Machines With Multiple Network Interfaces
	3.7.4 Using TCP to Send Updates to the condor_collector

	3.8 The Checkpoint Server
	3.8.1 Preparing to Install a Checkpoint Server
	3.8.2 Installing the Checkpoint Server Module
	3.8.3 Configuring the Pool to Use Multiple Checkpoint Servers
	3.8.4 Checkpoint Server Domains

	3.9 DaemonCore
	3.9.1 DaemonCore and Unix signals
	3.9.2 DaemonCore and Command-line Arguments

	3.10 Pool Management
	3.10.1 Upgrading -- Installing a New Version on an Existing Pool
	3.10.2 Shutting Down and Restarting a Condor Pool
	3.10.3 Reconfiguring a Condor Pool

	3.11 The High Availability of Daemons
	3.11.1 High Availability of the Job Queue
	3.11.2 High Availability of the Central Manager

	3.12 Setting Up for Special Environments
	3.12.1 Using Condor with AFS
	3.12.2 Enabling the Transfer of Files Specified by a URL
	3.12.3 Configuring Condor for Multiple Platforms
	3.12.4 Full Installation of condor_compile
	3.12.5 The condor_kbdd
	3.12.6 Configuring The CondorView Server
	3.12.7 Running Condor Jobs within a Virtual Machine
	3.12.8 Configuring The condor_startd for SMP Machines
	3.12.9 Condor's Dedicated Scheduling
	3.12.10 Configuring Condor for Running Backfill Jobs
	3.12.11 Group ID-Based Process Tracking
	3.12.12 Cgroup-Based Process Tracking
	3.12.13 Limiting Resource Usage
	3.12.14 Concurrency Limits

	3.13 Java Support Installation
	3.14 Virtual Machines
	3.14.1 Configuration Variables

	3.15 Power Management
	3.15.1 Entering a Low Power State
	3.15.2 Returning From a Low Power State
	3.15.3 Keeping a ClassAd for a Hibernating Machine
	3.15.4 Linux Platform Details
	3.15.5 Windows Platform Details

	4 Miscellaneous Concepts
	4.1 Condor's ClassAd Mechanism
	4.1.1 ClassAds: Old and New
	4.1.2 Old ClassAd Syntax
	4.1.3 Old ClassAd Evaluation Semantics
	4.1.4 Old ClassAds in the Condor System

	4.2 Condor's Checkpoint Mechanism
	4.2.1 Standalone Checkpointing
	4.2.2 Checkpoint Safety
	4.2.3 Checkpoint Warnings
	4.2.4 Checkpoint Library Interface

	4.3 Computing On Demand (COD)
	4.3.1 Overview of How COD Works
	4.3.2 Authorizing Users to Create and Manage COD Claims
	4.3.3 Defining a COD Application
	4.3.4 Managing COD Resource Claims
	4.3.5 Limitations of COD Support in Condor

	4.4 Hooks
	4.4.1 Job Hooks That Fetch Work
	4.4.2 Hooks for a Job Router
	4.4.3 Daemon ClassAd Hooks

	4.5 Application Program Interfaces
	4.5.1 Web Service
	4.5.2 The DRMAA API
	4.5.3 The Condor User and Job Log Reader API
	4.5.4 Chirp
	4.5.5 The Command Line Interface
	4.5.6 The Condor GAHP
	4.5.7 The Condor Perl Module

	5 Grid Computing
	5.1 Introduction
	5.2 Connecting Condor Pools with Flocking
	5.2.1 Flocking Configuration
	5.2.2 Job Considerations

	5.3 The Grid Universe
	5.3.1 Condor-C, The condor Grid Type
	5.3.2 Condor-G, the gt2, and gt5 Grid Types
	5.3.3 The nordugrid Grid Type
	5.3.4 The unicore Grid Type
	5.3.5 The pbs Grid Type
	5.3.6 The lsf Grid Type
	5.3.7 The sge Grid Type
	5.3.8 The EC2 Grid Type
	5.3.9 The cream Grid Type
	5.3.10 The deltacloud Grid Type
	5.3.11 Matchmaking in the Grid Universe

	5.4 Glidein
	5.4.1 What condor_glidein Does
	5.4.2 Configuration Requirements in the Local Pool
	5.4.3 Running Jobs on the Remote Grid Resource After Glidein

	5.5 Dynamic Deployment
	5.6 The Condor Job Router
	5.6.1 Routing Mechanism
	5.6.2 Job Submission with Job Routing Capability
	5.6.3 An Example Configuration
	5.6.4 Routing Table Entry ClassAd Attributes
	5.6.5 Example: constructing the routing table from ReSS

	6 Platform-Specific Information
	6.1 Linux
	6.1.1 Linux Kernel-specific Information
	6.1.2 Address Space Randomization

	6.2 Microsoft Windows
	6.2.1 Limitations under Windows
	6.2.2 Supported Features under Windows
	6.2.3 Secure Password Storage
	6.2.4 Executing Jobs as the Submitting User
	6.2.5 The condor_credd Daemon
	6.2.6 Executing Jobs with the User's Profile Loaded
	6.2.7 Using Windows Scripts as Job Executables
	6.2.8 How Condor for Windows Starts and Stops a Job
	6.2.9 Security Considerations in Condor for Windows
	6.2.10 Network files and Condor
	6.2.11 Interoperability between Condor for Unix and Condor for Windows
	6.2.12 Some differences between Condor for Unix -vs- Condor for Windows

	6.3 Macintosh OS X

	7 Frequently Asked Questions (FAQ)
	7.1 Obtaining & Installing Condor
	7.2 Setting up Condor
	7.3 Running Condor Jobs
	7.4 Condor on Windows
	7.5 Grid Computing
	7.6 Managing Large Workflows
	7.7 Troubleshooting
	7.8 Other questions

	8 Contrib and Source Modules
	8.1 Introduction
	8.2 Using Condor with the Hadoop File System
	8.2.1 condor_hdfs Configuration File Entries

	8.3 Quill
	8.3.1 Installation and Configuration
	8.3.2 Four Usage Examples
	8.3.3 Quill and Security
	8.3.4 Quill and Its RDBMS Schema

	8.4 The CondorView Client Contrib Module
	8.4.1 Step-by-Step Installation of the CondorView Client

	9 Version History and Release Notes
	9.1 Introduction to Condor Versions
	9.1.1 Condor Version Number Scheme
	9.1.2 The Stable Release Series
	9.1.3 The Development Release Series

	9.2 Upgrading from the 7.4 series to the 7.6 series of Condor
	9.3 Development Release Series 7.7
	9.4 Stable Release Series 7.6
	9.5 Development Release Series 7.5
	9.6 Stable Release Series 7.4

	10 Command Reference Manual (man pages)
	cleanup_release
	condor_advertise
	condor_check_userlogs
	condor_checkpoint
	condor_chirp
	condor_cod
	condor_cold_start
	condor_cold_stop
	condor_compile
	condor_config_bind
	condor_config_val
	condor_configure
	condor_continue
	condor_convert_history
	condor_dagman
	condor_drain
	condor_fetchlog
	condor_findhost
	condor_gather_info
	condor_glidein
	condor_history
	condor_hold
	condor_load_history
	condor_master
	condor_off
	condor_on
	condor_power
	condor_preen
	condor_prio
	condor_procd
	condor_q
	condor_qedit
	condor_reconfig
	condor_release
	condor_reschedule
	condor_restart
	condor_rm
	condor_rmdir
	condor_router_history
	condor_router_q
	condor_run
	condor_set_shutdown
	condor_ssh_to_job
	condor_stats
	condor_status
	condor_store_cred
	condor_submit
	condor_submit_dag
	condor_suspend
	condor_transfer_data
	condor_updates_stats
	condor_userlog
	condor_userprio
	condor_vacate
	condor_vacate_job
	condor_version
	condor_wait
	filelock_midwife
	filelock_undertaker
	gidd_alloc
	install_release
	procd_ctl
	uniq_pid_midwife
	uniq_pid_undertaker

	11 Appendix A: ClassAd Attributes
	12 Appendix B: Magic Numbers

